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ABSTRACT. In this paper, we make certain continuity and disconjugacy assumptions upon the

second order boundary value problem with nonlocal integral boundary conditions, y′′ = f(x, y, y′),

y(x1) = y1, and y(x2) +
∫

d

c
ry(x)dx, a < x1 < c < d < x2 < b, y1, y2, r ∈ R. Then, supposing we

have a solution, y(x), of the boundary value problem, we differentiate the solution with respect to

various boundary parameters. We show that the resulting function solves the associated variational

equation of y(x).

AMS (MOS) Subject Classification. 34B10.

1. INTRODUCTION

In this paper, our concern is characterizing derivatives of solutions to the second

order nonlocal boundary value problem

(1.1) y′′ = f(x, y, y′), a < x < b,

satisfying

(1.2) y(x1) = y1, y(x2) +

∫ d

c

ry(x)dx = y2,

where a < x1 < c < d < x2 < b, and y1, y2, r ∈ R with respect to the boundary

parameters.

In particular, we show that under certain conditions solutions of (1.1) may be

differentiatied with respect to the various parameters within the boundary conditions.

The resulting function solves a linear second order differential equation called the

variational equation.

Definition 1.1. Given a solution y(x) of (1.1), we define the variational equation

along y(x) by

(1.3) z′′ =
∂f

∂u1
(x, y(x), y′(x))z +

∂f

∂u2
(x, y(x), y′(x))z′.
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The result creates a nonlocal integral boundary value problem analogue of a

theorem of Peano’s discussed in [3] which concerns the differentiability of solutions of

initial value problems with respect to the inital data.

Before we get to the main results of this work, we need to establish some back-

ground information and mention a few conditions that are imposed upon (1.1) through-

out.

First, we require that

(i) f(x, u1, u2) : (a, b) × R
2 → R is continuous,

(ii) for i = 1, 2, ∂f/∂ui(x, u1, u2) : (a, b) × R
2 → R is continuous, and

(iii) solutions of initial value problems for (1.1) extend to (a, b).

Remark 1.2. We note that (iii) is not a necessary condition but lets us avoid con-

tinually making statements about maximal intervals of existence inside (a, b).

Uniqueness of solutions of (1.1) is a necessity to our results. To that end, we

make the following assumption which is an analogue of disconjugacy for (1.1):

(iv) Given a < x1 < c < d < x2 < b and r ∈ R, if y(x1) = z(x1) and y(x2) +
∫ d

c
ry(x)dx = z(x2) +

∫ d

c
ry(x)dx where y(x) and z(x) are solutions of (1.1),

then, on (a, b),

y(x) ≡ z(x).

The following final condition provides uniqueness of solutions of (1.3) along all solu-

tions of (1.1):

(v) Given a < x1 < c < d < x2 < b and r ∈ R and a solution y(x) of (1.1), if

u(x1) = 0 and u(x2) +
∫ d

c
ry(x)dx = 0, where u(x) is a solution of (1.3) along

y(x), then, on (a, b),

u(x) ≡ 0.

In the last few decades, many authors have researched the connection between

derivatives of solutions of (1.1) with respect to boundary data and solutions of (1.3)

under conditions similar to those listed above. We refer to the works [2], [4], [5], [8],

[9] and the references therein for examples. Outside the scope of this paper, authors

have also done much in the same way with boundary value problems for difference

equations, [1], [6], [7].

2. PRELIMINARY THEOREMS

In this section, we present two theorems which will be very useful in the proof

of the main result of this work. First, we present the theorem of Peano for which we

seek an analogue. This is the aforementioned theorem that was attributed to Peano

in Hartman’s book [3].
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Theorem 2.1 (A Theorem of Peano). Assume that, with respect to (1.1), conditions

(i)–(iii) are satisfied. Let x0 ∈ (a, b) and y(x) := y(x, x0, c1, c2) denote the solution of

(1.1) satisfying the initial conditions y(x0) = c1, y′(x0) = c2. Then,

(a) for i = 1, 2, ∂y

∂ci

(x) exists on (a, b), and αi(x) := ∂y

∂ci

(x) is the solution of the

variational equation (1.3) along y(x) satisfying the respective initial conditions

α1(x0) = 1, α′

1(x0) = 0,

α2(x0) = 0, α′

2(x0) = 1.

(b) ∂y

∂x0

(x) exists on (a, b), and β(x) := ∂y

∂x0

(x) is the solution of the variational

equation (1.3) along y(x) satisfying the initial conditions

β(x0) = −y′(x0), β ′(x0) = −y′′(x0).

(c) ∂y

∂x0

(x) = −y′(x0)
∂y

∂c1
(x) − y′′(x0)

∂y

∂c2
(x).

Lastly, we will make much use of a slight modification of a continuous dependence

result which is an application of the Brouwer Invariance of Domain Theorem. For a

typical proof, we refer the avid reader to [5].

Theorem 2.2. Assume (i)–(iv) are satisfied with respect to (1.1). Let y(x) be a

solution of (1.1) on (a, b), and let a < α < x1 < c < d < x2 < β < b and y1, y2, r ∈ R

be given. Then, there exists a δ > 0 such that, for i = 1, 2, |xi − ti| < δ, |c − ξ| < δ,

|d−∆| < δ, |r−ρ| < δ, |u(x1)−y1| < δ, and |u(x2)+
∫ d

c
ru(x)dx−y2| < δ, there exists

a unique solution uδ(x) of (1.1) such that uδ(t1) = y1 and uδ(t2) +
∫ ∆

ξ
ρuδ(x)dx = y2

and, for i = 1, 2, {u
(i)
δ (x)} converges uniformly to u(i)(x) as δ → 0 on [α, β].

3. ANALOGUE OF PEANO’S THEOREM

In this section, we present our analogue to Theorem 2.1. The result is stated in

five parts, but each proof is essentially the same. Therefore, we will not provide all

proofs for all parts. In conclusion, we will present a corollary analogous to part (c)

of Peano’s Theorem.

Theorem 3.1. Assume conditions (i)–(v) are satisfied. Let y(x) be a solution of

(1.1) on (a, b). Let a < x1 < c < d < x2 < b and y1, y2, r ∈ R be given so that

y(x) = y(x, x1, x2, y1, y2, c, d, r),

where

y(x1) = y1, y(x2) +

∫ d

c

ry(x)dx = y2.

Then,
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(a) for i = 1, 2, ui(x) := ∂y

∂yi

(x) exists on (a, b) and is the solution of the variational

equation (1.3) along y(x) satisfying the respective boundary conditions

u1(x1) = 1 and u1(x2) +

∫ d

c

ru1(x)dx = 0,

u2(x1) = 0 and u2(x2) +

∫ d

c

ru2(x)dx = 1.

(b) for i = 1, 2, zi(x) := ∂y

∂xi

(x) exists on (a, b) and is the solution of the variational

equation (1.3) along y(x) satisfying the respective boundary conditions

z1(x1) = −y′(x1) and z1(x2) +

∫ d

c

rz1(x)dx = 0,

z2(x1) = 0 and z2(x2) +

∫ d

c

rz2(x)dx = −y′(x2).

(c) C(x) := ∂y

∂c
(x) exists on (a, b) and is the solution of the variational equation

(1.3) along y(x) satisfying the boundary conditions

C(x1) = 0 and C(x2) +

∫ d

c

rC(x)dx = −ry(c).

(d) D(x) := ∂y

∂d
(x) exists on and is the solution of the variational equation (1.3)

along y(x) satisfying the boundary conditions

D(x1) = 0 and D(x2) +

∫ d

c

rD(x)dx = ry(d).

(e) R(x) := ∂y

∂r
(x) exists on (a, b) and is the solution of the variational equation

(1.3) along y(x) satisfying the boundary conditions

R(x1) = 0 and R(x2) +

∫ d

c

rR(x)dx = −

∫ d

c

y(x)dx.

Proof. For part (a), we will provide the argument for ∂y/∂y1 as ∂y/∂y2 is quite similar.

For brevity, we will denote y(x, x1, x2, y1, y2, c, d, r) by y(x, y1) as y1 is the parameter

of concern. Let δ > 0 be as in Theorem 2.2, 0 < |h| < δ be given, and define the

difference quotient

u1h(x) =
1

h
[y(x, y1 + h) − y(x, y1)].

Note that for every h 6= 0,

u1h(x1) =
1

h
[y(x1, y1 + h) − y(x1, y1)] =

1

h
[y1 + h − y1] = 1
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and

u1h(x2) +

∫ d

c

ru1h(x)dx =
1

h

[

y(x2, y1 + h) +

∫ d

c

ry(x, y1 + h)dx

− y(x2, y1) −

∫ d

c

ry(x, y1)dx
]

=
1

h
[y2 − y2] = 0.

Now that we have established the boundary conditions, we will view y(x) in terms of

the solution of an initial value problem at x1, and along with telescoping sums, the

Mean Value Theorem, and Theorems 2.1, 2.2, we will show that u1h(x) is a solution

of the variational equation (1.3). To that end, let

µ = y′(x1, y1)

and

ν = ν(h) = y′(x1, y1 + h) − µ.

Then y(x) = u(x, x1, y1, µ), and we have

u1h(x) =
1

h
[u(x, x1, y1 + h, µ + ν) − u(x, x1, y1, µ)].

Next, by utilizing a telescoping sum, we have

u1h(x) =
1

h
[u(x, x1, y1 + h, µ + ν) − u(x, x1, y1, µ + ν)

+ u(x, x1, y1, µ + ν) − u(x, x1, y1, µ)]

By Theorem 2.1 and the Mean Value Theorem, we obtain

u1h(x) =
1

h
[α1(x, u(x, x1, y1 + h̄, µ + ν))(y1 + h − y1)

+ α2(x, u(x, x1, y1, µ + ν̄))(µ + ν − µ)],

where for i = 1, 2, αi(x, y(·)) is the solution of the variational equation (1.1) along

u(·) satisfying respectively

α1(x1) = 1, α′

1(x1) = 0,

α2(x1) = 0, α′

2(x1) = 1.

Furthermore, y1 + h̄ is between y1 and y1 + h, and µ + ν̄ is between µ and µ + ν.

Simplifying,

u1h(x) = α1(x, u(x, x1, y1 + h̄, µ + ν)) +
ν

h
α2(x, u(x, x1, y1, µ + ν̄)).

Thus, to show limh→0 u1h(x) exists, it suffices to show limh→0
ν
h

exists.

By hypothesis (v), since α2(x, u(·)) is a nontrivial solution of (1.3) along u(·),

and α2(x1, u(·)) = 0, we have α2(x2, u(·)) +
∫ d

c
rα2(x, u(·))dx 6= 0.
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Recall,

u1h(x2) +

∫ d

c

ru1h(x)dx = 0.

Hence, we obtain

lim
h→0

ν

h
=

−α1(x2, u(x, x1, y1, µ)) −
∫ d

c
rα1(x, u(x, x1, y1, µ))

α2(x2, u(x, x1, y1, µ)) +
∫ d

c
rα2(x, u(x, x1, y1, µ))dx

=
−α1(x2, y(·))−

∫ d

c
rα1(x, y(·))

α2(x2, y(·)) +
∫ d

c
rα2(x, y(·))dx

:= U.

Now let u1(x) = limh→0 u1h(x), and note by construction of u1h(x),

u1(x) =
∂y

∂y1
(x).

Furthermore,

u1(x) = lim
h→0

u1h(x) = α1(x, y(x)) + Uα2(x, y(x))

which is a solution of the variational equation (1.3) along y(x).

In addition,

u1(x1) = lim
h→0

u1h(x1) = 1,

and

u1(x2) +

∫ d

c

ru1(x)dx = lim
h→0

[

u1h(x2) +

∫ d

c

ru1h(x)dx

]

= 0.

This completes the argument for part (a).

For part (b), we will provide the argument for ∂y/∂x1 as the remaining part is

nearly identical. For brevity, we will denote y(x, x1, x2, y1, y2, c, d, r) by y(x, x1) as x1

is the parameter of concern. Let δ > 0 be as in Theorem 2.2, 0 < |h| < δ be given,

and define

z1h(x) =
1

h
[y(x, x1 + h) − y(x, x1)].

Note that for every h 6= 0,

z1h(x1) =
1

h
[y(x1, x1 + h) − y(x1, x1)]

=
1

h
[y(x1, x1 + h) − y(x1 + h, x1 + h) + y(x1 + h, x1 + h)

− y(x1, x1)]

=
1

h
[−y′(x1 + h̄, x1 + h)(x1 + h − x1) + y1 − y1]

= −y′(x1 + h̄, x1 + h)



VARIATIONAL EQUATIONS AND SOLUTIONS OF BVPS 499

where x1 + h̄ is between x1 and x1 + h, and

z1h(x2) +

∫ d

c

rz1h(x)dx =
1

h

[

y(x2, x1 + h) +

∫ d

c

ry(x, x1 + h)dx

− y(x2, x1) −

∫ d

c

ry(x, x1)dx
]

=
1

h
[y2 − y2] = 0.

Now that we have established the boundary conditions, we will view y(x) in terms of

the solution of an initial value problem at x1 as in part (a), and along with telescoping

sums, the Mean Value Theorem, and Theorems 2.1, 2.2, we will show that z1h(x) is

a solution of the variational equation (1.3). To that end, let

µ = y′(x1, x1)

and

ν = ν(h) = y′(x1, x1 + h) − µ.

Then y(x) = u(x, x1, y1, µ), and we have

z1h(x) =
1

h
[u(x, x1 + h, y1, µ + ν) − u(x, x1, y1, µ)].

Next, by utilizing a telescoping sum, we have

z1h(x) =
1

h
[u(x, x1 + h, y1, µ + ν) − u(x, x1, y1, µ + ν)

+ u(x, x1, y1, µ + ν) − u(x, x1, y1, µ)]

By Theorem 2.1 and the Mean Value Theorem, we obtain

z1h(x) =
1

h
[β(x, u(x, x1 + h̄, y1, µ + ν))(x1 + h − x1)

+ α2(x, u(x, x1, y1, µ + ν̄))(µ + ν − µ)],

where β(x, u(·)) and α2(x, u(·)) are solutions of the variational equation (1.1) along

u(·) satisfying respectively

β(x1) = −y′(x1), β ′(x1) = −y′′(x1),

α2(x1) = 0, α′

2(x1) = 1.

Furthermore, x1 + h̄ is between x1 and x1 + h, and µ + ν̄ is between µ and µ + ν.

Simplifying,

z1h(x) = β(x, u(x, x1 + h̄, y1, µ + ν)) +
ν

h
α2(x, u(x, x1, y1, µ + ν̄)).

Thus, to show limh→0 z1h(x) exists, it suffices to show limh→0
ν
h

exists.

By hypothesis (v), that α2(x, u(·)) is a nontrivial solution of (1.3) along u(·), and

α2(x1, u(·)) = 0, we have α2(x2, u(·)) +
∫ d

c
rα2(x, u(·))dx 6= 0.
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Recall,

z1h(x2) +

∫ d

c

rz1h(x)dx = 0.

Hence, we obtain

lim
h→0

ν

h
=

−β(x2, u(x, x1, y1, µ)) −
∫ d

c
rβ(x2, u(x, x1, y1, µ))

α2(x2, u(x, x1, y1, µ)) +
∫ d

c
rα2(x, u(x, x1, y1, µ))dx

=
−β(x2, y(·))−

∫ d

c
rβ(x2, y(·))

α2(x2, y(·)) +
∫ d

c
rα2(x, y(·))dx

:= U.

Now let z1(x) = limh→0 z1h(x), and note by construction of z1h(x),

z1(x) =
∂y

∂x1
(x).

Furthermore,

z1(x) = lim
h→0

z1h(x) = β(x, y(x)) + Uα2(x, y(x))

which is a solution of the variational equation (1.3) along y(x).

In addition,

z1(x1) = lim
h→0

z1h(x1) = −y′(x1),

and

z1(x2) +

∫ d

c

rz1(x)dx = lim
h→0

[

z1h(x2) +

∫ d

c

rz1h(x, y(·))dx

]

= 0.

Thus, part (b) is complete.

Parts (c), (d) and (e) are proven in much the same way. Therefore, we will provide

the argument for ∂y/∂d and leave (c) and (e) to the active reader. For brevity, we

will denote y(x, x1, x2, y1, y2, c, d, r) by y(x, d) as d is the parameter of concern. Let

δ > 0 be as in Theorem 2.2, 0 < |h| < δ be given, and define

Dh(x) =
1

h
[y(x, d + h) − y(x, d)].

Note that for every h 6= 0,

Dh(x1) =
1

h
[y(x1, d + h) − y(x1, d)] =

1

h
[y1 − y1] = 0
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and

Dh(x2) +

∫ d

c

rDh(x)dx =
1

h
[y(x2, d + h) +

∫ d

c

ry(x, d + h)dx

− y(x2, d) −

∫ d

c

ry(x, d)dx]

=
1

h
[y(x2, d + h)

+
(

∫ d+h

c

ry(x, d + h)dx −

∫ d+h

c

ry(x, d + h)dx
)

+

∫ d

c

ry(x, d + h)dx − y2]

=
1

h
[y2 −

∫ d

c

ry(x, d + h)dx −

∫ d+h

d

ry(x, d + h)dx

+

∫ d

c

ry(x, d + h)dx − y2]

= −
1

h

∫ d+h

d

ry(x, d + h)dx

= −
1

h
(d + h − d)ry(d + h̄, d + h)

= −ry(d + h̄, d + h).

where d + h̄ is between d and d + h.

Now that we have established the boundary conditions, we will view y(x) in terms

of the solution of an initial value problem at x1 and along with telescoping sums, the

Mean Value Theorem, and Theorems 2.1, 2.2, we will show that Dh(x) is a solution

of the variational equation (1.3). To that end, let

µ = y′(x1, d)

and

ν = ν(h) = y′(x1, d + h) − µ.

Then y(x) = u(x, x1, y1, µ), and we have

Dh(x) =
1

h
[u(x, x1, y1, µ + ν) − u(x, x1, y1, µ)].

By Theorem 2.1 and the Mean Value Theorem, we obtain

Dh(x) =
1

h
[α2(x, u(x, x1, y1, µ + ν̄))(µ + ν − µ)],

where α2(x, u(·)) is the solution of the variational equation (1.1) along u(·) satisfying

α2(x1) = 0, α′

2(x1) = 1.
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Furthermore, µ + ν̄ is between µ and µ + ν. Simplifying,

Dh(x) =
ν

h
α2(x, u(x, x1, y1, µ + ν̄)).

Thus, to show limh→0 Dh(x) exists, it suffices to show limh→0
ν
h

exists.

By hypothesis (v), the fact that α2(x, u(·)) is a nontrivial solution of (1.3) along

u(·), and α2(x1, u(·)) = 0, we have

α2(x2, u(·)) +

∫ d

c

rα2(x, u(·))dx 6= 0.

Recall,

Dh(x2) +

∫ d

c

rDh(x)dx = −ry(d + h̄, d + h).

Hence, we obtain

lim
h→0

ν

h
=

−ry(d, d)

α2(x2, u(x, x1, y1, µ)) +
∫ d

c
rα2(x, u(x, x1, y1, µ))dx

=
−ry(d, d)

α2(x2, y(·)) +
∫ d

c
rα2(x, y(·))dx

:= U.

Now let D(x) = limh→0 Dh(x), and note by construction of Dh(x),

D(x) =
∂y

∂d
(x).

Furthermore,

D(x) = lim
h→0

Dh(x) = Uα2(x, y(x))

which is a solution of the variational equation (1.3) along y(x). In addition,

D(x1) = lim
h→0

Dh(x1) = 0,

and

D(x2) +

∫ d

c

rD(x)dx = lim
h→0

[

Dh(x2) +

∫ d

c

rDh(x)dx

]

= −ry(d).

This completes the argument for ∂y/∂d, and hence the proof of the theorem.

We conclude with a corollary to Theorem 3.1 which establishes an analogue to

part (c) of Theorem 2.1 of Peano. The proof is a result of the dimensionality of the

solution space for the variational equation.

Corollary 3.2. Under the assumptions of Theorem 3.1, we have

(a) ∂y

∂xi

= −y′(xi)
∂y

∂yi

,

(b) ∂y

∂c
= − y(c)

y(d)
· ∂y

∂d
, and

(c) ∂y

∂c
= y(c)

R

d

c
y(x)dx

· ∂y

∂r
.
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