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ABSTRACT. In this paper, we study a Krawiec-Szydlowski model of business cycles with delays

in both the gross product and the capital stock. We investigate zero-Hopf singularities. The condi-

tions under which the zero-Hopf bifurcation occurs are established. By performing center manifold

reduction, the normal forms on the center manifold for zero-Hopf singularity are derived and the

bifurcation diagrams as well as the direction and stability of the periodic solutions are obtained.

Examples are given to confirm the theoretical results.
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1. PRELIMINARIES

Business cycles and economical fluctuations have long been observed and math-

ematical models that describe these behaviors have been established and studied by

many researchers. Kaldor [9] is the first to construct a mathematical model, the

Kaldor model, that uses a system of ordinary differential equations with nonlinear in-

vestment and saving functions so that cyclic behaviors or limit cycles were exhibited.

The Kaldor model alone has drew a great attention since its publication in 1940, see

[1, 2, 4, 7, 23, 26, 31]. Kalecki [10, 11] found that a time delay for investment after

a business decision has been made can also cause such a behavior. Later, Krawiec

and Szydlowski [14, 15, 16, 17, 18] incorporated the idea of Kalecki into the Kaldor

model in a series of papers by proposing the following Kaldor-Kalecki model (we pre-

fer to call it Krawiec-Szydlowski model as suggested by a referee for our paper [29])

of business cycles
{

dY (t)
dt

= α[I(Y (t), K(t)) − S(Y (t), K(t))],
dK(t)

dt
= I(Y (t− τ), K(t)) − qK(t),

(1.1)
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where Y represents the gross product, K the capital stock. The parameters α >

0 is the adjustment coefficient in the goods market, q ∈ (0, 1) is the depreciation

rate of capital stock. Functions I(Y,K) and S(Y,K) are investment and saving

functions, and τ ≥ 0 is a time lag representing delay for the investment due to

the past investment decision. Since this model was established, it has been studied

extensively by many authors. Not only have the cyclic behaviors been observed from

the model analysis, but the formulation of the limit cycles, the direction and stability

of the periodic solutions, along with many other bifurcation behaviors have been

studied and established, see [17, 18, 22, 23, 24, 25, 27, 28, 29, 30, 32].

Considering that the past investment decisions [17] also influence the change in

the capital stock, Kaddar and Talibi Alaoui [8] extended the model (1.1) by imposing

delays in both the gross product and capital stock. Thus adding the same delay to

the capital stock K in the investment function I(Y,K) of the second equation of

Sys. (1.1) leads to the following model of business cycles

{

dY (t)
dt

= α[I(Y (t), K(t)) − S(Y (t), K(t))],
dK(t)

dt
= I(Y (t− τ), K(t− τ)) − qK(t).

Assuming that the investment time delay may only happen for the capital stock, Wu

and Wang [29] proposed and studied the following Krawiec-Szydlowski type model.

{

dY (t)
dt

= α[I(Y (t), K(t)) − S(Y (t), K(t))],
dK(t)

dt
= I(Y (t), K(t− τ)) − qK(t).

(1.2)

For this model, the mathematical analysis is carried out using the bifurcation and

normal form theory. Both simple-zero singularity and double-zero singularity analy-

sis are established. Stability of the equilibrium point is established and bifurcation

diagrams are obtained.

Observing that delays for the investment due to the past investment decisions

may occur on either or both gross product and capital stock, and may happen at

different times, that is, with different delays, recently, Wu and Wang [30] proposed

and studied the following models with two delays.
{

dY (t)
dt

= α[I(Y (t), K(t)) − S(Y (t), K(t))],
dK(t)

dt
= I(Y (t− τ1), K(t− τ2)) − qK(t).

(1.3)

For fixed τ1 ≥ 0, using τ2 as the bifurcation parameter, they carried out a Hopf

bifurcation analysis and a detailed discussion for the distribution of eigenvalues of the

linear part of Sys. (1.3) at the equilibrium point in the (τ1, τ2) plane for a special case,

and as a result, they found the conditions for the Hopf bifurcation to occur. They

also established the direction and the stability of the periodic solutions bifurcated

from the Hopf bifurcation by using the normal form theory on the center manifold.
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In this paper we continue our study of Sys. (1.3). As always, we take the invest-

ment and saving functions I and S, respectively, as following.

I(Y,K) = I(Y ) − βK, S(Y,K) = γY,

where I is a nonlinear function of Y , and β > 0 and γ ∈ (0, 1) are constants. We

thus obtain the following system.

{

dY (t)
dt

= α[I(Y (t)) − βK(t) − γY (t)],
dK(t)

dt
= I(Y (t− τ1)) − βK(t− τ2) − qK(t).

(1.4)

We first investigate the characteristic equation of the linear part of Sys. (1.4) at an

equilibrium point for different delays τ1 and τ2. We will focus on zero-Hopf singularity

in this research. Because of the complexity, we only carry out, for a special case as

we did in [30], a detailed discussion of the distribution of the eigenvalues of the

characteristic equation and give the conditions that guarantee that the characteristic

equation has a simple zero root and a pair of purely imaginary roots. We show that the

zero-Hopf bifurcation may occur as (τ1, τ2) passes some critical curves in the (τ1, τ2)-

plane. Furthermore, we use the normal form theory to derive the corresponding

normal form from which we obtain the bifurcation diagrams and the stability of the

bifurcating limit cycles.

Note that, in business cycles, it is well known that some random factors influ-

ence the business dynamics. Incorporating the random factors, the following coupled

stochastic model of business cycles was studied by Mircea et al in [19, 20].























dY (t) = α[I(Y (t)) − βK(t) − γY (t)]dt

+g(t, Y (t), K(t))dW (t),

dK(t) = [I(Y (t− τ1)) − βK(t− τ2) − qK(t)]dt

+h(t, Y (t), K(t))dW (t).

(1.5)

Recently, some stochastic reaction-diffusion models have been proposed and studied

for food webs and neural networks. For example, Kao and Wang [12] proposed and

performed a stability analysis for a stochastic coupled reaction-diffusion system on

networks (SCRDSNs) and obtained some novel stability principles which have a close

relationship to the topological property of the networks. It may be worthy to gener-

alize the business models to stochastic reaction-diffusion model and to see how the

dynamics from these models differentiate from the existing models.

The following result by Ruan and Wei [21] will be used in this paper.

Lemma 1.1. Consider the transcendental polynomial

P (λ, e−λτ1 , e−λτ2) = p(λ) + q1(λ)e−λτ1 + q2(λ)e−λτ2 ,
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where p, q1, q2 are real polynomials such that max{deg q1, deg q2} < deg(p) and τ1, τ2 ≥
0. Then as (τ1, τ2) varies, the sum of the orders of the zeros of P in the open right

half plane can change only if a zero appears on or crosses the imaginary axis.

The rest of this manuscript is organized as follows. In Section 2, a detailed

discussion for a special case is given for the distribution of eigenvalues of the linear

part of Sys. (1.4) at an equilibrium point in the (τ1, τ2)-parameter space. Fixing

τ1 ≥ 0, and letting τ2 vary, conditions are found such that the there are a simple

zero eigenvalue and a pair of purely imaginary eigenvalues as τ2 passes some critical

values. In Section 3, the theory of center manifold reduction for general delayed

differential equations (DDEs) is used to derive the normal forms for Sys. (1.4) for

zero-Hopf singularity on the center manifold. In Section 4, numerical simulations are

presented to confirm the theoretical results. A conclusion of our results is given in

Section 5. Finally, a shortcut of normal form of DDEs for zero-Hopf singularity and

the bifurcation diagrams are put in Appendix.

2. DISTRIBUTION OF EIGENVALUES

Throughout the rest of this paper, we assume that (Y ∗, K∗) is an equilibrium

point of Sys. (1.4) and I(s) is a nonlinear C4 function. Let I∗ = I(Y ∗), u1 =

Y −Y ∗, u2 = K−K∗, and i(s) = I(s+Y ∗)− I∗. Then Sys. (1.4) can be transformed

as
{

du1(t)
dt

= α[i(u1(t)) − βu2(t) − γu1(t)],
du2(t)

dt
= i(u1(t− τ1)) − βu2(t− τ2) − qu2(t).

(2.1)

Let the Taylor expansion of i at 0 be

i(s) = ks+ i(2)s2 + i(3)s3 +O(|s|4)

where

k = i′(0) = I ′(Y ∗), i(2) =
1

2
i′′(0) =

1

2
I ′′(Y ∗), i(3) =

1

3!
i′′′(0) =

1

3!
I ′′′(Y ∗).

The linear part of Sys. (2.1) at (0, 0) is
{

du1(t)
dt

= α[(k − γ)u1(t) − βu2(t)],
du2(t)

dt
= ku1(t− τ1) − βu2(t− τ2) − qu2(t),

(2.2)

and the corresponding characteristic equation is

∆(λ) ≡ λ2 + Aλ+B + Ce−λτ1 + β(λ+D)e−λτ2 = 0,(2.3)

where

A = q − α(k − γ), B = −αq(k − γ), C = αβk, D = −α(k − γ).
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Define

k1 =
βγ

q
+ γ.

We then have the following theorem distribution results for no delay system.

Theorem 2.1. Let τ1 = τ2 = 0. If k < k1, all roots of Eq. (2.3) have negative real

parts, and hence (Y ∗, K∗) is asymptotically stable. If k = k1, Eq. (2.3) has a zero

root and a negative root, and hence (Y ∗, K∗) is neutrally stable. If k > k1, Eq. (2.3)

has one positive root and one negative root, and hence (Y ∗, K∗) is unstable.

In this paper we focus on the study of zero-Hopf bifurcation. To this end, we

assume that q = β, and k = k1. Then k = k1 = 2γ and ∆(λ) becomes

(2.4) ∆(λ) ≡ λ2 + (β − αγ)λ− αβγ + 2αβγe−λτ1 + β(λ− αγ)e−λτ2 = 0.

Let iω(ω > 0) be a root of Eq. (2.4). Plug it into Eq. (2.4) and separate the real and

imaginary parts, we get

(2.5)

{

−ω2 − αβγ + 2αβγ cosωτ1 − αβγ cosωτ2 + βω sinωτ2 = 0,

(β − αγ)ω − 2αβγ sinωτ1 + αβγ sinωτ2 + βω cosωτ2 = 0.

Assuming first that τ2 = 0, Sys. (2.5) becomes
{

ω2 + 2αβγ = 2αβγ cosωτ1,

(2β − αγ)ω = 2αβγ sinωτ1.

Adding squares together yields

ω4 + (4β2 + α2γ2)ω2 = 0,

which has no positive roots for ω.

Assuming next that τ1 = 0, Sys. (2.5) then becomes

(2.6)

{

αβγ − ω2 = αβγ cosωτ2 − βω sinωτ2

(αγ − β)ω = αβγ sinωτ2 + βω cosωτ2.

Again adding squares and the resulting equation for ω is

ω4 + (α2γ2 − 4αβγ)ω2 = 0,

which has only one positive root

ω+
2 =

√

4αβγ − α2γ2

if 4β > αγ and has no positive roots if 4β ≤ αγ. If 4β > αγ, from (2.6) with ω = ω+
2 ,

define, for each j = 0, 1, 2, . . . ,

(2.7) τ j
2 =

1
√

4αβγ − α2γ2

(

arccos
αγ − 2β

2β
+ 2jπ

)

> 0.
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For τ1 = 0, let λ2(τ2) = σ2(τ2) + iω2(τ2) be the root of Eq. (2.4) such that σ2(τ
j
2 ) = 0

and ω2(τ
j
2 ) = ω+

2 , respectively. A long calculation shows

Re

(

dλ2

dτ2

)

τ2=τ j
2

=
4β − αγ

4β3
> 0.

We thus have the following results.

Theorem 2.2. Assume that q = β and k = k1.

1. Let τ2 = 0, then except a simple zero root all other roots of Eq. (2.4) have negative

real parts for all τ1 ≥ 0. Therefore, (Y ∗, K∗) is neutrally stable.

2. Let τ1 = 0, and let τ j
2 , j = 0, 1, 2, . . . , be defined in (2.7).

• If 4β ≤ αγ, then except a simple zero root all other roots of Eq. (2.4) have

negative real parts for all τ2 ≥ 0. Therefore, (Y ∗, K∗) is neutrally stable.

• If 4β > αγ, then except a simple zero root all other roots of Eq. (2.4) have

negative real part for all 0 ≤ τ2 < τ 0
2 . Therefore, (Y ∗, K∗) is neutrally stable.

Eq. (2.4) has a simple zero root, a pair of pure imaginary roots ±iω+
2 , a total

of 2(j+1) roots with positive real part, and all other roots have negative real

part if τ2 = τ j
2 . Eq. (2.4) has a simple zero root, a total of 2(j+1) roots with

positive real part, and all other roots have negative real part if τ2 ∈ (τ j
2 , τ

j+1
2 ),

j = 0, 1, 2, . . . . Therefore, (Y ∗, K∗) is unstable for all τ2 > τ 0
2 .

Now we will discuss the existence of pure imaginary root iω(ω > 0) for both

τ1, τ2 > 0. Rewrite Sys. (2.5) as

(2.8)

{

−ω2 − αβγ + 2αβγ cosωτ1 = αβγ cosωτ2 − βω sinωτ2,

(β − αγ)ω − 2αβγ sinωτ1 = −αβγ sinωτ2 − βω cosωτ2.

Adding squares of both sides, we obtain

(2.9) 4αβγ[(ω2 + αβγ) cosωτ1 + (β − αγ)ω sinωτ1] = ω4 + α2γ2ω2 + 4α2β2γ2,

which is equivalent to

(2.10) sin(ωτ1 + θ) =
ω4 + α2γ2ω2 + 4α2β2γ2

4αβγ
√

(ω2 + αβγ)2 + (β − αγ)2ω2
,

where θ is an angle depending on ω such that

cos θ =
(β − αγ)ω

√

(ω2 + αβγ)2 + (β − αγ)2ω2
,

or

θ(ω) = arccos
(β − αγ)ω

√

(ω2 + αβγ)2 + (β − αγ)2ω2
.

Now we will give a detail discussion about the existence of positive roots ω of equation

(2.10) for different values of τ1. Let

F (ω) =
ω4 + α2γ2ω2 + 4α2β2γ2

4αβγ
√

(ω2 + αβγ)2 + (β − αγ)2ω2
,
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G(ω) =
ω2 + αβγ

√

(ω2 + αβγ)2 + (β − αγ)2ω2
,

and, for a given τ1 ≥ 0, let

P (ω) = sin(τ1ω + θ(ω)).

Note that sin(θ(ω)) = G(ω), or P (ω)|τ1=0 = G(ω). Calculations show that F (0) =

G(0) = P (0) = 1, F ′(0) = G′(0) = P ′(0) = 0, and

F ′′(0) = −2β2 + α2γ2

2α2β2γ2
, G′′(0) = −(β − αγ)2

α2β2γ2
.

and

P ′′(0) = −(β − αγ − αβγτ1)
2

α2β2γ2
.

It can be also shown that F ′′(0) = G′′(0) if and only if 4β = αγ, and F ′′(0) < G′′(0)

if and only if 4β > αγ. In addition, F (ω) > 0 for all ω > 0, and

lim
ω→∞

F (ω) = ∞.

As a matter of fact, from the definition of F , we can show that there exists a ωm > 0

such that the function F is decreasing from 0 to ωm and increasing from ωm to ∞.

Therefore, we proved that there exists a unique ω∗ > 0 such that F (ω∗) = 1, and

F (ω) < 1 for all ω ∈ (0, ω∗). Notice that, if 4β > αγ then

τ ∗1 =
β − αγ +

√

β2 + α2γ2/2

αβγ
> 0,

and F ′′(0) < P ′′(0) if and only if 0 ≤ τ1 < τ ∗1 . Further analysis of functions

F (ω), G(ω), and P (ω), and the fact that θ(0) = π/2, leads to the following results

for the existence of positive roots of Eq. (2.10) for different values of τ1.

Theorem 2.3. For τ1 = 0, Eq. (2.10) has a unique positive root ω = ω+
2 =

√

4αβγ − α2γ2

if 4β > αγ, and it has no positive roots if 4β ≤ αγ. For τ1 > 0, there are two cases:

1. Suppose 4β > αγ. If 0 < τ1 < τ ∗1 then Eq. (2.10) has one positive root; if

τ1 > τ ∗1 and ω∗τ1 + θ(ω∗) ≤ 2π, then Eq. (2.10) has no positive roots; if τ1 > τ ∗1
and ω∗τ1 + θ(ω∗) ≥ 5π/2, then Eq. (2.10) has at least one positive root.

2. Suppose 4β < αγ. If τ1 > 0 and ω∗τ1 + θ(ω∗) ≤ 2π, then Eq. (2.10) has no

positive roots; if τ1 > 0 and ω∗τ1 + θ(ω∗) ≥ 5π/2, then Eq. (2.10) has at least

one positive root.

Proof. From the discussion above about the functions F , G, and P , we get that

if F ′′(0) < P ′′(0) the graphs of F and P intersect at least once in (0, ω∗]. Notice

that 4β > αγ implies F ′′(0) < G′′(0), and that P ′′(0)|τ1=0 = G′′(0). By continuity,

for small values of τ1 > 0, F ′′(0) < P ′′(0). It follows from that F ′′(0) < P ′′(0) if

0 < τ1 < τ ∗1 . When τ1 > τ ∗1 , it follows that F ′′(0) > P ′′(0). The graph of P is below

that of F if ω∗τ1 + θ(ω∗) ≤ 2π. Therefore, there are no intersections for the curves F
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Figure 1. Left: τ1 = 0.1 < τ ∗1 . There is one intersection. Middle:

τ1 = 1 > τ ∗1 , ω∗τ1 + θ(ω∗) = 5.58132 < 2π. There are no intersections.

Right: τ1 = 4, ω∗τ1 + θ(ω∗) = 17.1644 > 5π/2. There is at least one

intersection.
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Figure 2. Left: τ1 = 5, ω∗τ1 + θ(ω∗) = 5.38817 < 2π. There is no

intersections. Right: τ1 = 15, ω∗τ1 + θ(ω∗) = 10.9633 > 5π/2. There is

at least one intersection.

and P in (0, ω∗]. If 4β < αγ then F ′′(0) > G′′(0), and from the expression of P ′′(0)

it follows that F ′′(0) > P ′′(0) for all τ1 ≥ 0. So the curve of P will be below that of

F for ω small. In particular, if ω∗τ1 + θ(ω∗) ≤ 2π, there are no intersections for the

curves F and P in (0, ω∗]. Other results can be proved using that fact that the curve

of P is a sine curve, completing the proof.

See Figures 1 and 2 for graphs of F and P for different values of τ1 > 0. In

Figure 1, we choose α = 5, β = 2, and γ = 0.56. Then 4β > αγ and ω∗ = 3.86103,

τ ∗1 = 0.359687, F ′′(0) = −0.252551 < G′′(0) = −0.020482. In figure 2, we choose

α = 5, β = 0.2, and γ = 0.56. Then 4β < αγ and ω∗ = 0.557511, F ′′(0) =

−12.6276 > G′′(0) = −21.5561.

Remark 2.4. We want to point out that for τ1 > 0 such that 2π < ω∗τ1 + θ(ω∗) <

5π/2, the graphs of F and P may or may not have intersections. See Figure 3, we

choose the same parameter values as in Figure 1, but different values for τ1. We

actually can see that if τ1 satisfies that ω∗τ1 + θ(ω∗) close to 5π/2, then the two

curves will intersect.

Remark 2.5. From Theorem 2.3, we can see that under the assumption of 4β > αγ,

positive root exists and is unique when 0 ≤ τ1 < τ ∗1 . As τ1 increases, the existence

of positive roots is lost and then as τ1 continues to increase, the existence of positive
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Figure 3. Left: τ1 = 1.3, 2π < ω∗τ1 +θ(ω∗) = 6.73963 < 5π/2. There

are no intersections. Right: τ1 = 1.585, 2π < ω∗τ1 + θ(ω∗) = 7.84003 <

5π/2. There are two intersections.

roots comes back and remains. At the same time, under the assumption of 4β < αγ,

no positive roots exist until τ1 reaches a certain value, for instance, ω∗τ1+θ(ω∗) > 2π,

or at least close to 5π/2.

Solving Sys. (2.8) yields

sinωτ2 =
α2γ2ω + ω3 − 2αβγω cosωτ1 + 2α2βγ2 sinωτ1

α2βγ2 + βω2
≡ f(ω),

cosωτ2 = −α
2γ2 + ω2 − 2α2γ2 cosωτ1 − 2αγω sinωτ1

α2γ2 + ω2
≡ g(ω).

Let τ1 > 0. Suppose that Eq. (2.10) has n positive roots in (0, ω∗], say ω1 < ω2 <

· · · < ωn. Define, for each j, j = 1, 2, . . . , n,

τ j
2 =







1
ωj

arccos g(ωj) if f(ωj) > 0,

1
ωj

(2π − arccos g(ωj)) if f(ωj) ≤ 0,

and let

(2.11) τ+
2 = min

{

τ j
2 : j = 1, 2, . . . , n

}

> 0.

Let τ1 > 0 be such that Eq. (2.10) has at least one positive root. Define λ(τ2) =

σ(τ2) + iω(τ2) to be the root of Eq. (2.4) such that σ(τ+
2 ) = 0 and ω(τ+

2 ) = ωk,

1 ≤ k ≤ n, respectively. Differentiating both sides of Eq. (2.4) with respect to τ2

gives
(

dλ

dτ2

)−1

=
2λ+ β − αγ − 2αβγτ1e

−λτ1 + β(1 + αβγτ2 − λτ2)e
−λτ2

βλ(λ− αγ)e−λτ2

and at τ2 = τ+
2 , it follows

Re

(

dλ

dτ2

)−1

|τ=τ+
2

= σ′(τ+
2 )

=
α2γ2ωk + 2ω3

k − 2αβγ(2 + βτ1 − αγτ1)ωk cosωkτ1
β2(α2γ2ωk + ω3

k)
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Figure 4. A typical curve of function Q for τ1 = 0.2.

+
2αβγ(−β + αγ + αβγτ1 + τ1ω

2
k) sinωkτ1

β2(α2γ2ωk + ω3
k)

.

For a given τ1 > 0, define

Q(ω) =
α2γ2ω + 2ω3 − 2αβγ(2 + βτ1 − αγτ1)ω cosωτ1

β2(α2γ2ω + ω3)
(2.12)

+
2αβγ(−β + αγ + αβγτ1 + τ1ω

2) sinωτ1
β2(α2γ2ω + ω3)

.

A typical curve of function Q is given in Figure 4. The parameter values are the same

as in figure 1. In this case, G(ω) < 0 if ω < 1.73321 and Q(ω) > 0 if ω > 1.73321.

The distribution of the roots of Eq. (2.4) in the (τ1, τ2) plane for 4β > αγ is

illustrated in Figure 5. Again we choose α = 5, β = 2, and γ = 0.56. Then 4β > αγ

and τ ∗1 = 0.359687. As τ1 increases from 0, the curves of F and P have a unique

intersection until τ1 reaches τ ∗1 . The two curves no longer intersect as τ1 continue to

increase until τ1 reaches τ ∗∗1 = 1.5676 where the curves regain the intersection, and

actually there are multiple intersections as τ1 continues to increase. Consequently,

we have if (τ1, τ2) lies in Region I, Eq. (2.4) has a simple zero root and all other roots

have negative real parts. If (τ1, τ2) lies on the curve L, which is given by τ+
2 as a

function of τ1, Eq. (2.4) has a simple zero root, a pair of purely imaginary roots, and

all other roots have negative real parts. If (τ1, τ2) lies in Region II, because of the

unique intersection of F and P and σ′(τ+
2 ) > 0, (by calculation of Q) Eq. (2.4) has a

simple zero root, a finite number of roots with positive real parts, and all the other

roots have negative real parts. If (τ1, τ2) lies in Region III, because the curves of F

and P may have multiple intersections, the distribution of roots of Eq. (2.4) is much

more complicated.

We make the following assumptions based on parameters α, β, γ and the values

of τ1.

(H1) 4β > αγ, 0 < τ1 < τ ∗1 ;

(H2) 4β > αγ, τ1 > τ ∗1 and ω∗τ1 + θ(ω∗) ≤ 2π;
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L
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Region I
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Figure 5. The distribution of roots of Eq. (2.4) in the (τ1, τ2) plane.

(H3) 4β > αγ, τ1 > τ ∗1 and ω∗τ1 + θ(ω∗) ≥ 5π
2

;

(H4) 4β < αγ, τ1 > 0 and ω∗τ1 + θ(ω∗) ≤ 2π;

(H5) 4β < αγ, τ1 > 0 and ω∗τ1 + θ(ω∗) ≥ 5π/2.

We then have the following theorem.

Theorem 2.6. Let q = β, k = 2γ, τ1 > 0, and τ+
2 be defined above.

1. Under the assumption (H1), Eq. (2.4) has a simple zero root and all other roots

have negative real parts for all τ2 < τ+
2 .

2. Under the assumption (H1), Eq. (2.4) has a simple zero root, a pair of purely

imaginary roots, and all other roots have negative real parts if τ2 = τ+
2 .

3. Under the assumption (H2), Eq. (2.4) has a simple zero root and all other roots

have negative real parts for all τ2 ≥ 0.

4. Under the assumption (H3), Eq. (2.4) has a simple zero root and all other roots

have negative real parts for all τ2 < τ+
2 .

5. Under the assumption (H3), Eq. (2.4) has a simple zero root, a pair of purely

imaginary roots, and all other roots have negative real parts if τ2 = τ+
2 .

6. Under the assumption (H4), Eq. (2.4) has a simple zero root and all other roots

have negative real parts for τ2 ≥ 0.

7. Under the assumption (H5), Eq. (2.4) has a simple zero root and all other roots

have negative real parts for all τ2 < τ+
2 .

8. Under the assumption (H5), Eq. (2.4) has a simple zero root, a pair of purely

imaginary roots, and all other roots have negative real parts if τ2 = τ+
2 .

Remark 2.7. In all cases, the purely imaginary roots are simple.

Theorem 2.8. Suppose either the assumption (H1), (H3) or (H5) holds. Then if

σ′(τ+
2 ) > 0, Sys. (2.1) exhibits a zero-Hopf bifurcation at τ2 = τ+

2
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3. COMPUTATION OF NORMAL FORM OF ZERO-HOPF

SINGULARITY FOR τ1, τ2 ≥ 0

In this section, we use the framework developed in [5, 6] (see the detail in Ap-

pendix I) to obtain the normal form for zero-Hopf singularity of Krawiec-Szydlowski

model with delays. We always assume that q = β, k = 2γ. From Theorem 2.6 in Sec-

tion 2, we know that, under the assumption of either (H1), (H3) or (H5), if τ2 = τ+
2 ,

Eq. (2.4) has a simple zero root, a pair of purely imaginary roots, and all other roots

have negative real parts. We assume that the pair of purely imaginary roots given

by Eq. (2.9) are ±iω. Now we use k, τ2 as bifurcation parameters and fix τ1 > 0. Let

k = 2γ + µ1, τ2 = τ+
2 + µ2. Then µ = (µ1, µ2) is the bifurcation parameter of the

following system










u̇1(t) = −αβu2(t) + αi(2)u2
1(t) + αi(3)u3

1(t) + O(u4
1),

u̇2(t) = (2γ + µ1)u1(t− τ1) − βu2(t) − βu2(t− τ+
2 − µ2)

+i(2)u2
1(t− τ1) + i(3)u3

1(t− τ1) + O(u4
1).

(3.1)

The linear part of Sys. (3.1) at (0,0) is
{

u̇1 = −αβu2(t),

u̇2 = (2γ + µ1)u1(t− τ1) − βu2(t) − βu2(t− τ+
2 − µ2).

Let

η(θ, µ) = Aδ(θ) +B1(µ1)δ(τ1) +B2δ(θ + τ+
2 + µ2)

where

A =

(

0 −αβ
0 −β

)

, B1(µ1) =

(

0 0

2γ + µ1 0

)

, B2 =

(

0 0

0 −β

)

.

Define

L(µ)ϕ =

∫ 0

−τ+
2

dη(θ, µ)ϕ(θ), ∀ϕ ∈ C,

where C = C([−τ+
2 , 0),C2) with norm |ϕ|∞ = max{|ϕ1|∞, |ϕ2|∞} for ϕ = (ϕ1, ϕ2)

T ∈
C. Let X = (u1, u2)

T and F (Xt) = (F 1, F 2)T , where

F 1 = αi(2)u2
1(t) + αi(3)u3

1(t) + O(u4
1),

F 2 = i(2)u2
1(t− τ1) + i(3)u3

1(t− τ1) + O(u4
1).

Then Sys. (3.1) can be transformed into

Ẋ(t) = L(µ)Xt + F (Xt).(3.2)

Write the Taylor expansion of F as

F (ϕ) =
1

2
F2(ϕ) +

1

3!
F3(ϕ) + O(‖ϕ‖4).
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Take the enlarged space of C

BC = {ϕ : [−τ+
2 , 0] → C

2 : ϕ is continuous on [−τ+
2 , 0), ∃ lim

θ→0−
ϕ(θ) ∈ C

2}.

Then the infinitesimal generator Aµ : C1 → BC associated with L is given by

Aµϕ = ϕ̇+X0[L(µ)ϕ− ϕ̇(0)]

=







ϕ̇, if −τ+
2 ≤ θ < 0,

∫ 0

−τ+
2
dη(t, µ)ϕ(t), if θ = 0,

and its adjoint

A∗
µψ =







−ψ̇, if 0 < s ≤ τ+
2 ,

∫ 0

−τ+
2
ψ(−t)dη(t, µ), if s = 0,

∀ψ ∈ C1∗, where C1∗ = C1((0, τ+
2 ],C2∗). Let C ′ = C((0, τ+

2 ],C2∗) and the bilinear

inner product between C and C ′ is given by

〈ψ, ϕ〉 = ψ̄(0)ϕ(0) −
∫ 0

−τ+
2

∫ θ

0

ψ̄(ξ − θ)dη(θ, 0)ϕ(ξ)dξ

= ψ̄(0)ϕ(0) +

∫ 0

−τ1

ψ̄(ξ + τ1)B1(0)ϕ(ξ)dξ +

∫ 0

−τ+
2

ψ̄(ξ + τ+
2 )B2ϕ(ξ)dξ.

From Section 2, we know that ±iω and 0 are eigenvalues of A0 and A∗
0. Now we com-

pute eigenvectors of A0 associated with iω and 0 and an eigenvector of A∗
0 associated

with −iω and 0. Let q1(θ) = (ρ, 1)T eiωθ, q2 = (σ, 1)T be eigenvectors of A0 associated

with iω and 0, respectively. Then A0q1(θ) = iωq(θ), A0q2 = 0. It follows from the

definition of A0 that

(iωI − A− B1(0)e−iτ1ω −B2e
−iτ+

2 ω)q1(0) = 0, (A +B1(0) +B2)q2 = 0,

from which we obtain

ρ =
αβ

αγ − iω
, σ =

β

γ
.

Similarly, we compute eigenvectors of A∗
0 associated with −iω and 0. Let p1(s) =

1
D1

(δ, 1)e−iωs, p2 = 1
D2

(ε, 1) be eigenvectors of A∗
0 associated with −iω and 0, respec-

tively. Then A∗
0p1(s) = −iωp1(s), A∗

0p2 = 0. It follows from the definition of A∗
0

that

p1(0)(iωI −A− B1(0)e−iτ1ω −B2e
−iτ+

2 ω) = 0, p2(A+B1(0) +B2) = 0.

from which we obtain

δ =
2eiωτ1γ

αγ + iω
, ε = − 2

α
.

In order to assure 〈p1, q1〉 = 1 and 〈p2, q2〉 = 1, we have to determine factors D1 and

D2. In fact

D1 = 1 + ρ̄(σ + 2eiωτ1γτ1) − e−iωτ+
2 βτ+

2 , D2 =
−2β + αγ + αβγ(2τ1 − τ+

2 )

αγ
.
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Let us compute g1
2(x, 0, µ) first. Since

1

2
f 1

2 (x, y, µ) =
1

2
Ψ(0)Fj(Φx+ y)

we have

1

2
g1
2(x, 0, µ) =

1

2
ProjS1

Ψ(0)Fj(Φx) + h.o.t.

=







(a11µ1 + a12µ2)x1 + a13x1x3

(ā11µ1 + ā12µ2)x2 + ā13x2x3

(a21µ1 + a22µ2)x3 + a23x1x2 + a24x
2
3






+ h.o.t.

where

a11 =
e−iτ1ωρ

D̄1

, a12 =
ie−iτ+

2 ωβω

D̄1

, a13 =
4i(2)βρ(2−iωτ1 + ασ̄)

γD̄1

,

a21 =
β

2γD1
, a22 = 0, a23 =

−2i(2)|ρ|2
D2

, a24 = −i
(2)β2

γ2D2
.

Next we compute g1
3(x, 0, µ). Since its computation is long, we compute it in three

steps. Note that

1

6
g1
3(x, 0, µ) =

1

6
Projker(M1

2 )f̃
1
3 (x, 0, µ)

=
1

6
ProjS2

f̃ 1
3 (x, 0, 0) + O(|x||µ|2 + |x|2|µ|),

=
1

6
ProjS2

f 1
3 (x, 0, 0) +

1

4
ProjS2

[(Dxf
1
2 )(x, 0, 0)U1

2 (x, 0)

+ (Dyf
1
2 )(x, 0, 0)U2

2 (x, 0)] + O(|µ|2|x| + |µ||x|2).

Step 1: Compute 1
6
ProjS2

f 1
3 (x, 0, 0). Noting that

1

6
f 1

3 (x, 0, 0) =







D̄i(3)q3τ0[α(x1 + x2 + x3)
3 + σ̄(e−iτ0ωx1 + eiτ0ωx2 + x3)

3]

Di(3)τ0[α(x1 + x2 + x3)
3 + σ(e−iτ0ωx1 + eiτ0ωx2 + x3)

3]

D1i
(3)τ0[α(x1 + x2 + x3)

3 + ν(e−iτ0ωx1 + eiτ0ωx2 + x3)
3]






,

we have

1

6
ProjS2

f 1
3 (x, 0, 0) =







b11x
2
1x2 + b12x1x

2
3

b̄11x1x
2
2 + b̄12x2x

2
3

b21x1x2x3 + b22x
3
3






,

where

b11 =
3

D̄1

i(3)ρ|ρ|2(e−iτ1ω + αδ̄), b12 =
3

γ2D̄1

i(3)ρβ2(e−iτ1ω + αδ̄),

b21 = −6i(3)β|ρ|2
γD2

, b22 = −i
(3)β3

γ3D2
.

Step 2: Compute 1
4
ProjS2

[(Dxf
1
2 (x, 0, 0))U1

2 (x, 0)]. Since

U1
2 (x, 0) = U1

2 (x, µ)|µ=0 = (M1
2 )−1ProjIm(M1

2 )f
1
2 (x, 0, 0)
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= (M1
2 )−1ProjIm(M1

2 )i
(2)







1
D̄1

[αδ̄(ρx1 + ρ̄x2 + β
γ
x3)

2 + (ρe−iωτ1x1 + ρ̄eiωτ1x2 + β
γ
x3)

2]
1

D1
[αδ(ρx1 + ρ̄x2 + β

γ
x3)

2 + (ρe−iωτ1x1 + ρ̄eiωτ1x2 + β
γ
x3)

2]
1

D2
[−2(ρx1 + ρ̄x2 + β

γ
x3)

2 + (ρe−iωτ1x1 + ρ̄eiωτ1x2 + β
γ
x3)

2]







=























2ii(2)e−2iωτ1

ωD̄1
[−ρ2(e2iτ1ω + αδ̄)x2

1 + ρ̄2

3
(e2iτ1ω + αδ̄)x2

2

+β2(1+αδ̄)
γ2 x2

3 + 2|ρ|2(1 + αδ̄)x1x2 + β(eiτ1ω+αδ̄)ρ̄
γ

x2x3]
2ii(2)e−2iωτ1

ωD1
[−1

3
ρ2(e−2iτ1ω + αδ̄)x2

1 + ρ̄2(e2iτ1ω + αδ)x2
2

−β2(1+αδ)
γ2 x2

3 − 2|ρ|2(1 + αδ)x1x2 − β(e−iτ1ω+αδ)ρ
γ

x1x3]
ii(2)

ωD2
[(2 − e−2iτ1ω)ρ2x2

1 + (−2 + e2iωτ1)x2
2

+4(2−e−iωτ1 )βρ
γ

x1x3 + 4(−2+eiωτ1 )βρ̄
γ

x2x3]























we have

1

4
ProjS2

[(Dxf
1
2 (x, 0, 0))U1

2 (x, 0)] =







c11x
2
1x2 + c12x1x

2
3

c̄11x1x
2
2 + c̄12x2x

2
3

c21x1x2x3e3 + c22x
3
3






+ h.o.t.

where

c11 = −2ie−2iτ1ω(i(2))2ρ|ρ|2
3D̄1|D1|2D2γω

[2γ(e2iτ1ω(7 + (6 + e2iτ1ω)αδ)

+ α(1 + e2iτ1ω(6 + 7αδ))δ̄)ρ̄D̄1D2 − 3D1(2γρ(1 + αδ̄)(1 + e2iτ0ωαδ̄)D2

+ (−1 + 2e2iτ1ω)β(eiτ1ω + αδ̄)D̄1)],

c12 = −4ie−2iτ1ω(i(2))2ρβ2

D̄1|D1|2D2γ3ω
[eiτ1ωγ(eiτ1ω(2 + (1 + eiτ1ω)αδ)

+ α(1 + eiτ1ω(1 + 2αδ))δ̄)ρ̄D̄1D2 − (1 + αδ̄)D1(γρ(1 + eiτ0ωαδ̄)D2

+ 2eiτ1ω(−1 + eiτ1ωβD̄1))],

c21 = −4ie−2iτ1ω(i(2))2|ρ|2β
|D1|2D2γω

[ρ(eiτ1ω(−3 + 4eiτ1ω) + (−1 − 2eiτ1ω + 6e2iτ1ω)αδ̄)D1

+ eiτ1ω(−2 + e3iτ0ωαδ + e2iτ1ω(3 + 2αδ) − 2eiτ1ω(2 + 3αδ))ρ̄D̄1],

c22 = −4ie−iτ0ωβ3(i(2))2

|D1|2D2γ3ω
[(−1 + 2eiτ1ω)ρ(1 + αδ̄)D1 + eiτ0ω(−2 + eiτ1ω)(1 + αδ)ρ̄D̄1].

Step 3: Compute 1
4
ProjS2

[(Dyf
1
2 (x, 0, 0))U2

2 (x, 0)]. This is the most difficult part

for computing the terms with third order since the computation involves solving linear

systems with singular coefficient matrices. Define h = h(x)(θ) = U2
2 (x, 0), and write

h(θ) =

(

h(1)(θ)

h(2)(θ)

)

= h200x
2
1 + h020x

2
2 + h002x

2
3 + h110x1x2 + h101x1x3 + h011x2x3,

where h200, h020, h002, h110, h101, h011 ∈ Q1. The coefficients of h are determined by

(M2
2h)(x) = f 2

2 (x, 0, 0), which is equivalent to

DxhJx− AQ1(h) = (I − π)X0F2(Φx, 0).
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Applying the definition of AQ1 and π, we obtain

ḣ−DxhJx = Φ(θ)Ψ(0)F2(Φx, 0),

ḣ(0) − Lh = F2(Φx, 0),

where ḣ denotes the derivative of h(θ) relative to θ. Let

F2(Φx, 0) = A200x
2
1 + A020x

2
2 + A002x

2
3 + A110x1x2 + A101x1x3 + A011x2x3,

where Aijk ∈ C2, 0 ≤ i, j, k ≤ 2, i + j + k = 2. Comparing the coefficients of x2
1, x

2
2,

x2
3, x1x2, x1x3, x2x3, we have that h̄020 = h200, h̄011 = h101 and that h200, h101, h110,

h002 satisfy the following differential equations, respectively,
{

ḣ200 − 2iωh200 = Φ(θ)Ψ(0)A200,

ḣ200(0) − L(h200) = A200,
(3.3)

{

ḣ101 − iωh101 = Φ(θ)Ψ(0)A101,

ḣ101(0) − L(h101) = A101,
(3.4)

{

ḣ110 = Φ(θ)Ψ(0)A110,

ḣ110(0) − L(h110) = A110,
(3.5)

{

ḣ002 = Φ(θ)Ψ(0)A002,

ḣ002(0) − L(h002) = A002.
(3.6)

Since

F2(ut, 0) = 2i(2)
(

αu2
1(0)

2u2
1(−τ1)

)

,

we have

f 1
2 (x, y, 0) = Ψ(0)F2(Φx+ y, 0)

= 2i(2)







D̄[αδ̄(ρx1 + ρ̄x2 + β
γ
x3 + y1(0))2 + (e−iωτ1ρx1 + eiωτ1 ρ̄x2 + β

γ
x3 + y1(−τ1))2]

D[αδ̄(ρx1 + ρ̄x2 + β
γ
x3 + y1(0))2 + (e−iωτ1ρx1 + eiωτ1 ρ̄x2 + β

γ
x3 + y1(−τ1))2]

D1[−2(ρx1 + ρ̄x2 + β
γ
x3 + y1(0))2 + (e−iωτ1x1 + eiωτ1x2 + x3 + y1(−τ1))2]






,

which gives

Dyf
1
2 |y=0,µ=0(h) = 4i(2)







D̄[αδ̄(ρx1 + ρ̄x2 + β
γ
x3)h

(1)(0) + (e−iωτ1ρx1 + eiωτ1 ρ̄x2 + β
γ
x3)h

(1)(−τ1)]
D[αδ̄(ρx1 + ρ̄x2 + β

γ
x3)h

(1)(0) + (e−iωτ1ρx1 + eiωτ1 ρ̄x2 + β
γ
x3)h

(1)(−τ1)]
D1[−2(ρx1 + ρ̄x2 + β

γ
x3)h

(1)(0) + (e−iωτ1x1 + eiωτ1x2 + x3)h
(1)(−τ1)]






.

Thus

1

4
ProjS2

Dyf
1
2 |y=0,µ=0U

2
2 =







d11x
2
1x2 + d12x1x

2
3

d̄11x1x
2
2 + d̄12x2x

2
3

d21x1x2x3 + d22x
3
3






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where

d11 =
i(2)

D̄1

[e−iωτ1ρh
(1)
110(−τ1) + αδ̄(ρh

(1)
110(0) + ρ̄h

(1)
200(0)) + eiωτ1 ρ̄h

(1)
200(−τ1)],

d12 =
i(2)

γD̄1

[e−iωτ1γρh
(1)
002(−τ1) + αδ̄(γρh

(1)
002(0) + βh

(1)
101(0)) + βh

(1)
101(−τ1)],

d21 = − i(2)

γD2
[2γρh

(1)
011(0) − e−iωτ1γρh

(1)
011(−τ1) + γρ̄(2h

(1)
101(0) − eiωh

(1)
101(−τ1))

+ 2βh
(1)
110(0) − βh

(1)
110(−τ1)],

d22 =
i(2)β

γD2
[−2h

(1)
002(0) + h

(1)
002(−τ1)].

The computation of h
(1)
ijk(0) and h

(1)
ijk(−τ1) will be carried out in the following lemmas.

First we compute h
(1)
200.

Lemma 3.1. From (3.3), we have

h
(1)
200(0) = 2i(2)ρ2e−2iωτ1 [γ(1 + e2iωτ1αδ)(−3e2iωτ1αβω + (2i(−1 + e3iωτ1)αβγ

+ 3e2iωτ1(β + 2iω)ω)ρ̄)D̄1D2 + 3D1((−1 + 2e2iωτ1)β(−ie2iωτ1ω(−iβ + 2ω)

+ αγ(−i(−1 + e2iωτ1)β + e2iωτ1ω))D̄1 + γD2(2iαβγρ(−1 + eiωτ1)

+ e2iωτ1(−αβω + βρω + 2iρω2 − 2iα2βγρδ̄ + 2ieiωτ1α2βγρδ̄ − e2iωτ1α2βωδ̄

+ e2iωτ1αβρωδ̄ + 2ieiωτ1αρω2δ̄ + αβωD̄1 − e2iωτ1αβωD̄1

− 2ie2iωτ1αω2D̄1)))]/(3∆1),

h
(1)
200(−τ1) = i(2)ρ2e−2iωτ1 [−2γ(1 + e2iωτ1αδ)(3αβω − (β + 2iω)(i(−1 + e3iωτ1)αγ + ω

+ 2e3iωτ1ω)ρ̄)D̄1D2 + 3D1((−1 + e2iωτ1)β(−2ie2iωτ1ω(−iβ + 2ω)

+ αγ(−i(−1 + e2iωτ1)β + 2e2iωτ1ω))D̄1 + 2γD2(−iαβγρ(1 − eiωτ1)

− αβω − βρω + 2eiωτ1βρω + 2αγρω − 2eiωτ1αγρω − 2iρω2 + 4ieiωτ1ρω2

− e2iωτ1α(−(−1 + 2eiωτ1ρ(β + 2iω)ω + α(2(−1 + eiωτ1)γρω

+ β(−i(−1 + eiωτ1)γρ+ ω)))δ̄/(3∆1),

where

∆1 = γω(2e2iτ1ωω(−iβ + 2ω) + 2αγ((−2 + e2iωτ1)β + 2ie2iωτ1ω)|D1|2D2).

Proof. From the first equation of (3.3), we have

h200(θ) = e2iωθ

∫ θ

0

e−2iωtΦ(t)Ψ(0)A200dt+ ce2iωθ

where c ∈ C2 is a constant and hence

ḣ200(0) = Φ(0)Ψ(0)A200 + 2iωc
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and

L(h200) = B1(0)

∫ −τ1

0

e−2iωtΦ(t)Ψ(0)A200dt

+B2

∫ −τ+
2

0

e−2iωtΦ(t)Ψ(0)A200dt+ L(e2iωθ)c.

From the second equation of (3.3), we have

(2iωI − L(e2iωθ))c = (I − Φ(0)Ψ(0))A200 +B1(0)

∫ 0

−τ1

e−2iωtΦ(t)Ψ(0)A200dt

+B2

∫ 0

−τ+
2

e−2iωtΦ(t)Ψ(0)A200dt

≡ RHS.

Since 2iω is not an eigenvalue of L, the matrix (2iωI − L(e2iωθ)) is invertible. So we

have

c = (2iωτ0I − L(e2iωθ))−1RHS.

After easy but long computation, we have the expressions of h
(1)
200(0) and h

(1)
200(−τ1).

In order to compute the rest of h
(1)
ijk(0) and h

(1)
ijk(−τ1), we have to use the following

result from Kuznetsov [13].

Lemma 3.2. For a linear system Mw = v where M is a singular n×n matrix, there

is a unique solution for solving the following bordered system
(

M q

p 0

)

(

w

u

)

=

(

v

0

)

where p, q satisfy the following conditions

Mq = 0, pM = 0, (p, q) = 1, (p, v) = 0

where (·, ·) is defined by

(x, y) =

n
∑

j=1

xjyj, x = (x1, . . . , xn), y = (y1, . . . , yn)T .

We write the solution to the system as w = M INV v.

Lemma 3.3. From (3.4), we have

h
(1)
101(0) = 4i(2)βρe−iω(τ1−τ+

2 )[γ(1 + eiωτ1αδ)(ρωeiωτ1

+ (−i(−1 + e2iωτ1)γρ− eiωτ1ω)D̄1D2

+D1((−1 + 2eiωτ1)(−e−iωτ1γρω + β(2i(−1 + eiωτ1)γρ+ eiωτ1ω))D̄1

+ γωD2(2γρ
2(1 + eiωτ1αδ̄)τ1 + eiωτ1(eiωτ1α− ρ)D̄1)))/(γ∆1),

h
(1)
101(−τ1) =

2i(2)βρ

γ2ω|D1|2D2
[−i(−1 + e−2iωτ1)γ(1 + eiωτ1αδ)ρ̄D̄1D2
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+ 2e−iωτ1D1(i(−1 + eiωτ1)(−1 + 2eiωτ1)βD̄1

+ e−iωτ1γωD2(−ρτ1 − eiωτ1αρδ̄τ1 + (eiωτ2(γ(1 + eiωτ1αδ)(eiωτ1ρω

+ (−i(−1 + e2iωτ1)γρ− eiωτ1ω)ρ̄)D̄1D2

+D1((−1 + 2eiωτ1)(−eiωτ1γρω + β(2i(−1 + eiωτ1)γρ+ eiωτ1ω))D̄1

+ γωD2(2γρ
2(1 + eiωτ1αδ̄)τ1 + eiωτ1(eiωτ1α− ρ)D̄1))))))]/∆1.

Proof. From the first equation of (3.4), we have

h101(θ) = eiωθ

∫ θ

0

e−iωtΦ(t)Ψ(0)A101dt+ ceiωθ

and hence

ḣ101(0) = Φ(0)Ψ(0)A101 + iωc

and

L(h101) = B1(0)

∫ −τ1

0

e−iωtΦ(t)Ψ(0)A101dt

+B2

∫ −τ+
2

0

e−iωtΦ(t)Ψ(0)A101dt+ L(eiωθ)c.

From the second equation of (3.4), we have

(iωI − L(eiωθ))c = v

where

v = (I − Φ(0)Ψ(0))A101 +B1(0)

∫ 0

−τ1

e−iωτ0tΦ(t)Ψ(0)A101dt

+

∫ 0

−τ+
2

e−iωτ0tΦ(t)Ψ(0)A101dt.

Since iω is an eigenvalue of L, the matrix M ≡ (iωI−L(eiωθ)) is not invertible, where

M =

(

−αγ + iω αβ

−2e−iωτ1γ β(1 + e−iωτ1) + iω

)

.

Consider the following bordered system
(

M q

p 0

)

(

w

u

)

=

(

v

0

)

.

It is not hard to get

q = (ρ, 1)T , p = d(δ, 1), d =
1

ρδ + 1

such that Mq = 0, pM = 0, (p, q) = 1, and (p, v) = 0. Then we obtain the unique

solution c = M INV v. Replacing c in h101 and after long computation, we have the

expressions of h
(1)
101(0) and h

(1)
101(−τ1).
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Lemma 3.4. From (3.5) and (3.6), we have

h
(1)
110(0) =

4i(2)α|ρ|2
(−2β + αγ)|D1|2

[|D1|2(β − αγ) −ℜ[(1 + αδ)ω(β − γρ̄)D̄1]],

h
(1)
110(−τ1) =

4i(2)α|ρ|2e−iωτ1

∆2

[eiωτ1γ(1 + αδ)(iαγ(−1 + eiωτ1 + iω) + (−4i(−1

+ eiωτ1)αβγ + αγ(i− iαγ + ieiωτ1(−1 + αγ) + ω))ρ̄)D̄1D2

+D1(e
iωτ1β(−2β + αγ)2ωτ1D̄1 + γD2(−iαβ + ieiωτ1αβ − 4iβ2ρ

+ 4ieiωτ1β2ρ+ iαγρ− ieiωτ1αγρ+ 4iαβγρ− 4ieiωτ1αβγρ− iα2γ2ρ

+ ieiωτ1α2γ2ρ− eiωτ1αβω + eiωτ1αγρω + α(4i(−1 + eiωτ1)β2ρ

+ i(−1 + eiωτ1)α2γ2ρ+ α(γρ(i+ eiωτ1(−i+ ω)) − β(i− 4iγρ

+ eiωτ1(−i+ 4iγρ+ ω)))δ̄ − eiωτ1)α(−β + αγ)ωD̄1))]

h
(1)
002(0) =

2i(2)αβ2e−iω(2τ1+τ+
2 )

γ∆2
[−eiω(τ1+τ+

2 )(1 + αδ)(βω − γ(2i(−1 + eiωτ1)β

+ ω)ρ̄)D̄1D2 + eiωτ2D1(2e
iωτ1β2ωτ1D̄1 +D2(−2iβγρ+ 2ieiωτ1βγρ

− eiωτ1βω + eiωτ1γρω + α(eiωτ1γρω + iβ(2(−1 + eiωτ1)γρ+ ieiωτ1ω))δ̄

+ eiωτ1(β − αγ)ωD̄1))],

h
(1)
002(−τ1) =

2i(2)αβ2e−iω(2τ1+τ+
2 )

γ2∆2

[eiω(τ1+τ+
2 )γ(1 + αδ)(−αβω + (4i(−1 + eiωτ1)β2

− 2i(−1 + eiωτ1)αβγ + α(i(−1 + eiωτ1)αγ + ω))ρ̄D̄1D2

+D1(e
iω(τ1+τ+

2 )β(4β2 − 2αβγ + α2γ2)ωτ1D̄1

+ eiωτ2γD2(−4iβ2ρ+ 4ieiωτ1β2ρ+ 2iαβγρ

− 2ieiωτ1αβγρ− iα2β2ρ+ ieiωτ1α2β2ρ− eiωτ1αβω + eiωτ1αγρω

+ α(4i(−1 + eiωτ1)β2ρ+ αγρ(i(−1 + eiωτ1)αγ + eiωτ1)ω)

− αβ(2i(−1 + eiωτ1)γρ+ eiωτ1ω))δ̄ − eiωτ1α(−β + αγ)ωD̄1))],

where

∆2 = γ(−2β + αγ)2ω|D1|2D2.

Proof. From the first equation of (3.5), we have

h110(θ) =

∫ θ

0

Φ(t)Ψ(0)A110dt+ c

and hence

ḣ110(0) = Φ(0)Ψ(0)A110

and

L(h110) = L

∫ θ

0

Φ(t)Ψ(0)A110dt+ L(1)c.
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From the second equation of (3.5), we have L(1)c = v where

L(1) =

(

−αγ −αβ
2γ −2β

)

, v = L(h110) − L

∫ θ

0

Φ(t)Ψ(0)A110dt.

Since 0 is an eigenvalue of L, the matrix L(1) is not invertible. Similarly, this difficulty

can be overcome by solving the following bordered system
(

L(1) ϕ2(0)

ψ2(0) 0

)

(

w

u

)

=

(

v

0

)

.

This system has a unique solution w = L(1)INV v. Thus c can be determined by

c = (L(1))INV v.

Replacing c in h110, we have the expressions of h
(1)
110(0) and h

(1)
110(−τ1). Similarly we

have the expressions of h
(1)
002(0) and h

(1)
002(−τ1).

Thus we obtain

1

6
g1
3(x, 0, µ) =







(b11 + c11 + d11)x
2
1x2 + (b12 + c12 + d12)x1x

2
3

(b̄11 + c̄11 + d̄11)x1x
2
2 + (b̄12 + c̄12 + d̄12)x2x

2
3

(b21 + c21 + d21)x1x2x3 + (b22 + c22 + d22)x
3
3






+ O(|µ|2|x| + |µ||x|2).

So we can express Sys. (A.4) as

(3.7)







































ẋ1 = (a11µ1 + a12µ2)x1 + a13x1x3 + (b11 + c11 + d11)x
2
1x2

+(b12 + c12 + d12)x1x
2
3 + h.o.t.,

ẋ2 = (ā11µ1 + ā12µ2)x2 + ā13x2x3 + (b̄11 + c̄11 + d̄11)x1x
2
2

+(b̄12 + c̄12 + d̄12)x2x
2
3 + h.o.t.,

ẋ3 = (a21µ1 + a22µ2)x3 + a23x1x2 + a24x
2
3 + (b21 + c21 + d21)x1x2x3

+(b22 + c22 + d22)x
3
3 + h.o.t..

Since x1 = x̄2, through the change of variables x1 = w1− iw2, x2 = w1 + iw2, x3 = w3,

and then a change to cylindrical coordinates according to w1 = r cos ξ, w2 = r sin ξ,

w3 = ζ , Sys. (3.7) becomes










ṙ = α1(µ)r + β11rζ + β30r
3 + β12rζ

2 + h.o.t.,

ζ̇ = α2(µ)ζ + γ20r
2 + γ02ζ

2 + γ21r
2ζ + γ03ζ

3 + h.o.t.,

ξ̇ = −ω + (Im[a11]µ1 + Im[a12]µ2)ζ + h.o.t.,

where

α1(µ) = Re[a11]µ1 + Re[a12]µ2, β11 = Re[a13], β30 = Re[b11 + c11 + d11],

β12 = Re[b12 + c12 + d12], α2(µ) = a21µ1, γ20 = a23, γ02 = a24,

γ21 = b21 + c21 + d21, γ03 = b22 + c22 + d22.
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Since the third equation describes a rotation around the ζ-axis, it is irrelevant to our

discussion and we shall omit it. Hence we obtain a system in the plane (r, ζ), up to

the third order,

(3.8)

{

ṙ = α1(µ)r + β11rζ + β30r
3 + β12rζ

2 + h.o.t.,

ζ̇ = α2(µ)ζ + γ20r
2 + 1

2
γ20ζ

2 + γ21r
2ζ + γ03ζ

3 + h.o.t..

Then we have the following result.

Theorem 3.5. Suppose that q = β. Then under the assumption (H1), (H3) or (H5),

near k = 2γ, τ2 = τ+
2 , on the center manifold, Sys. (3.1) is equivalent to Sys. (3.8).

4. NUMERICAL SIMULATIONS

In this section, we will provide some numerical examples to support our theoret-

ical results obtained in the previous section. Let α = 5, β = 2, γ = 0.56, and q = β

and k = 2γ. It is easy to check that

4β − αγ = 5.2 > 0, τ ∗1 = 0.359687 > 0.

Choose τ1 = 0.2 and hence the assumption (H1) holds. Easy calculation shows that

ω = 2.452983540195543, τ+
2 = 0.4431345588112307.

From the function Q in Section 2, we know that Q(ω) > 0 at ω = 2.452983540195543,

which means σ′(τ+
2 ) > 0. Therefore, Sys. (2.1) exhibits a zero-Hopf singularity at τ+

2 .

Choose the function i(s) as

i(s) = (2γ + µ1)s+
1

10
s2 − 1

6
s3.

Hence i(2) = 1
10

and i(3) = −1
6

and (0, 0) is an equilibrium point. Using the algorithm

in Section 3, we obtain the coefficients aij , bij , cij and dij in Sys. (3.7)

a11 = 3.54795 − 0.468034i, a12 = 6.48558 + 0.807035i,

a13 = −0.664779 − 2.46825i, a21 = −3.46848, a22 = 0, a23 = 2.80339,

a24 = 2.47749, b11 = 3.35817 + 12.4685i, b12 = 5.93553 + 22.038i,

b21 = −50.0606, b22 = −14.7469, c11 = −1.88723 − 1.21601i,

c12 = −8.8665 − 2.00165i, c21 = 11.624, c22 = 7.11144,

d11 = −0.974609 − 3.17048i, d12 = −2.0221 + 1.3593i,

d21 = 11.9912, d22 = −3.93954,

and hence the coefficients in Sys. (3.8)

α1 = 3.54795µ1 + 6.48558µ2, α2 = −3.46848µ1,

β11 = −0.664779, β12 = −4.95306, β30 = 0.496329,
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Figure 6. When (µ1, µ2) = (0.001,−0.000474568), the solution curve

converges to the nontrivial equilibrium point E3.

γ20 = 2.80339, γ02 = 2.47749, γ21 = −26.4454.

Now we use the results in Appendix II to obtain the bifurcation diagrams. For

small µ = (µ2, µ2), we compute K3 ≈ −1.48196 6= 0. Note that B = 0.268328 > 0.

Choose (µ1, µ2) = (0.001,−0.000474568) and hence

k = 2γ + µ1, τ2 = τ+
2 + µ2.

Easy calculation shows that χ1 = 0.00142295, χ2 = 0.000853588 and (χ1, χ2) lies

between the curves N and M . Note that Sys. (3.1) has three equilibrium points

E1(0, 0), E2(−0.00983867,−0.00275483), E3(0.609839, 0.170755)

for this setting. Figure 6 shows that the orbit asymptotically approaches to E3.

This demonstrates the part (a) of Theorem A.1. However if we choose (µ1, µ2) =

(−0.005, 0.00239382), then

k = 2γ + µ1, τ2 = τ+
2 + µ2.

Easy calculation shows that χ1 = 1.77837× 10−16, χ2 = 1.04034× 10−16 and (χ1, χ2)

lies between the curves H and S. Figure 7 shows that an unstable periodic cycle.

This demonstrates the part (b) of Theorem A.1.

5. CONCLUSIONS

Krawiec-Szydlowski or Kaldor-Kalecki business models with cycles have been

studied extensively recently. Theoretically these models present a rather rich bifurca-

tion phenomena. With one delay in either the investment or saving function, almost

all bifurcations have been observed that include Hopf, Bautin, Bogdanov-Takens bi-

furcations. The study of these business models with two delays is scarce due to the

extreme complexity of the analysis. Recently, the authors of this paper have per-

formed a bifurcation analysis for a Kaldor-Kalecki business model with two delays

and for a special case the conditions have been established for Hopf bifurcation to
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Figure 7. An unstable limit cycle is bifurcating from the origin when

(µ1, µ2) = (−0.005, 0.00239382).

occur. In this research, we investigate the zero-Hopf bifurcation for the same model

with two positive delays. Again, for a special case we are able to obtain the conditions

under which the zero-Hopf singularity occurs. By performing the center manifold re-

duction, we are able to derive the corresponding normal form on the center manifold

and obtain the bifurcation diagram as well as the stability and the direction of the

periodic solutions.
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Appendix

I: normal form of zero-Hopf singularity for general DDEs. This material is

taken from [5, 6] and [27]. Let C = C([−τ, 0),Rn) with norm |ϕ|∞ = max1≤k≤n{|ϕk|∞}
for ϕ = (ϕ1, . . . , ϕn)

T ∈ C. Let X = (u1, . . . , un)
T ∈ C. Let L be a linear operator

on C and F : C → C be of C4 such that F (0) = 0. Consider the following system of

DDEs

(A.1) Ẋ(t) = L(µ)Xt + F (Xt).

Write the Taylor expansion of F as

F (ϕ) =
1

2
F2(ϕ) +

1

3!
F3(ϕ) + O(‖ϕ‖4).

Take the enlarged space of C

BC = {ϕ : [−τ, 0] → R
n : ϕ is continuous on [−τ, 0), ∃ lim

θ→0−
ϕ(θ) ∈ R

n}.

Then the elements of BC can be expressed as ψ = ϕ+X0ν, ϕ ∈ C, ν ∈ Cn and

X0(θ) =







0, −τ ≤ θ < 0,

I, θ = 0,

where I is the identity matrix on C and the norm of BC is |ϕ + X0ν| = |ϕ|∞ + |ν|.
Let C1 = C1([−τ, 0),Rn). Then, by the Reisz Representation Theorem, there is η

such that the infinitesimal generator Aµ : C1 → BC associated with L is given by

Aµϕ = ϕ̇+X0[L(µ)ϕ− ϕ̇(0)]

=







ϕ̇, if −τ ≤ θ < 0,
∫ 0

−τ
dη(t, µ)ϕ(t), if θ = 0,

and its adjoint

A∗
µψ =







−ψ̇, if 0 < s ≤ τ2,
∫ 0

−τ
ψ(−t)dη(t, µ), if s = 0,

for ∀ψ ∈ C1∗, where C1∗ = C1((0, τ ],Rn∗). Let C ′ = C((0, τ ],Rn∗) and define a

bilinear inner product between C and C ′ by

〈ψ, ϕ〉 = ψ̄(0)ϕ(0) −
∫ 0

−τ

∫ θ

0

ψ̄(ξ − θ)dη(θ, 0)ϕ(ξ)dξ.

Suppose that L(0) has eigenvalues ±ωi and 0 and other eigenvalues of L have negative

real parts. Let Φ = (q1, q̄1, q2),Ψ = (p̄1, p1, p2)
T be such that

A0q1 = iωq1, A0q2 = 0, quadA∗
0p1 = −iωp1, A∗

0p2 = 0

and

Φ′(θ) = Φ(θ)J, Ψ′(s) = −JΨ(s), 〈Ψ,Φ〉 = E
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where J = diag(ωi,−ωi, 0), E = diag(1, 1, 1). Let P = span{q1, q̄1, q2} and P ∗ =

span{p̄1, p1, p2}. Then C can be decomposed as

C = P ⊕Q where Q = {ϕ ∈ C : 〈ψ, ϕ〉 = 0, ∀ψ ∈ P ∗}.

Let Q1 = Q ∩ C1. Define the projection π : BC → P by

π(ϕ+X0ν) = Φ[(Ψ, ϕ) + Ψ(0)ν].

Let u = Φx + y. Then Sys. (A.1) can be decomposed as
{

ẋ = Jx+ Ψ(0)F (Φx+ y, µ),

ẏ = AQ1y + (I − π)X0F (Φx+ y, µ),

which can be rewritten as

(A.2)

{

ẋ = Jx+ 1
2
f 1

2 (x, y, µ) + 1
3!
f 1

3 (x, y, µ) + h.o.t.,

ẏ = AQ1y + 1
2
f 2

2 (x, y, µ) + 1
3!
f 2

3 (x, y, µ) + h.o.t.,

where “h.o.t.” represents the higher order terms and

f 1
j (x, y, µ) = Ψ(0)Fj(Φx+ y, µ), f 2

j (x, y, µ) = (I − π)X0Fj(Φx+ y, µ).

Let Y be a normed space and j, p ∈ N, and let

V p
j (Y ) =







∑

|q|=j

cqx
q : q ∈ N

q
0, cq ∈ Y







with norm |
∑

|q|=j cqx
q| =

∑

|q|=j |cq|Y . Define Mj to be the operator in V 5
j (C3×ker π)

with the range in the same space by

Mj(p, h) = (M1
j p,M

2
j h),

where

M1
j p = M1

j







p1

p2

p3






= ωi







x1
∂p1

∂x1
− x2

∂p1

∂x2
− p1

x1
∂p2

∂x1
− x2

∂p2

∂x2
+ p2

x1
∂p3

∂x1
− x2

∂p3

∂x2






,

M2
j h = M2

j h(x, µ) = Dxh(x, µ)Jx− AQ1h(x, µ),

(A.3)

with p(x, µ) ∈ V 5
j (C3), h(x, µ)(θ) ∈ V 5

j (ker π). It is easy to check that V 5
j (C3) =

Im(M1
j ) ⊕ Ker(M1

j ) and

ker(M1
j ) = span{µpxqek : (q, λ̄) = λk, k = 1, 2, 3, p ∈ N

2
0, q ∈ N

3
0, |p| + |q| = j}

with λ̄ = (λ1, λ2, λ3) = (ωi,−ωi, 0). Since J is a diagonal matrix, the operators M1
j ,

j ≥ 2, defined in V 5
j (C3) have a diagonal representation relative to the canonical basis

{µpxqek : k = 1, 2, 3, p ∈ N2
0, q ∈ N3

0, |p| + |q| = j} of V 5
j (C3) where e1 = (1, 0, 0)T ,

e2 = (0, 1, 0)T , e3 = (0, 0, 1)T .
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On the center manifold, Sys. (A.2) can be transformed as the following normal

form:

(A.4) ẋ = Jx+
1

2
g1
2(x, 0, µ) +

1

3!
g1
3(x, 0, µ) + h.o.t.

where g1
j (x, 0, µ) are homogeneous polynomials of degree j in (x, µ) and

g1
2(x, 0, µ) = Projker(M1

2 )f
1
2 (x, 0, µ) = ProjS1

f 1
2 (x, 0, µ) + O(|µ|2),

g1
3(x, 0, µ) = Projker(M1

3 )f̃
1
3 (x, 0, µ) = ProjS2

f̃ 1
3 (x, 0, 0) + O(|µ|2|x|).

Here S1 and S2 (see [27] in detail) are spanned in C
3, respectively, by

µkx1e1, x1x3e1, µkx2e2, x2x3e2, x1x2e3, µkx3e3, x2
3e3, k = 1, 2,

and

x2
1x2e1, x1x

2
3e1, x1x

2
2e2, x2x

2
3e2, x1x2x3e3, x3

3e3.

and

f̃ 1
3 (x, 0, µ) = f 1

3 (x, 0, µ) +
3

2
[(Dxf

1
2 )(x, 0, µ)U1

2 (x) + (Dyf
1
2 )(x, 0, µ)U2

2 (x)].

where

U1
2 (x, µ)µ=0 = (M1

2 )−1ProjIm(M1
2 )f

1
2 (x, 0, 0) = (M1

2 )−1f 1
2 (x, 0, 0)

and U2
2 (x, µ) is determined by

(M2
2U

2
2 )(x, µ) = f 2

2 (x, 0, µ).

II: bifurcation diagrams. In order to use the bifurcation diagrams in [3], let us

make a change of variables by r → r, ζ → ζ + η, where η will be determined later.

Then, after truncation of the high order terms, Sys. (3.8) becomes

(A.5)











ṙ = (α1(µ) + β11δ + β12η
2)r + (β11 + 2β12η)rζ + β30r

3 + β12rζ
2,

ζ̇ = (α2(µ)δ + γ02η
2 + γ03η

3) + (α2(µ) + 2γ02η + 3γ03η
2)ζ

+ (γ20 + γ21η)r
2 + (γ02 + 3γ03η)ζ

2 + γ21r
2ζ + γ03ζ

3.

Choose η = η(µ) such that

α2(µ) + 2γ02η + 3γ03η
2 = 0.

For simplicity, we only discuss the case of γ02 6= 0, γ03 6= 0. Clearly, for small α2(µ),

the equation above has two real roots. We take

δ =







1
3γ03

[

−γ02 +
√

γ2
02 − 3γ03α2(µ)

]

if γ02 > 0,

1
3γ03

[

−γ02 −
√

γ2
02 − 3γ03α2(µ)

]

if γ02 < 0.

Then δ = δ(µ) is differentiable at µ = 0 and δ(0) = 0. Define

κ1 = α1(µ) + β11δ + β12δ
2, κ2 = α2(µ)δ + γ02δ

2 + γ03δ
3,

a = β11 + 2β12δ, b = γ20 + γ21δ, c = γ02 + 3γ03δ,
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and let x = r, y = ζ . Then (A.5) becomes
{

ẋ = κ1x+ axy + β30x
3 + β12xy

2,

ẏ = κ2 + bx2 + cy2 + γ21x
2y + γ03y

3.
(A.6)

Let

x→
√

|c|x, y →
√

|b| y, t→ −c
√

|b| t

and

χ1 = − κ1

c
√

|b|
, χ2 = − κ2

c|b| .

Sys. (A.6) becomes

(A.7)

{

ẋ = χ1x+Bxy + d1x
3 + d2xy

2,

ẏ = χ2 + νx2 − y2 + d3x
2y + d4y

3,

where

B = −a
c
6= 0, ν = −sgn(bc),

and

d1 = −β30|c|
c
√

|b|
, d2 =

√

|b|β12

c
, d3 = −

γ21|c|
c
√

|b|
, d4 = −

√

|b|γ03

c
.

If we assume

K3 = ν

(

2

B
+ 2

)

d1 +
2

B
d2 + νd3 + 3d4 6= 0.

then the qualitative behavior of (A.7) near (0, 0) with small χ1 and χ2 is the same as

that of the following system (see [3]),

(A.8)

{

ẋ = χ1x+Bxy + xy2,

ẏ = χ2 + ηx2 − y2.

Since b = γ20 + γ21δ and γ20 = 2γ02, we have bc = γ20γ02 + O(|µ1|) = 8(i(2))2β2|ρ|2

γ2D2
2

+

O(|µ|) and hence bc > 0 for small µ if γ02 6= 0. This implies that ν = −1. Then

Sys. (A.8) becomes

(A.9)

{

ẋ = χ1x+Bxy + xy2,

ẏ = χ2 − x2 − y2.

Note that, for small χ1 and χ2, Sys. (A.9) has two trivial equilibrium points E1,2 =

(0,±√
χ2) if χ2 > 0, and two nontrivial equilibrium points

E3,4 =
(√

1
2
B
(

−B ±
√
B2 − 4χ1

)

+ χ1 + χ2,
1
2

(

−B ±
√
B2 − 4χ1

)

)

.

Only one of E3,4 exists in a small neighborhood of the origin, denoted by E3. The

complete bifurcation diagrams of Sys. (A.9) can be found in [3].

Theorem A.1. Let B 6= 0 be defined above.
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(a). If B < 0, then the bifurcation diagram of Sys. (A.9) consists of the origin and

the following curves:

M = {(χ1, χ2) : χ2 = 0, χ1 6= 0},

N =

{

(χ1, χ2) : χ2 =
1

B2
χ2

1 + O(χ3
1), χ1 6= 0

}

.

AlongM and N , saddle-node and pitchfork bifurcations occur, respectively. Sys. (A.9)

has no periodic orbits. Moreover, if (χ1, χ2) is in the region between N and M ,

the solution of Sys. (A.9) goes asymptotically to one of the equilibrium points

E1, E2, and E3.

(b). If B > 0, then the bifurcation diagram of Sys. (A.9) consists of the origin, the

curves M , N , and the following curves:

H = {(χ1, χ2) : χ1 = 0, χ2 > 0},

S = {(χ1, χ2) : χ1 = − B

3B + 2
χ2 + O(|χ2|3/2), χ2 > 0}.

Along M and N , we have exactly the same bifurcation as in (a). Along H and

S, Hopf bifurcation and heteroclinic bifurcation occur respectively. If (χ1, χ2)

lies between the curves H and S, then (A.9) has a unique limit cycle which is

unstable and becomes a heteroclinic orbit when (χ1, χ2) ∈ S.


