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ABSTRACT. This paper is devoted to investigating global robust exponential stability for a class
of delayed stochastic reaction-diffusion recurrent neural networks. The network parameters are
governed by a continuous-time discrete-state Markov process which takes values in a finite set. By
employing a Lyapunov-Krasovskii functional and some inequalities, some easy-to-test criteria on
global exponential stability for this kind of stochastic neural networks are established in the form of
linear matrix inequalities. An example is presented to illustrate the effectiveness of the theoretical

results.
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1. INTRODUCTION

Recently, recurrent neural networks (RNNs) have attracted increasing attention
due to their many important applications, such as speech recognition [1, 2], GPS
measurements [3], robotic sound-source localization [4], underwater robot control [5],
adaptive filtering [6], combinatorial optimization [7] and others [8, 9, 10]. Such ap-
plications heavily depend on the dynamical behaviors of RNNs. Analysis of the
dynamical behaviors of RNNs, such as stability [11-24], periodic oscillation [25-29]
and chaotic behaviors [2, 30-32], is essential for practical design of RNNs. Besides,
there are often some unavoidable uncertainties such as modeling errors, external per-
turbations and parameter fluctuations, which can cause instability of the networks.
Thus, many researchers have probed robust stability of the RNNs with errors and
perturbations [33-37]. Yang, Gao and Shi [34] provided novel robust stability criteria

for stochastic Hopfield neural networks with time delays in 2009. Raja and Samidurai
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presented new delay-dependent robust asymptotic stability for uncertain stochastic

recurrent neural networks with multiple time varying delays in [37].

Markovian jump systems, introduced by Krasovskii and Lidskii [38] in 1961, have
been widely studied, see [39-46] and the references therein. As we all know, during the
implementation of RNNs on very-large- scale integrated chips, the phenomena, such
as information latching, random failure of the components, sudden disturbances and
variations of the environment, and changes of the subsystem interconnections, may
result in the changes of the network parameters. Therefore, it is necessary to investi-
gate the model of Markovian jumping neural networks, see [47-52] and the references
therein. Wu and Shi etc. [47] have investigated passivity analysis for discrete-time
stochastic Markovian jump neural networks with mixed time delays. Zhao and Zhang
etc. [49] have established robust stability criterion for discrete-time uncertain markov-
ian jumping neural networks with defective statistics of modes. Zhang and Wang [50]
have studied the stability analysis of Markovian jumping stochastic Cohen-Grossberg
neural networks (CGNNs) with mixed time delays by LMI approach. Cao and Zhu
[51] have considered robust exponential stability of Markovian jump impulsive sto-
chastic CGNNs with mixed time delays using LMI approach. However, The above

have not considered reaction-diffusion effects.

Diffusion effect cannot be avoided in electric circuits and the neural network
model when electrons are moving in asymmetric electromagnetic field, see [53-56]
and the references therein. The stability for reaction-diffusion neural networks with
Dirichlet boundary conditions was addressed in [53, 54], where some novel diffu-
sion dependent criteria were provided. For reaction-diffusion neural networks with
Neumann boundary conditions, some diffusion-independent stability criteria were es-
tablished [55, 56]. Wang and Zhang [55] have considered stochastic exponential sta-
bility of the delayed reaction-diffusion RNNs with Markovian jumping parameters,
and their results are diffusion-independent and delay-independent, which may lead to

considerable conservativeness.

The axonal signal transmission delays often occur in practice and may cause
undesirable dynamic network behaviors such as oscillation and instability. There-
fore, the stability for neural networks with time delays has attracted more and more
researchers, who have classified the delay type under consideration as constant, time-
varying and distributed [11-27, 60-62]. Recently, it is found that, in real systems,
the transmission delay may occur randomly, which can be modeled as a Markov pro-
cess [64-67]. To the best of the authors’ knowledge, there are few literatures on the

Markovian switching reaction-diffusion RNNs with mixed model-dependent delays.

Motivated by the above discussion, in this paper, we are interested in investigating
global robust exponential stability for a class of stochastic reaction-diffusion RNNs

with Markovian jumping parameters and model-dependent delays. The parameters
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are governed by a continuous-time discrete-state Markov process which takes the
values in a finite set. The parameter uncertainties are assumed to be norm bounded.
In section 2, the model studied is presented, and some definitions and lemmas are
introduced. In section 3, delay and diffusion dependent robust stability of the model
is probed and some sufficient conditions in the form of LMIs are developed. In section
4, a numerical example is presented to illustrate the effectiveness and efficiency of the

proposed method, and finally, conclusions are drawn in section 5.

Notations: L?*(R x Q) stands for the space of real Lebesgue measurable functions
of R x Q. It is a Banach space with the 2-norm ||u(t)||s = (>, l|us(¢)]|2)2, where
lus®)|| = (fy, uilt, 2)2dz)?, and |ui(t,2)| is Euclid norm. (Z,F,{F;}i0,P) is a
complete probability space with a filtration {F;}:>o satisfying the usual conditions.
LE ([-70,0] x ©; R") is the family of all Fo-measurable C([—7o,0] x €; R")-valued
random variables £ = {£(6,x) : —19 < 0 < 0,2 € Q} such that sup_, o<, E[|£(0)]]3 <
oo, where E{-} stands for the mathematical expectation operator with respect to the
given probability measure P. A = (a;;)nxn > 0 (< 0) is a positive (negative) definite
matrix. A = (a;j)nxn > 0 is a semi-positive definite matrix. A > B (respectively,
A > B) this means A — B is a semi-positive definite matrix (respectively, positive
definite). [ is identity matrix with compatible dimension. Ay.x(A) (respectively,

Amin(A)) means the largest (respectively, smallest) eigenvalue of the matrix A.

2. PRELIMINARIES

Consider the delayed stochastic reaction-diffusion RNNs with Markovian jumping

parameters and mode-dependent delays as follows

dy(t,z) = [Ve(D*(t, z,y) o Vy(t,x)) — (A(r(t)) + DA(r(t))y(t, z)
HWo(r (1)) + AWo(r (1)) Goly(t, ) + (Wi (r(1))
+AWA(r())Gi(y(t = 7(r(1)), )

+(Wa(r(t)) + AWs(r ()))/t . Ga(y(s, x))ds + 1(r(t))]dt

~

e HWs(r(0) + AWs(r(0)y(t, )
HBU(1) + ABEO)y(t - 7(r(t). )
+(C(re) + 0 | oy G0l ) dsldn(r),

9y dy dy
2] = > ¢ > 0
an (81’1 , 81’”) 0, t>ty> O, x €0 ,

y(to+0,z,19) =&(0,2), —10<60<0, rgesS, ze.

where Q = {z = (x1,...,2,)7, |x;| < 7,4 =1,...,m} is a compact set with smooth
boundary 02 and measure p(Q2) > 0 in R™, D*(t,z,y) = (Di(t,2,9))nxm > 0
diffusion operator; y(t,x) = (y1(t,x),...,y,(t,x))T is the state vector; A(r(t)) =
diag(ay(r(t)), ..., an(r(t))) > 0 are amplification functions; W(r(t)) = (W};(r(t)))nxn
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(I =0,1,2,3) are connection weight matrices; Gi(u) = (gF(uy1), ..., g5(un))7, (k =
0,1,2) are the activation functions; I(r(t)) = (I1(r(t)),..., I,(r(t)))T is an exter-
nal input vector; 7(r(t)) = 7;,0(r(t)) = &; are bounded time delay governed by a
continuous-time discrete-state Markov process which takes values in a finite set; so, let
0<7<7,0<6; <4, 79 =max{r,d}. w(t) = (wi(t),...,w,(t))T € R" is a Brownian
motion defined on a completely space. {r(t),t > 0} is a right-continuous Markov pro-
cess on the probability space which takes values in the finite space S = {1,2,..., N}

with generator m = {m;;} (i,7 € S) (also called jumping transfer matrix) given by

(2.2) P{r(t+A)=j|r(t)=1i} = ‘
A > 0 and lima_ O(AA) = 0. Here, m;; > 0 is the transition rate from ¢ to j if ¢ # j
and m;; = — >, m;. As usual, we assume that the Brownian motion {w(t),¢ > 0} is

independent from the Markov process {r(t),t > 0}. For a fixed network mode r(t) = 1,
A(r(t)), B(r(t)),C(r(t)) and Wi(r(t))(l = 0,1,2,3) are know constant matrices with
appropriate dimensions. The matrices AB(r(t)), AC(r(t)), AA(r(t)) and AW (r(t))
(I = 0,1,2,3) denote the parameter uncertainties. Recall that the Markov process
{r(t),t > 0} takes values in the finite space S = {1,2,...,N}. For the sake of

simplicity, we write Vi € S,

ABG) = AB, AC() = AC, (1=0,1,2,3)

And they satisfy with the following structure

(2 3) [AAH AVVOZ') AWH) AWQD AW?)Z') ABH ACZ]
' = M;E;[ N1, Nai, Nai, Nyg, Nsi, Nei, Noi], Vi€ S
where M;, Ny; (k = 1,...,7) are known real constant matrices with appropriate

dimensions. The uncertain matrix F; satisfies E] E; < I.

Assumption 1. The neuron activation functions in (2.1), Gg(u), satisfy the

following Lipschitz condition

Gk(ul) — Gk(UQ)

Uy — Uz

0<

< Sk, ‘v’ul,uQ GRn, k’:O,l,Q

where Sj, € R™" (k= 0,1,2) are known constant matrices.
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For the purpose of simplicity, system (2.1) can be rewritten as

(

dy(t,x) = [Ve(D*(t,z,y) o Vy(t,x)) — (A; + AA)y(t, x)
(W()Z + AW(]Z 0 y( )) (Wh + AWlZ)Gl( (t — Ti, SL’))

Wg, + AWQ / G2 dS + I; ]dt + [(Wgz + Ang)y(t, 93)
t—0;

+(B, + ABy(t — 7, 2) + (Cs + AC) [, Galy(s, x))ds|dw(t),

Oy dy dy
— = =, ... = > >
on <85L’1’ al’n) 0, t = to = 0, x e 8(2,

y(tO + 971'770) = 6(9>$)a —To S 0 S 07 S Q> Yo € S.

(2.4)

\
Let y* be the equilibrium point of (2.4), we can shift the intended equilibrium y* to
the origin by letting u = y — y*, and then the system (2.4) can be transformed into:

(

du(t,z) = [Vo(D(t, z,u) o Vu(t,z)) — (A + AA)u(t, z)

+(B; + AB)u(t — 1, x) + (C; + ACY) /t;. Fy(u(s, x))ds] dw(t),

0
T 0, 1310, e,
on

\ u(t0+97I770):S0(97$)a —To SHSO, I’GQ, ’}/OES~

where u € Rn> ()0(971') = 5(971') - y*> D(thau) = D*(thau + y*)a Fk(u) = Gk(u +
y*) — Gr(y*), k = 0,1,2. Then, it follows from Assumption 1, we can easily have
Fi(u)

u

(2.6) 0< <S,, VYueR' k=0,1,2.

Definition 2.1. The equilibrium point u* of system (2.5) is called robust exponen-
tially stable on norm || - [|; in the mean square, if for every ¢ € Lf ([—79,0] x Q; R™),

there exist two positive scalar A > 0 and M > 0 such that the following equality
holds:

Ellu(t,p)llz < Me™  sup  Bllp(6, )|

—10<0<0
Lemma 2.2.
(2.7) Vi (g, t, (¢ // (s,x)dsdx
t—0(y(t))
28) Vatun t1() = | / )Q((1))uls, x)ds da
t—5(y(t)

(2.9) Vs (e, t, (¢ // / uT(s,z)Ru(s, x)ds df dx
S(y(t)) Jt+0
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Then, when y(t) =i, we have
(2.10)

E%(ut,t,i):/[Cu(t z) — (1 — h)Cou(t — &;, ) +wac/ sx)ds]d

(2.11) LVi(uy, t,i) = / uT(t, x)Quu(t, x dsc—l—ij// (s,2)Qju(s,x)ds dx

- /(1 — h)u"(t — 6;, 2)Quu(t — 0, x)dx
Q

(2.12) LV3(uy, t,1) :5i/uT(t,x)Ru(t,x)dx—(l—hi)/Q/t ) uT(s,x)Ru(s, x)ds dx.

Q
here h; = SN 7.6
where i—Z] 1 Tig05, Ut = fQ

Proof. According to the definition of infinitesimal operator, we have

(2.13) LVi(us t,i) = lim i{ [Vl(uHA,v(thA),HA)}ut,v(t):i}—lfl(ut,t,i)}

A—0+ A
From additivity of integration on intervals, we derive
(2.14)
E [I/'l(ut+A, Y(t+ A), t+ A )|, v(t) =i

coesay [ [ msdx\ut,w) ]
_E [C( (t+A))/ (/M uls, x)ds+/tt+Au(s,x)ds) g, (1) :z}
B [0( (t+A)) / ( / u(s, 2)ds + /t:ifA)JrAu(s,x)ds) daus, 7(8) :z]

By (2.2), we obtain

lim —{ [ (t+ A)) // sxdsd:c‘ut, —]
A—>0+ t6
—C’// sxdsdm}
t—5;

(2.15) = lim _{KZ%AH >0j+(1+7r,,-A+o(A))o,]

x/ﬂ [/t; u(s,x)ds—C,-/t u(s,x)ds}dx}

t—5;
N t
= ZWUCJ-// u(s, z)ds dx
Besides,

(2.16) Ali_%%{E{C(v(H—A)) /Q ( /t " s, 2)ds
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—/HﬁA (s, x)ds)dx‘ut, t):z}}
—c/ txdx—C/ 5 2)d

Using integration mean value theorem and continuity, we get

t—6(y(t+A))+
s [ 7 sastora -}

= lima_o+ [(Z#i i A+ o(A)C; + (1 4+ m A + o(A))CZ-]
(2.17)

t— {(z#l 717 Ato(A))5; +(1+7rnA+o(A))6i:| +A
X — // u(s, z)ds dz
t—8i+A
/ u(t — 6;, z)dx
Q
Thus, L£Vi(us,t,i) can be derived by computing (2.13)—(2.17). Similarly, (2.8)
and (2.9) can be proofed. O

Lemma 2.3 (Schur Complement). The LMI

[ Q) S(t)

st ) |

where Q(t) = QT(t), R(t) = RT(t), and S(t) depend on t, is equivalent to any one of
the following conditions:

Lemma 2.4. Let x € R",y € R" and € > 0. Then we have
2Ty +yTr < exTx + e yTy.

Lemma 2.5 ([59]). For any constant matriz M > 0, any scalars a and b with a < b,

and a vector function xz(t) : [a,b] — R™ such that the integrals concerned are well
defined, then the following holds

eond | ] <00 f ot

3. MAIN RESULTS

Theorem 3.1. The null solution of system (2.5) is robust stability on norm || - ||z in

the mean square for any time-varying delays 7; and §; satisfying p; < 0 and h; <0,
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if there exist a sequence of positive scalars (; (i € S) and positive definite matrices

Q > 0 and R > 0 such that the following linear matriz inequalities

I‘11 1—‘12 1—‘13 F14

r r
(3.1) = | * t2 0 hay

hold, where

'y = —al —B;A; — GAT + N7, le + 53S0 + 5§ Na;N2iSo + BiW S W,

j=1
Iy = WgB; + NJNg;,

I'is = WJC;Ss + BIC;Ss + NJ.N7;So + NJ, N7, 5o,

oy = STS1+ STNIN3:S1+ (6 + 1)BIB; + (8 + 2)N§,Ngi — (1 — p;)Q,

33 = —(1—hy)R+ 5752+ SIN[NySo + (6; +2)S5CIC;So + (5; + 3)S3 NJ, N7 So,
Ly = 268:M;, BiWoi, BiWii, BiWai, BiB], BiWg;, BiNg;, BiNgi],

Iy = [3B],0,0,0,0,0,0,0],

1—‘34 = [61'5;0;-70707070707070]7
1 1

Pu = diag |~I.~I~I~I~I,—3l,—51.~1|.

Proof. Let C*'(R, x R™ x S;R,) denote the family of all nonnegative functions
V(t,y,i) on Ry x R™ x S which are continuous twice differentiable in y and differen-
tiable in ¢. Given ¢ € Lf ([—79,0] x Q;R"), and fixed system mode i € S arbitrarily.
Write u(t, x) = u(t, x; ¢), and define a Lyapunov-Krasovskii functional candidate by

V(t,u(t,z),1) = Vi(t,ult, x), 1) + Vot ult, ), i) + Va(t, u(t, z), i)

where

Vi(t, ult, ), 1)

uT(t,
Va(t, u(t, x), // T(s,2)Qu(s, x)ds dx,
t7'Z

Va(t, u(t, x), ///uTsxRusx)dsde:c
5; Jt+0

It is known that {u(t, x),r(t)} (t > to) is a C([—79, 0] x Q; R™) x S-valued Markov pro-

cess. From (6), the weak infinitesimal operator £ of the stochastic process {u(t, x), r(t)}

z)u(t, z)dz,

(t > 0) can be calculated as

LVi(t,u(t,x), 1) = 2@/ uT(t, ) {V (D(t,z,u) o Vu(t,z)) — (A; + AA;)u(t, x)
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+ (Was + AWy) /t ;Z_ Fy(u(s, x))ds} iz

+ Zﬂijﬁj[ZuT(t,x)u(t,x)dx
Q
#(Co+ 80 [ Ftuts. )| o 8+ SWaute o
=6
+ (B + AB)u(t — 7, 2) + (C; + AC)) /t Fy(u(s, x))} dx,
t—6;

LVo(tu(t, x), 1) = /QuT(t,x)Qu(t,x)dx —(1—pm) / uT(t — 75, 2)Qu(t — 7, x)dx

Q

N t
+ Zﬂij/Q/t uT(s,z)Qu(s, x)ds dz,
j=1 i

LV3(t,u(t,x),i) = 51-/QuT(t, x)Ru(t, z)dx — (1 — h;) /Q /t_& uT(s, x)Ru(s, z)ds dx

< 51-/QUT(t, x)Ru(t, r)dx — u ;Z hi) /Q [/t;i u(s,:z)ds] '

x R [/:5 u(s,x)ds] da.

where p; = Zjvzl TijTjs My = Zjvzl m;;05. 1t follows from Zjvzl mij = 0 that

(3.2) Zﬂ'w //t (s,2)Qu(s,x)dsdx = 0.

Hence, from Lemma 2.5, we have

(3.3) 203, /Q uT(t,z)V - (D(t, z,u) o Vu(t, z))dx < —a/ uT(t, x)u(t, z)dz.

Q

From Lemma 2.4 and (2.3), we can easily obtain
(3.4) —2ﬂi/uT(t,x)(Ai + AA)u(t, x)dx
Q

:—2ﬂi/ﬂuT(t,x)Aiu(t,x)dx—2@-/uT(t,x)AAiu(t,x)d:c

Q

~ 95 / T (t, 2) At 2)da — 26, / uT(t, 2) M B Nygult, 2)da
Q

Q

< / uT(t, x)[—26;A; + B M;MT + NT.Ny;|u(t, x)dz.
0
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From Lemma 2.4 and (2.3), (2.6), we have
2,61/ uT(t, x)(Wo + AWo) Fo(u(t, x))dx = 2,61/ uT(t, x)Wo Fo(u(t, x))dx
Q Q
9)

For the first part of above equation, we have

2/@/QuT(t,x)WOZ-FO(u(t,x))dz§ﬁfAuT(t,x)WOiWOEu(t,x)dx
+/QFOT(u(t,x))FOT(u(t,x))dx

< 622/ uT(t, )W, Wiu(t, z)dx + / uT(t, ) S] Sou(t, x)dx.
Q Q
For the second part, we have
26 | Tt ) SWorF(u(t, o)) do = 25, | uT(t, o) MoE Ny (ut, )
Q Q
< B2 / uT(t, o) M; M u(t, z)dx + / Fi(u(t, ) Ng. Noi Fo(u(t, z))dx
Q Q

SBE/uT(t,m)MiMiTu(t,x)dij/uT(t,x)SJN;iNgiSou(t,x)dx.
Q Q

So, we can obtain that
Q
< / uT(t,2) 37 (Wo, W, + M;M)u(t, z)dx
Q
Q
From Lemma 2.4 and (2.3), (2.6), we have
2, / Tt 2) (Wi + AW Fy (u(t — 72, 7)) = 25 / T, ) W (ult — 72, 7))
Q Q
428, / T, ) AW F (ult — 75, 7))
Q
For the first part, we have
252 / UT(t, .Z’)WliFl (U(t — Ti, l’))dl’ S 622 / UT(t, x)WthTZu(t, I)dl‘
Q Q
+ / Fl(u(t — 1, 2))F (u(t — 7, z))dx
Q
< B2 / uT(t, o)Wy, Wlu(t, z)dx + / uT(t — 7, 2)STS1u(t — 73, x)dx.
Q Q
For the second part, we have

261/ UT(t, I)AWhFl('LL(t — Ty, I))dl‘ = 252/ UT(t, I)MZEZNngl (U(t — T, I))dl‘
Q Q
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< ﬂf/QuT(t,x)MiMiTu(t, z)dx
+/QF1T(u(t 7 2)) NI Ny Py (ult — 72, 7))da
<3 /Q T (¢, 2) M MTu(t, 2)da
+ /QuT(t — 7, ) ST N N3; Sju(t — 75, x)dx.

So, we can obtain that

< /Q T, 2) B2 WaWT + MM u(t, 2)da

+ / UT(t — Ti, I)[stl + SlTNgTZNngl]u(t — Ty, .le)d.flf
9)
From Lemma 2.4, Lemma 2.5 and (2.3), (2.6) we have

Qﬂi/QuT(t,x)(ng+AW2,~)/t_5i Fy(u(s,x))dsdx
_ 95, /Q T (,2) Wag /t; Fy(u(s, z))dsdz

t
+26i/uT(t,x)AW2i/ Fy(u(s, x))dsdz.
Q t—0;

For the first part, we get
t
203; / uT(t, ..'Z:)WQZ/ Fy(u(s, x))dsdz
Q t—0;

SBE/UT(tv'r)W%WQEU(t,J;)dl’
Q

f L] [

<6 [ (e Walu(t.)ds
Q

+ /Q [ /t; Sgu(s,:c)ds] ' [ /t; Sgu(s,a?)ds] dz

Sﬁiz/uT(t>f)W2iW2TiU(t,x)dx
Q

+ { /t; u(S,:C)ds] 518, { / ; u(s,x)ds] dz.

For the second part, we get

2, /Q T (t, 2) AW / t& Fy(u(s, ))dsda

3

| F2(u(s,x))ds] dz

7
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t
:2/6i/uT(tax)MiEiN4i/ Fy(u(s, x))dsdz
Q t—0;
< 57 / uT(t, x) M M u(t, x)dx
Q

+/Q {E,-NM /t;i FQ(U(S,Z’))dS:|T |:EZ'N47; /t;i Fg(U(S,ZIZ’))dS:| dx
SBE/QUT(t,x)MZ-MiTu(t,x)dm

4 /Q l /t ; Fé(u(s,:c))ds} NN l /t; Fg(u(s,x))ds} 0z

Sﬁf/uT(t,x)MiMiTu(t, x)dx
Q

t t
+/ {/ u(s,:z)ds] Sq N[ NySo [/ u(s,:z)ds] dx.
Q t—(;i t_5i

So, we can obtain that

(3.7) Q/Bi/QuT(t,x)(ng + szi)/t—é- Fy(u(s,x))dsdx

Q

t t
+/ [/ u(s,:c)ds} [S3.S2 4+ SN J. Ny So| [/ u(s,:c)ds} dx.
Q t—0; t—4;

Suppose MM, < I and from (2.3), we can easily obtain that
5 /Q (Wai + AW3)u(t, z) + (B, + ABut — 71.2) + (Ci + AC) /t ;_ Fy(u(s, )"
((Ws + AWs)u(t, z) + (B, + AB)u(t — 1, 2) + (C; + AC) /t; Fy(u(s,x))|dx
_ 5 /Q T, 2) (W + AWT)(Was + AWas)u(t, 7)da
+ B /Q uT(t — 7, 2) (Bl + AB])(B; + AB)u(t — 7, x)dx

w0 [ 1] Pl m)dslT(CT 4 ACH(C+ ACY [ Fau(o,)dshda

i

+ 20; / uT(t, x) (W + AW (B; + ABy)u(t — 75, x)dx
Q
t

+20; /Q uT(t, x)(W3, + AW)(C; + AC’i)[/t Fy(u(s,x))ds]dx

_5;

+ 25 /Q (¢ — 75, 2) (BT + ABNY(Ci + ACY)| /t ;_ Fy(u(s, ))ds|dz.



DIFFERENTIAL INCLUSIONS 403

For the first part, we have

Q

= 61/ UT(T,, x) [W;;Wgz + W;;AW& + AW;;WQ;Z —+ AW;;AWgZ]U(t, $)dSL’
Q
Noting that

/6,-/uT(t,x)W?)TZ-AWg,iu(t,x)dx:ﬁi/uT(t,x)WgTZ-M,-E,-N5iu(t,x)dx
0 0

2 1
< ﬁ_Z/UT(t@)W?,Tiniu(taﬁ)dl"" 5/UT(tvx)NE,Tz’EiTMz’TMiEiNM“(t’I)dm
)

Q
2 1
< %/UT(t,x)W31;W3zu(t,x)dl'+§/UT(tal')N5TZN51u(t’x)dx’
Q Q

DO

and
8, / T, ) AW Wault, 2)dz = 5 / T (¢, 2) NI ETMT Wasu(t, o) da
Q Q

1 2
< 5/uT(t,x)NgiEiTMiTMiEiNg)iu(t,x)dx+%/uT(t,x)WgTZ-Wg,iu(t,x)dz
0 0

1 2
< 5/uT(t,x)NE,TZ-NMu(t,x)dij%/UT(t,x)W?LWg,iu(t,x)dx,
Q Q
and

/6,-/uT(t,x)AWJZ-Angu(t,x)dx:ﬁi/uT(t,x)NE)TZ-EZ-TMZ-TMiE,-N&u(t,x)dx
0 0

Sﬁi/uT(t,ZB)NgiNgiu(t,x)dx.
Q
So, from above inequalities, we have

(3.8) 5, / T (t,2) (W + AWE)(Was + AWa)ult, 2)dz
Q

< /Q () [(F + B)WEWai + (6 + 1)NT NysJu(t, @)de.

Similarly
(3.9) Bi /Q uT(t — 7, 2) (Bl + AB])(B; + AB)u(t — 75, x)dx
< /Q uT(t = @) (B2 + B)BI By + (6 + V)NINgJu(t — 71, 2)dx.
and
(3.10)

By /Q [ /t ; Fy(u(s, x))ds] ' (CT + ACT)(Ci + ACY) { /t j By(uls, :):))ds} dx

< [, rtsonas] 12+ mcre+ i+ . [ Pl onas) o
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¢ T ¢
< / [/ Sw(s,x)ds] (87 + B:)CTC; + (B; + 1) N, Ny [/ Sau(s, :c)ds} dx
Q t—0; t—0;
t

< / [/ u(s, :)s)ds} ' (87 + B3;)S3CTC:Sy + (B; + 1)ST NI N7 Sy {/t u(s,:z)ds] dr.
Q t—4; t—

05

For the fourth part, we have
23, /Q WT(t, 2) (W + AW (B: + ABult — 7, 2)da
=20, /Q uT(t, 2)[WiB; + WEAB; + AWJ.B; + AWLAB;Ju(t — 7, x)dx.
Noting that
2@-/QuT(t,x)WgTiABiu(t,x)dz = Qﬁi/SIuT(t,x)WgTiMiEiN&u(t — 7, x)dx
< B2 /Q uT(t, x) WIWsu(t, z)dx + /QuT(t — 7, ) NG ET MM, E; Ng;u(t — 7, x)dx
< B2 /Q uT(t, o)W Wsu(t, x)dr + /QuT(t — T3, &) Ng; Neju(t — 7, x)dx,
and
20, /Q uT(t, x) AWS Bau(t — 13, x)dx = 5 /Q uT(t, x) N, ET M Biu(t — 73, x)dx
< 63/QuT(t,x)N;EJMiTMiEiNsiu(t,x)dx+ /QuT(t — 73, 2) Bl Byu(t — 73, 2)dx
<@ /Q WT(t, 2)NT Nosu(t, o)z + /Q WT(t — 75, 2) BT Bru(t — 71, 2)dx.,

and

203; / uT(t, x) AWIABu(t — 7;, x)dx = 203, / uT(t, x) NLETMT M, E; Ng;u(t — 7, x)dx
Q Q

< Qﬁi/QuT(t,x)NgiN&u(t — 7, x)d.
So, from above inequalities, we have
(3.11) 203; /Q uT(t, 2)(Wa + AW (B; + AB)u(t — 75, x)dx
< @ /Q uT(t, ) Wi Wa + NI NsJu(t, 2)de
+ 28, /Q uT(t, 2)(WEB; + NINgsJult — 7, 2)dz
+ /QuT(t — 7, 2)[B] B; + Ng; Ngi|Ju(t — 7, x)dz.
Similarly

(3.12) 2@/ uT(t, x) (WS + AW (C; + AC) /t Fy(u(s,x))ds dx

7
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< 61'2/UT(taﬁ)[WgTiW?)i+N5TiN5i]u(t,x)d:c
Q
t
+ 28 [ i) WIC+ NENa] [ Fyfuto,o)dsda
Q t—6;
t T t
+ / { / Fg(u(s,x))ds] (CTC; + NINy { / FQ(u(s,x))dS] e
Q t—0; t—5;
< 61'2/UT(tax)[WgTiW?)i+N&N5i]u(t,x)dx
Q
t
+2ﬂi/uT(t,x)[W3TiCi—|-N5TZ.N7Z.]/ So(u(s,x))ds dx
Q t—0;
t T ¢
+/ [/ Szu(s,x)ds] [CTC; + NJ.Ny;] [/ SQU(S,ZL’)dS] dx
Q t—0; t—5;
=3 [, + N Nut,2)ds
Q
t
+26i/uT(tv$)[W3TiCiS2+N5T1'N7i52]/ u(s, x)ds dx
Q t—9;

t T t
—I—/ [/ u(s,:z)ds] [S3CTC;Sy + ST NJ. N7;.Ss] [/ u(s,x)ds} dx.
Q t—08; t—

05

and
(3.13) 28, /Q uT(t,2)(BT + ABTY(C + ACY) /t t& Fy(u(s, z))ds dz
< 6§/QuT(t,x)[BZTBZ- + NJNg;Ju(t, r)dz
28, /Q uT(t,2)[BICsS5 + NI Noi ) / té u(s, z)ds da
t-5;

¢ T t
—I—/ [/ u(s,:z)ds] [S3CTC;Sy + ST NJ.N7;.Ss] [/
Q t—08; t—

Hence, from (3.8)-(3.13) we have

u(s, :)s)ds} dzx.
05

(3.14)

7

t
t—0;
< / uT(t,2)[(367 + B)WiWai + (367 + B + 1) NI N5 + 57 N§; Nei + 37 B Bilu(t, x)da
Q

—I—/ {/t u(s, :)s)ds} (87 + B; + 2)STCTCiSy + (B; + 3)SINT. N7;.Sa) {/t u(s,:v)ds] dx
Q t—08; t—

05

+ / uT(t — 7, @) (87 + B + 1) BI B; 4+ (3; + 2)N§; N Ju(t — 7, x)dx
Q
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Q
¢
Q t—9;
Therefore, from (3.2)—(3.7) and (3.14), we can easily obtain

Q

2
HABMMT + 32> W W+ (367 + B)WEWs: + (26

1=0
+ B; + 1) NI N5; + 32 NJ. N

N

j=1

" /Q WT(t — 72,2)[STS) + STNINGS) + (52 + 6, + 1)BI B,
+ (B; + 2)Ng;Nei — (1 — p;) Qlu(t — 73, x)dx
+ /Q [/té u(s, :E)ds] ' [—(1 = hj)R + S352 + SJN]. Ny So
t=5;
+ (87 + Bi +2)SICTC;S5 + (B; + 3)S3 N7, N7 5] {/: u(s,:z)ds] dx
t—5;
+ 20 /Q uT(t, x) Wi B; + NJ, NgiJu(t — 7, x)dx

425, / WT(t,2)[WECsSs + BTCiSy + NI NSy + NI NoiSh]
Q

X [ /t ; u(s, x)ds} dz.

Define ¥7(t,z) = (uT(t, x),uT(t — 1), [ft 5 uls, @ dsr, we have
LV (t,u(t,x) /¢T (t,z) ,x)dx.
where
O11 O O3
== @1-2 (S 0 < 0.
Iz 0 Oy
hold, where

2
O11 = —al — 26,A; + NINy, + SIS0 + SINI NusSo + 452 MMT + 62y Wi, W]
=0

+ B2B] B; + (337 + B;)WaWs; + (287 + 8; + 1) NI Ns; + 37 NJ, Ng;
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N
-+ Z Wijﬂj[ + Q + 5ZR,
j=1
©12 = WS B; + NJ Ng;,
@13 - W;;CZSQ + BJCZSQ + NE;NWSQ + NﬁTiNn'SQ,
Og = STS) + STNIN3iSy 4 (62 + B + 1)BI By + (8; + 2)NENei — (1 — p)@Q,
O35 = —(1 — hy) R+ SIS 4+ SINJNuiSs + (57 + 53; + 2)S]CTC;S,
+ (Bi + 3)S3 N7;N7; Ss.
when Vi T(t, z) = (uT(t, z),uT(t—7;), [ft 5, Uls, @ ds} T), we have LV (¢, u(t, x),i) <
0 and V¢T(t,x) # 0, we have LV (¢, u(t, x),i) <O.

Let a = min{A\uin(—0;)}, a1 = max;es{Gi}, a2 = Amax(@), a3 = Apax(R). And,
we suppose 7; is the unique solution of the following equation:

—a + ain; + agmnem” + agméfe”i‘si =0.
By It6 formula, we have

LMVt u(t,2), )] = LV (¢, ult, 2),1) + 0V (t u(t, ), )

t
< el (at amlutt. o)+ aan [l o) s
t—T;

0 gt
+ agm/ / |u(s, z)||3ds d@} :
—0; Jt+0
Noting that

0 t t t
/ / lu(s, 2)||2ds dO :/ (s — t + 6)[uls, 2)||2ds < &-/ lu(s, 2)||2ds.
—(Si t+0 t—6i t—6i

Hence

LIV (t,ult, ), 0)] < e™[(—a+ arm)u(t, 2)|3

t t
+@m/ mww@@+wm/)mwwmwy
t—7; t—0;

By It6 formula, we have

V(t,u(t,x),i) = V(0,¢0,7) —I—/O LV (s,u(s,x),i)ds.

Take the mathematical expectation of both side of above equation, we obtain

E[emtV(t, u(t, $)7 Z)] _ EV(O, 0, fyo) +E [/O L[emsv(s, u(s, :L’), i)]dS}

u(s, )|3ds

t
SEV@@W®+ENﬂ+ﬂm0/6W
0

tort t et
+ azm/ / i ||u(6, x)||3d0ds + agméi/ / e's
0 t—7; 0 t—0;

u(0, z)||3d0ds].
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Noting that

t t 0 0+71;
/ / & (0, 2) 2d6ds = / / e (0, 2) |2ds do
0 t—T; —7; JO

t—7; 0+T; t t
+/ / em8||u(9,x)||§dsd9+/ / e ||lu(0, x)||5ds df
0 0 t—7; Jo
t

0
< / 6 (s, )| 2ds + 7, / e+ (s, ) | 2ds.
o 0
and
t t 0 044;
[ [ etuolasas = [ [ e juo. o as s
0 t—0; —8; JO
t—8; pO+6i t t
+/ / em8||u(9,x)||§dsd9+/ / e ||lu(0, x)||3ds df
0 0 t—0; J 6
0 t
<5 / e+ (s, ) 2ds + / e+ (s, 7) | 2ds.
—3; 0
Then

B[V (t, u(t, z),4)] <EV(0,%,%)

u(s, )|3ds

t
+ E{ [—a+ a1m; + aonie” ™ + agniéfe”i5i] / el
0

0 0
+a277i7'i677m/ ¥ ||u(s, x)|3ds +a377i5,-26’7“5i/

—T; —6;

e uls, ) s |

0
= EV(O’ @, ’)/0) -+ E{azrrliTieniTi / enis

3
+ agn;0; €™ /

u(s, )|3ds

0

e"isnu(s,x)n%ds}

0
< EV(0,¢,7%) + {Gﬂhﬁenm /

—T;

eds sup Elp(d,z)|3
) —10<6<0

0
Famaters [ ovtas sup Euso(e,x)n%}

_5; —10<6<0

< a1 + agmie™™ + az6te™] sup Ellp(0,2)]3
—75<0<0

= la1 4 (a —am)n; '] sup Ele(6,z)])3.
—70<6<0

Considering the definition of V' (¢, u(t, x),), we have
V(t u(t,x),i) > min{Gi}u(t, 2)]3.
Therefore, we obtain

Ellu(t, )z < Me™™" sup E|lp(0, 2)[3.

—10<6<0
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where M = %W By the shur’s complement, it’s easy to see that =; < 0 is

equivalent to the following LMI:
'y T Ths T
r 0 T
T, = * 22 %1
x * F33 F34

* * * F44

hold. The theorem is completed. O

When D(t,z,y) = 0, the system (2.5) can be transformed into:

4

du(t,z) = [ — (A; + AA)u(t, x) + (Wo + AWoi) Fo(u(t, z))
—F(Wh + AWlZ)Fl(U(t — T, [L’))

+(Wo; + AWoy;) /t Fy(u(s, a:))ds] dt
t—0;
(3.15) + [(ng + AWs)u(t, z) + (B; + AB)u(t — 7, z)

G+ NG /

t—0;

Fy(u(s, x))ds} dw(t),

— = U, tZtoZO, ZL’E@Q,
[ u(to+0,2,7%) =¢0,z), —1<0<0, x€Q,9€S.

where u € R", p(0,x) = £(0,2) —y*, Fi.(u) = Gp(u+y*) — Gi(y*), k =0,1,2. Then,
we have the following corollary.

Corollary 3.2. The null solution of system (3.15) is robust stability on norm || - |2
in the mean square for any time-varying delays 7; and ; satisfying p; < 0 and h; <0,
if there exist a sequence of positive scalars 3;, (i € S) and positive definite matrices

@ > 0 and R > 0, such that the following linear matrix inequalities

Fll F12 I‘13 1—‘14
(3.16) = | * e 0 b
’ ‘ * * F33 F34 .

* * * F44
hold, where
'y = —B;A; — BiA] + NJ,Ny; + S So + S§Ng; NaiSo
N

+ BWIWs: + (267 + B + DNINs: + > w31 + Q + R,

j=1

[y = Wi B; + NI N,

Flg - W;;CZSQ + BZTCZSQ + N5TZN7@SQ + NGTiN’?iSQ,

[ao = STS1 + STNJ N3;S1 + (Bi + 1) Bl B; + (6: + 2) N& Nei — (1 — pi)Q,
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33 =—(1—hi))R+ 535 + SgN[NySs + (5 + 2)S3CTC;Sy + (B; + 3)53 NJ, N7, 5o,
F14 - [QﬁzMza ﬁiWOia /Gz'Wlia /GiW2i> ﬁzBZTa /Giwg.l;a @Ngw ﬁzNﬁTz]a

Iy = [3:B],0,0,0,0,0,0,0],

I3y = [3:55CF,0,0,0,0,0,0,0],

1.1
T = diag {—1, ~L I ~1.~1,—5I, 1. —I] .

4. EXAMPLE

Consider a two-neuron Markovian jumping neural networks with one mode (3.15),

and the parameters are given as follows:

-23 2 . 4 . 4
H _ 3 3 A= 9.0 8 B - 03 0 7
1.9 -1.9 79 5.6 0.9 0.6

3.0 44 2.9 54 3.7 14 9.0 84
Cl = ) WOI = 7W11 = 7W21 = )
1.9 2.6 6.9 5.6 4.9 0.6 7.9 5.6
So=51=5,=08], Npy =0.031, k=1,...,7, 7 =6 = 0.5. By using the Matlab
LMI toolbox, we solve the LMIs (33), and obtain

b (197711 3.0843 [ 20:2002 52305
"L 3.0843 164831 )7 77 | 52305 18.0242

11.7744 1.7144 12.0053 1.7571
Ql - ) QQ = ) ﬁz = 0.0085.
1.7144 10.2777 1.7571 10.4559

Therefore, it follows from Corollary 3.2 that the solution is robust exponentially stable

on norm || - || in the mean square.

5. CONCLUSIONS

This paper is devoted to investigating global robust exponential stability for a
class of delayed stochastic reaction-diffusion recurrent neural networks. The network
parameters are governed by a continuous-time discrete-state Markov process which
takes values in a finite set. By employing a Lyapunov-Krasovskii functional and some
inequalities, some easy-to-test criteria on global exponential stability for this kind of
stochastic neural networks are established in the form of linear matrix inequalities.

An example is presented to illustrate the effectiveness of the theoretical results.
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