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ABSTRACT. In this note we consider the system

x′′(t) = −λ1f(t, x(t), y(t)), t ∈ (0, 1)

y′′(t) = −λ2g(t, x(t), y(t)), t ∈ (0, 1)

x(0) = ϕ(x), y(0) = ψ(y)

x(1) = 0 = y(1),

and demonstrate that under suitable conditions on the functions f , g : [0, 1]×R×R → [0,+∞) and

the functionals ϕ, ψ : C([0, 1]) → R this problem admits at least one positive solution. Since the

functionals ϕ and ψ can be nonlinear, the boundary condition at t = 0 can be quite general. Our

approach is based on supposing that each of x 7→ ϕ(x) and y 7→ ψ(y) behaves, in some sense, like a

linear functional as ‖(x, y)‖ → +∞, and to this end we utilize the concept of the Fréchet derivative

at +∞ in our existence proof. We conclude by providing an explicit example of and discussion

regarding our existence theorem.

AMS (MOS) Subject Classification. Primary: 34B09, 34B10, 34B15, 34B18, 47H07. Sec-

ondary: 47G10, 47H10.

1. Introduction

In this note we consider the boundary value problem

x′′(t) = −λ1f(t, x(t), y(t)), t ∈ (0, 1)

y′′(t) = −λ2g(t, x(t), y(t)), t ∈ (0, 1)

x(0) = ϕ(x), y(0) = ψ(y)

x(1) = 0 = y(1).

(1.1)

Both the functions f , g : [0, 1] × R × R → [0,+∞) and the functionals ϕ, ψ :

C([0, 1]) → [0,+∞) will always be assumed to be continuous; furthermore, λ1, λ2 > 0

are parameters. As will be clarified momentarily the functionals ϕ and ψ do not
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need to be linear. Rather, our primary assumption is that, in some sense, they are

asymptotically related to a linear functional possessing suitable structure.

More precisely, we assume that there are linear functionals L1, L2 : C([0, 1]) → R

with the property that for each ε > 0 there is Mε > 0 such that

(1.2) |ϕ(x) − L1(x)| ≤ ε‖(x, y)‖ and |ψ(y) − L2(y)| ≤ ε‖(x, y)‖

whenever (x, y) ∈ C([0, 1]) × C([0, 1]) satisfies ‖(x, y)‖ ≥ Mε; we provide in Exam-

ple 3.3 an explicit demonstration of this condition. As will be stated later, throughout

this work for functions (x, y) ∈ C([0, 1]) × C([0, 1]) we define ‖x‖ := maxt∈[0,1] |x(t)|

and ‖(x, y)‖ := ‖x‖+‖y‖. A second important feature of our structure assumptions is

that there exist linear functionals L̃1, L̃2 : C([0, 1]) → R such that ϕ(x) ≥ L̃1(x) ≥ 0

and ψ(y) ≥ L̃2(y) ≥ 0 for each vector (x, y) in a suitable cone K ⊆ C([0, 1])×C([0, 1]).

In particular, this allows for ϕ(x) and ψ(y) to be nonpositive for some elements of

C([0, 1]) × C([0, 1]). Specifically, this latter point is achieved by ensuring that L̃i re-

mains nonnegative, for each i, on the same cone K. By means of some ideas of Infante

and Webb [27] we are able to control the sign of each of the functionals L̃1 and L̃2.

In particular, this allows us to control the sign of the nonlinear functionals ϕ and ψ,

whose signs we ordinarily could not control.

Let us next mention briefly certain of the relevant recent work in nonlocal BVPs

(boundary value problems) and how these works are related to this present note.

First of all, the study of nonlocal BVPs in general has seen much recent work. This

has occurred in the context of the p-Laplacian problem [4, 5], discrete and continu-

ous fractional calculus [2, 3, 7, 11, 15], differential inclusions [14], and integer-order

differential equations [6, 8, 9, 10, 12, 13, 17, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30,

31, 32, 33, 34, 35].

More specifically, Infante and Webb [27, 28, 29, 30, 31] have produced some very

general results in case the nonlocalities are linear functionals realized as Stieltjes

integrals – say, the problem

−y′′(t) = f(t, y(t)), t ∈ (0, 1)

y(0) =

∫

[0,1]

y(s)dα(s)

y(1) =

∫

[0,1]

y(s)dβ(s),

(1.3)

where α, β : [0, 1] → R are of bounded variation on [0, 1] and not necessarily

monotone. This leads to the nontrivial and mathematically interesting question of

whether problem (1.3) may admit a nontrivial positive solution in light of the fact

that the measures associated to the Stieltjes integrals in (1.3) are signed. One of they

key advances produced by Infante and Webb was to incorporate the nonnegativity



SECOND-ORDER SYSTEMS OF BVPS WITH NONLINEAR BCS 603

conditions ∫

[0,1]

y(s) dα(s) ≥ 0 and

∫

[0,1]

y(s) dβ(s) ≥ 0

into a suitable, new cone, thereby obtaining sufficient control over the sign of the

fixed points of an appropriate integral operator. This novel insight has proved to be

very useful in studying nonlocal BVPs with linear boundary conditions. Furthermore,

in addition to the aforementioned works of Infante and Webb, some papers by Yang

[34, 35] as well as Graef and Webb [17] have also addressed nonlocal BVPs of the

type embodied by (1.3).

On the other hand, in the case of nonlinear, nonlocal boundary conditions a

number of recent papers by Infante [19], Infante and Pietramala [20, 22, 23], Goodrich

[8, 9, 10, 12, 13, 16], and Yang [32, 33] have all addressed this class of problem. The

archetypical problem in this setting is essentially problem (1.1), of which the simpler

scalar version is

−y′′(t) = f(t, y(t)), t ∈ (0, 1)

y(0) = ϕ(y)

y(1) = ψ(y),

(1.4)

where ϕ, ψ : C([0, 1]) → R are (possibly) nonlinear functions. Many recent studies

such as [8, 9, 10, 13, 19, 20, 22, 23, 32, 33] assume a rather restricted form of (1.4)

– namely, that the nonlinear functionals may be realized in the form H ◦ L, where

H : R → R is a continuous function, equipped with some growth or structural

properties, and L : C([0, 1]) → R is a linear functional. By requiring this special

form, one may utilize the growth and structural hypotheses imposed on H together

with the linearity of L to deduce existence of a nontrivial positive solution to problem

(1.4).

In case either ϕ or ψ does not possess this special form, then existence of a

nontrivial positive solution becomes more difficult to demonstrate. Indeed, the goal

of this note is to address this difficulty in the context of problem (1.1). It is worth

noting that we considered in [12] a problem similar to (1.1) – namely, the boundary

value problem

−y′′(t) = λf(t, y(t)), t ∈ (0, 1)

y(0) = ϕ(y)

y(1) = 0,

(1.5)

for λ > 0 a real-valued parameter; in [12] the special case f(t, y) := a(t)g(y) was

especially treated. Consequently, one difference is that in [12] we did not consider

systems of second-order equations. Thus, the results of this work extend certain of

the ideas of [12] to the systems case. Another difference is that although we studied
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similar boundary conditions, as (1.5) demonstrates, we utilized the slightly weaker

condition: there exists ρ ∈ [0, 1) such that

(1.6) lim sup
‖y‖→+∞

|ϕ(y)|

‖y‖
< ρ,

for all y in a suitable cone. On the other hand, in [12] we only obtained results in case

either λ = 1 or λ was large; in particular, the case of small λ was entirely excluded.

By contrast, the result we present here holds for each (λ1, λ2) ∈ (0,+∞) × (0,+∞).

In addition, in [12] we had to make more substantial assumptions about the function

f than we do here on the corresponding functions f and g appearing in (1.1). In

summary, then, we show in this work that by slightly strengthening the asymptotic

condition on ϕ (and ψ) we can correspondingly weaken the other structural conditions,

whilst simultaneously obtaining a result that imposes no restriction on λ1, λ2 – other

than a positivity restriction.

We accomplish this generalization of [12] by utilizing a different fixed point the-

orem. In particular, in [12] we utilized the well known Krasnosel’skĭı’s fixed point

theorem. While a very common and successful approach to deducing existence of

solution to ordinary differential equations equipped with a variety of boundary con-

ditions, this approach does have its limitations. In this note we demonstrate that by

instead using a fixed point theorem related to asymptotically linear operators along

a cone we can, in fact, achieve a somewhat different and, in certain settings, rather

more general result.

2. Preliminaries

Letting C([0, 1]) be equipped with the usual maximum norm

‖x‖ := max
t∈[0,1]

|x(t)|,

define the operators T1, T2 : C([0, 1]) × C([0, 1]) → C([0, 1]) by

(2.1) (T1(x, y)) (t) := (1 − t)ϕ(x) + λ1

∫ 1

0

G(t, s)f(s, x(s), y(s)) ds

and

(2.2) (T2(x, y)) (t) := (1 − t)ψ(y) + λ2

∫ 1

0

G(t, s)g(s, x(s), y(s)) ds.

Now consider the normed space X := C([0, 1]) × C([0, 1]) when equipped with the

norm ‖(x, y)‖ := ‖x‖ + ‖y‖. Then it is well known that X is a Banach space – see

[1]. Define the operator T : X → X by

(2.3) (T (x, y))(t) := ((T1(x, y)) (t), (T2(x, y)) (t)) .
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Then we see that T may be studied as a means of deducing the existence of positive

solutions to problem (1.1). In particular, a fixed point of T is a solution of the system

(1.1).

Let us also remark that in the case of (2.1)–(2.2) the functionG : [0, 1]×[0, 1] → R

is the Green’s function associated to the conjugate problem – namely (see [25]),

(2.4) G(t, s) :=




t(1 − s), 0 ≤ t ≤ s ≤ 1

s(1 − t), 0 ≤ s ≤ t ≤ 1
.

We assume here and throughout that [a, b] is a given fixed subinterval of (0, 1) with

0 < a < b < 1. Then there exists a constant γ = γ(a, b) := mint∈[a,b]{t, 1 − t} such

that

(2.5) min
t∈[a,b]

G(t, s) ≥ γ max
t∈[0,1]

G(t, s) = γG(s, s),

for each s ∈ [0, 1]; observe that γ also satisfies 1−t ≥ γ for each t ∈ [a, b]. Finally, both

recall that maxt∈[0,1]G(t, s) = G(s, s), for each s ∈ [0, 1], and note that γ ∈ (0, 1).

We next recall the fixed point theorem, which we shall use in this work. As

mentioned in Section 1, the use of Krasnosel’skĭı’s theorem is rather omnipresent in

the recent literature. For our existence theorem we eschew this approach and instead

use the concept of the Fréchet derivative at +∞ of a suitable operator T . Since we

will utilize this result in the context of an order cone, K, we state the result in that

form – see [36, §7.9] for more details. It should be noted, as will become apparent in

Section 3, that by using this result we make direct use of the “asymptotic linearity”

of the functionals ϕ and ψ appearing in (1.1), as was mentioned earlier in Section 1.

Definition 2.1 ([36, Definition 7.32.b]). Let X and Y be Banach spaces over R. Set

U(+∞, r) := {x ∈ X : ‖x‖ ≥ r} ,

where r > 0. Let T : X → Y be an operator. If X has an order cone K, then the oper-

ator T ′(+∞) ∈ L(X ,Y), where L(X ,Y) is the collection of all linear transformations

between X and Y , is called the positive Fréchet derivative of T at +∞ along

the cone K if and only if there is a fixed r > 0 such that for all x ∈ U(+∞, r) ∩ K

it holds that

Tx = T ′(+∞)x+ o(‖x‖), ‖x‖ → +∞;

that is,
‖Tx− T ′(+∞)x‖

‖x‖
→ 0 as ‖x‖ → +∞.

Lemma 2.2 ([36, Corollary 7.34]). Suppose that

1. T : K ⊆ X → K is a compact operator on the Banach space X with order cone

K; and
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2. T ′(+∞) exists as a positive Fréchet derivative of T at +∞, and its spectral

radius, denoted r (T ′(+∞)), satisfies r (T ′(+∞)) < 1.

Then T has a fixed point.

Henceforth, we shall work in the cone K ⊆ X defined by

K :=

{
(x, y) ∈ X : x(t), y(t) ≥ 0, min

t∈[a,b]
[x(t) + y(t)] ≥ γ‖(x, y)‖,

L̃1(x) ≥ 0, L̃2(y) ≥ 0

}
,

(2.6)

where L̃1, L̃2 : C([0, 1]) → R are linear functions on which we shall momentarily

impose some structural hypothesis – cf., (H1) and (H3) in the sequel. The cone K is

a slight modification of a cone originally introduced by Infante and Webb [27]. Note

that K 6= ∅ since due to condition (H3) below, it holds that (1 − t, 1 − t) ∈ K.

We next provide the structural conditions that we impose on problem (1.1). As

already noted one of the principal conditions we utilize is that ϕ and ψ in some

sense behave like the linear functionals L1 and L2, respectively, as ‖(x, y)‖ → +∞.

This notion of asymptotic relatedness is made precise in condition (H1) below. In

addition, and as also mentioned in the introduction, we also assume the existence of

linear functions L̃1 and L̃2 that form lower bounds for ϕ and ψ, respectively.

H1: Assume that there exist linear functionals L̃1, L̃2, L1, L2 : C([0, 1]) → R, which

may be realized in the form

L1(y) :=

∫

[0,1]

y(s) dα1(s) and L2(y) :=

∫

[0,1]

y(s) dα2(s)

and

L̃1(y) :=

∫

[0,1]

y(s) dα̃1(s) and L̃2(y) :=

∫

[0,1]

y(s) dα̃2(s),

where α1, α2, α̃1, α̃2 ∈ BV ([0, 1]), such that each of

lim
‖(x,y)‖→+∞

(x,y)∈K

|ϕ(x) − L1(x)|

‖(x, y)‖
= 0 and lim

‖(x,y)‖→+∞
(x,y)∈K

|ψ(y) − L2(y)|

‖(x, y)‖
= 0

and

ϕ(x) ≥ L̃1(x) and ψ(y) ≥ L̃2(y)

holds for each (x, y) ∈ K.

H2: There are constants C1, C2 ≥ 0 such that

|L1(x)| ≤ C1‖x‖ and |L2(y)| ≤ C2‖y‖,

for each (x, y) ∈ X.
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H3: For each i = 1, 2 each of
∫

[0,1]

(1 − t) dα̃i(t) ≥ 0

and ∫

[0,1]

G(t, s) dα̃i(t) ≥ 0

holds, where the latter holds for each s ∈ [0, 1].

H4: Assume that each of

lim
x+y→+∞

f(t, x, y)

x+ y
= 0

and

lim
x+y→+∞

g(t, x, y)

x+ y
= 0

holds, uniformly for t ∈ [0, 1].

Remark 2.3. We emphasize that the last part of condition (H1) does not require

that either the map x 7→ ϕ(x) or the map y 7→ ψ(y) is nonnegative for all (x, y) ∈ X.

Indeed, this nonnegativity, by virtue of the functionals L̃1 and L̃2, need only hold for

(x, y) ∈ K.

We conclude by stating Lemma 2.4, which asserts that the cone K is invariant

under the action of the operator T . Although the proof is straightforward, we include

it for the sake of completeness.

Lemma 2.4. Let T be the operator defined in (2.3). Provided that conditions (H1)

and (H3) hold, then T (K) ⊆ K.

Proof. Given (x, y) ∈ K fixed but arbitrary, it is obvious that (T1(x, y)) (t) ≥ 0,

(T2(x, y)) (t) ≥ 0 for each t ∈ [0, 1]; note that this uses the fact that, for example,

ϕ(x) ≥ L̃1(x) ≥ 0, for each (x, y) ∈ K. In addition we compute

min
t∈[a,b]

(T1(x, y)) (t) ≥ ϕ(x) min
t∈[a,b]

(1 − t) + λ1 min
t∈[a,b]

∫ 1

0

G(t, s)f(s, x(s), y(s)) ds

≥ γϕ(x) max
t∈[0,1]

(1 − t) + λ1γ max
t∈[0,1]

∫ 1

0

G(t, s)f(s, x(s), y(s)) ds

≥ γ‖T1(x, y)‖.

(2.7)

Notice that in (2.7) we have again used the fact that ϕ(x) ≥ L̃1(x) ≥ 0 for each

(x, y) ∈ K. Since a similar calculation shows that mint∈[a,b] (T2(x, y))(t) ≥ γ‖T2(x, y)‖,

we conclude that mint∈[a,b] ((T1(x, y)) (t) + (T2(x, y)) (t)) ≥ γ‖ (T1(x, y), T2(x, y)) ‖.
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Finally, by condition (H3), the fact that ϕ(x) ≥ L̃1(x) ≥ 0 on K, and the nonnega-

tivity of f we may write

L̃1 (T1(x, y))

= ϕ(x)

∫

[0,1]

(1 − t) dα̃1(t) + λ1

∫

[0,1]

∫ 1

0

G(t, s)f(s, x(s), y(s)) ds dα̃1(t)

= ϕ(x)

∫

[0,1]

(1 − t) dα̃1(t) + λ1

∫ 1

0

[∫

[0,1]

G(t, s) dα̃1(t)

]
f(s, x(s), y(s)) ds

≥ 0.

(2.8)

Since it similarly holds that L̃2 (T2(x, y)) ≥ 0, we conclude that T (K) ⊆ K, and this

completes the proof.

3. Statement and Proof of Existence Theorem and Discussion

We now provide an existence theorem for problem (1.1). After stating and proving

this result, which is Theorem 3.2, we then provide an example, which should help

to explicate the use of our result. Finally, we provide some concluding discussion

regarding Theorem 3.2. Before proceeding with this program, however, we need an

easy preliminary lemma that will play a key role in the proof of Theorem 3.2.

Lemma 3.1. Suppose that f : [0, 1] × [0,+∞) × [0,+∞) → [0,+∞) is a continuous

function satisfying

lim
x+y→+∞

f(t, x, y)

x+ y
= 0,

uniformly for t ∈ [0, 1]. Let M : [0,+∞) → [0,+∞) be the function defined by

(3.1) M(r) := max
(t,x,y)∈[0,1]×[0,r]×[0,r]

f(t, x, y).

Then it holds that

(3.2) lim
r→+∞

M(r)

r
= 0.

Proof. Suppose for contradiction that the conclusion of the lemma was false. Then

there would be a sequence {ri}
∞
i=1 ⊆ [0,+∞) such that ri → +∞ and

(3.3)
M (ri)

ri

≥ η > 0,

for some constant η > 0. By definition there would then exist a sequence, say

{(ti, xi, yi)}
∞
i=1 ⊆ [0, 1] × [0, ri] × [0, ri], such that

(3.4) M (ri) = f (ti, xi, yi) ;

that is, f is maximal on [0, 1] × [0, ri] × [0, ri] at the point (ti, xi, yi).

Clearly, the result is trivial if f is bounded. So, let us assume that f is unbounded

as x + y → +∞. Since ri → +∞ and f is unbounded as x+ y → +∞, it must hold
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that xi + yi → +∞. Consequently, either xi → +∞ or yi → +∞. Regardless, since

it holds that 0 ≤ xi, yi ≤ ri, we estimate

(3.5)
1

xi + yi

≥
1

2ri

.

But in observation of (3.5) we then calculate

(3.6)
f (ti, xi, yi)

xi + yi

=
M (ri)

xi + yi

≥
M (ri)

2ri

≥
1

2
η > 0,

for each i ∈ N, which contradicts the assumption that

f(t, x, y)

x+ y
→ 0

as x+ y → +∞, uniformly for t ∈ [0, 1]. And this completes the proof.

Theorem 3.2. Suppose that each of conditions (H1)–(H4) holds. Suppose, in addi-

tion, that at least one of the following conditions holds.

1. ϕ(0) > 0

2. ψ(0) > 0

3. The partial map t 7→ f(t, 0, 0) is not zero for a.e. t ∈ [0, 1]

4. The partial map g 7→ g(t, 0, 0) is not zero for a.e. t ∈ [0, 1]

Finally, assume that

max {C1, C2} < 1,

where C1 and C2 are from condition (H2). Then for each (λ1, λ2) ∈ (0,+∞)×(0,+∞)

problem (1.1) has at least one positive solution.

Proof. Define the operator T ′(+∞) : X → X by

(3.7) (T ′(+∞)(x, y))(t) :=


 (1 − t)L1(x)︸ ︷︷ ︸

:=(T ′

1
(+∞))(x,y)

, (1 − t)L2(y)︸ ︷︷ ︸
:=(T ′

2
(+∞))(x,y)


 .

Observe that T ′(+∞) ∈ L(X,X) – i.e., it is a linear operator from X to X, owing to

the fact that each of L1 and L2 is linear. We will demonstrate that

(3.8) T ′(+∞)(x, y)− T (x, y) = o(‖(x, y)‖), ‖(x, y)‖ → +∞,

thus demonstrating that T ′(+∞) is, in fact, the Fréchet derivative of T at +∞ along

the cone K.

To this end, fix λ1, λ2 > 0 and let ε > 0 be fixed but otherwise arbitrary. Let

Mf , Mg : [0,+∞) → [0,+∞) be the continuous functions defined in (3.1) relative to

f and g – that is to say,

Mf (r) := max
(t,x,y)∈[0,1]×[0,r]×[0,r]

f(t, x, y)
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and

Mg(r) := max
(t,x,y)∈[0,1]×[0,r]×[0,r]

g(t, x, y).

We claim that we may choose a number r0 > 0 sufficiently large such that

(3.9) max {Mf (r0) ,Mg (r0)} ≤
ε

6 min {λ1, λ2}
∫ 1

0
G(s, s) ds

r0;

that this is true follows from Lemma 3.1. By choosing r0 even larger if necessary,

condition (H1) implies that we can obtain the estimates

(3.10) |ϕ(x) − L1(x)| <
ε

6
‖(x, y)‖ and |ψ(y) − L2(y)| <

ε

6
‖(x, y)‖,

whenever ‖(x, y)‖ ≥ r0. Finally, since condition (H4) holds, we can simultaneously

obtain

(3.11) f(t, x, y) ≤
ε

6λ1

∫ 1

0
G(s, s) ds

(x+ y) and g(t, x, y) ≤
ε

6λ2

∫ 1

0
G(s, s) ds

(x+ y)

whenever x + y ≥ r0 by once again choosing r0 even larger if necessary; note that

inequality (3.11) holds uniformly for each t ∈ [0, 1]. Observe that with r0 fixed as

above, we obtain for each (t, x, y) ∈ [0, 1] × [0, r0] × [0, r0] the estimate

(3.12) 0 ≤ f(t, x, y) ≤Mf (r0) and g(t, x, y) ≤Mg (r0) ,

by the definitions of Mf and Mg.

Henceforth let r0 be fixed as above so that (3.9)–(3.11) hold, and for each given

(x, y) ∈ X define the measurable sets N and [0, 1] \ N by, respectively,

(3.13) N := {s ∈ [0, 1] : 0 ≤ x(s) + y(s) ≤ r0}

and

(3.14) [0, 1] \ N := {s ∈ [0, 1] : x(s) + y(s) > r0} .

Evidently, for each s ∈ N it holds that 0 ≤ x(s), y(s) ≤ r0. With the preceding

estimates in hand, we first estimate for each (x, y) ∈ K satisfying ‖(x, y)‖ ≥ r0 and
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each t ∈ [0, 1] that

∣∣∣∣(1 − t)ϕ(x) − (1 − t)L1(x) + λ1

∫ 1

0

G(t, s)f(s, x(s), y(s)) ds

∣∣∣∣

≤ |(1 − t)ϕ(x) − (1 − t)L1(x)| + λ1

∫ 1

0

G(s, s)f(s, x(s), y(s)) ds

≤ |(1 − t)ϕ(x) − (1 − t)L1(x)|

+ λ1

∫

N

G(s, s)f(s, x(s), y(s)) ds+ λ1

∫

[0,1]\N

G(s, s)f(s, x(s), y(s)) ds

≤
ε

6
‖(x, y)‖ + λ1

∫

N

G(s, s)Mf (r0) ds+ λ1

∫

[0,1]\N

G(s, s)f(s, x(s), y(s)) ds

≤
ε

6
‖(x, y)‖ +

(
Mf (r0) +

ε

6λ1

∫ 1

0
G(s, s) ds

‖(x, y)‖

)
λ1

∫ 1

0

G(s, s) ds

≤
ε

6
‖(x, y)‖

+

(
ε

6 min {λ1, λ2}
∫ 1

0
G(s, s) ds

r0 +
ε

6λ1

∫ 1

0
G(s, s) ds

‖(x, y)‖

)
λ1

∫ 1

0

G(s, s) ds

≤
ε

2
‖(x, y)‖.

(3.15)

In an entirely similar fashion we also may estimate for each (x, y) ∈ K satisfying

‖(x, y)‖ ≥ r0 and each t ∈ [0, 1]

(3.16)

∣∣∣∣(1 − t)ψ(y) − (1 − t)L2(y) + λ2

∫ 1

0

G(t, s)f(s, x(s), y(s)) ds

∣∣∣∣ ≤
ε

2
‖(x, y)‖.

By the arbitrariness of t ∈ [0, 1] in each of estimates (3.15) and (3.16) we thus estimate

‖T (x, y)− T ′(+∞)(x, y)‖

=
∥∥T1(x, y) − (T1(+∞)) (x, y)

∥∥+
∥∥T2(x, y) − (T2(+∞)) (x, y)

∥∥

= max
t∈[0,1]

∣∣∣∣(1 − t)ϕ(x) − (1 − t)L1(x) + λ1

∫ 1

0

G(t, s)f(s, x(s), y(s)) ds

∣∣∣∣

+ max
t∈[0,1]

∣∣∣∣(1 − t)ψ(y) − (1 − t)L2(y) + λ2

∫ 1

0

G(t, s)f(s, x(s), y(s)) ds

∣∣∣∣

≤
ε

2
‖(x, y)‖ +

ε

2
‖(x, y)‖

= ε‖(x, y)‖.

(3.17)

But from (3.17) we obtain that

(3.18)
‖T (x, y) − T ′(+∞)(x, y)‖

‖(x, y)‖
≤ ε,
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whenever ‖(x, y)‖ ≥ r0. Since ε was arbitrary, it follows that (3.8) holds, as claimed.

Consequently, by definition we have that T ′(+∞) is the Fréchet derivative of T at

+∞ along the cone K.

It remains to show that the operator T has a nontrivial fixed point in K. To

this end we shall now appeal to Lemma 2.2. So, suppose for contradiction that there

was an eigenvalue µ ∈ [1,+∞) and an associated eigenvector (x, y) ∈ X such that

T ′(+∞)(x, y) = µ(x, y). Since µ is an eigenvalue with associated eigenvector (x, y)

we must have ‖(x, y)‖ > 0 and, moreover, for each t ∈ [0, 1] we can write

(3.19)

µ(x(t), y(t)) = ((T ′
1(+∞)) (x, y), (T ′

2(+∞)) (x, y)) = ((1 − t)L1(x), (1 − t)L2(y)) ,

which implies that

(3.20) µx(t) = (1 − t)L1(x) and µy(t) = (1 − t)L2(y).

Each of the equalities in (3.20) must hold for each t ∈ [0, 1]. Since x and y are

fixed, moreover, L1(x) and L2(y) are real-valued constants. We endeavor to show

that (3.20) has only the trivial solution whenever µ ≥ 1 – thus contradicting the fact

that (µ, (x, y)) is an eigenpair.

So, observe that (3.20) implies that

(3.21) x(t) = (1 − t)µ−1L1(x),

for each t ∈ [0, 1]. Accordingly, we then estimate

(1 − t)µ−1L1(x) = (1 − t)µ−1

∫ 1

0

x(s) dα1(s)

= (1 − t)µ−1

∫ 1

0

(1 − s)µ−1L1(x) dα1(s)

= (1 − t)µ−2L1(x)

∫ 1

0

(1 − s) dα1(s),

(3.22)

whence

(3.23) 1 − t = (1 − t)µ−1

∫ 1

0

(1 − s) dα1(s),

for each t ∈ [0, 1]. (Note that we assume in passing from (3.22) to (3.23) that

L1(x) 6= 0, for if it is, then from (3.21) we immediately obtain that x(t) ≡ 0, which

is the trivial solution.) Then (3.23) implies the estimate

1 − t = (1 − t)µ−1

∫ 1

0

(1 − s) dα1(s) ≤ (1 − t)µ−1

∣∣∣∣
∫ 1

0

(1 − s) dα1(s)

∣∣∣∣

≤ (1 − t)µ−1C1 max
s∈[0,1]

(1 − s)

= (1 − t)µ−1C1,

(3.24)
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where to obtain the second inequality in (3.24) we have used condition (H2). But

(3.24) must hold for each t ∈ [0, 1]. In particular, it must hold when t = 0, which

implies that

C1 ≥ µ ≥ 1,

whence C1 ≥ 1, which contradicts the assumption, in the statement of the theorem,

that C1 < 1. Thus, we conclude that if µx(t) = (1− t)L1(x) and C1 < 1, then it must

hold that x(t) ≡ 0. A similar argument demonstrates that if µy(t) = (1− t)L2(y) and

C2 < 1, then the existence of a nontrivial solution again leads to a contradiction and,

hence, it must hold that y(t) ≡ 0. Consequently, we conclude that for each µ ≥ 1, it

follows that (3.19) has only the trivial solution over X. In other words, the operator

T ′(+∞) does not possess an eigenvalue greater than or equal to unity, as desired.

Finally, we conclude from Lemma 2.2 that the operator T has a fixed point in

K, say (T (x0, y0)) (t) = (x0(t), y0(t)), for t ∈ [0, 1]. Furthermore, that ‖ (x0, y0) ‖ 6= 0

follows from the assumption that at least one of conditions (1)–(4) in the statement

of the theorem holds; this ensures that the identity element (0, 0) ∈ K cannot be a

fixed point of T . And this completes the proof.

Example 3.3. Consider the nonlinear functionals ϕ, ψ : C([0, 1]) → R defined by

(3.25) ϕ(x) :=
1

30
x

(
2

5

)
−

1

200

[
1 − e−x(1

2
)
]
x

(
3

5

)

and

(3.26)

ψ(y) :=

[
2

50
y

(
1

2

)
−

1

1000
y

(
9

20

)]
e−y( 1

3
)+
[
2 − e−y( 1

4
)
] [ 1

50
y

(
1

5

)
−

1

1000
y

(
1

3

)]
.

Fix the interval [a, b] :=
[

1
4
, 3

4

]
. Then it can be shown that γ = 1

4
. In addition,

henceforth let f , g : [0, 1] × R × R → [0,+∞) be any functions satisfying condition

(H4). Finally, define the functionals L1, L2, L̃1, L̃2 : C([0, 1]) → R by the following.

L1(x) :=
1

30
x

(
2

5

)
−

1

200
x

(
3

5

)

L2(y) :=
2

50
y

(
1

5

)
−

1

500
y

(
1

3

)

L̃1(x) :=
1

30
x

(
2

5

)
−

1

200
x

(
3

5

)

L̃2(y) :=
1

50
y

(
1

5

)
−

1

500
y

(
1

3

)
−

1

1000
y

(
9

20

)

(3.27)

Now, observe from (3.27) that

(3.28) |L1(x)| ≤

[
1

30
+

1

200

]

︸ ︷︷ ︸
:=C1

‖(x, y)‖ and |L2(y)| ≤

[
2

50
+

1

500

]

︸ ︷︷ ︸
:=C2

‖(x, y)‖,
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for each (x, y) ∈ X, so that

max {C1, C2} = max

{
23

600
,

21

500

}
< 1.

Consequently, the auxiliary condition in the statement of Theorem 3.2 is satisfied, as

is condition (H2) for that matter. In addition, letting α̃1 and α̃2 be the integrators

associated, respectively, to the Stieltjes integral realization of L1 and L2, it is easy to

check numerically that (H3) holds.

On the other hand, the remaining requirements of condition (H1) are also easily

checked. For example, we note that

(3.29)

|ψ(y) − L2(y)|

‖(x, y)‖
=

∣∣∣
[

2
50
y
(

1
2

)
− 1

1000
y
(

9
20

)]
e−y( 1

3
) − e−y( 1

4
) [ 1

50
y
(

1
5

)
− 1

1000
y
(

1
3

)]∣∣∣
‖(x, y)‖

.

If ‖(x, y)‖ → +∞, then either ‖x‖ → +∞ or ‖y‖ → +∞. In the former case we

compute
∣∣∣
[

2
50
y
(

1
2

)
− 1

1000
y
(

9
20

)]
e−y( 1

3
) − e−y( 1

4
) [ 1

50
y
(

1
5

)
− 1

1000
y
(

1
3

)]∣∣∣
‖(x, y)‖

≤
41

1000
‖y‖ + 21

1000
‖y‖

‖x‖
→ 0.

(3.30)

In the latter case we compute
∣∣∣
[

2
50
y
(

1
2

)
− 1

1000
y
(

9
20

)]
e−y( 1

3
) − e−y( 1

4
) [ 1

50
y
(

1
5

)
− 1

1000
y
(

1
3

)]∣∣∣
‖(x, y)‖

≤
41

1000
e−y( 1

3
) +

21

1000
e−y( 1

4
)

→ 0.

(3.31)

Note that (3.31) holds seeing as 1
4
, 1

3
∈ [a, b], and so,

(3.32) min
t∈[a,b]

(x+ y)(t) ≥ γ‖(x, y)‖ ≥ γ‖y‖ → +∞.

Since in this case ‖x‖ remains finite, it follows that mint∈[a,b] x(t) must remain finite,

and so, mint∈[a,b] y(t) → +∞, whence

(3.33) e−y( 1

3
), e−y( 1

4
) → 0,

which yields (3.31). Note that if it holds that ‖x‖, ‖y‖ → +∞, then we may invoke

either (3.30) or (3.31). Since these cases are exhaustive, we conclude that

(3.34) lim
‖(x,y)‖→+∞

(x,y)∈K

|ψ(y) − L2(y)|

‖(x, y)‖
= 0.
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A similar argument demonstrates that

(3.35) lim
‖(x,y)‖→+∞

(x,y)∈K

|ϕ(x) − L1(x)|

‖(x, y)‖
= 0.

Finally, we observe that ϕ(x) ≥ L̃1(x) ≥ 0 and ψ(y) ≥ L̃2(y) ≥ 0, for each

(x, y) ∈ K. For example, we calculate

ϕ(x) =
1

30
x

(
2

5

)
−

1

200

[
1 − e−x( 1

2
)
]
x

(
3

5

)

≥
1

30
x

(
2

5

)
−

1

200
x

(
3

5

)

= L̃1(x)

≥ 0,

(3.36)

for each (x, y) ∈ K, where we use the fact that x(t) ≥ 0, for each t ∈ [0, 1]. Similarly,

we compute

ψ(y) =

[
2

50
y

(
1

2

)
−

1

1000
y

(
9

20

)]
e−y( 1

3
) +

[
2 − e−y( 1

4
)
] [ 1

50
y

(
1

5

)
−

1

1000
y

(
1

3

)]

≥
2

50
y

(
1

5

)
−

1

500
y

(
1

3

)
−

1

1000
y

(
9

20

)
e−y( 1

3
) −

1

50
y

(
1

5

)
e−y( 1

4
)

≥
2

50
y

(
1

5

)
−

1

500
y

(
1

3

)
−

1

1000
y

(
9

20

)
−

1

50
y

(
1

5

)

=
1

50
y

(
1

5

)
−

1

500
y

(
1

3

)
−

1

1000
y

(
9

20

)

= L̃2(y)

≥ 0,

(3.37)

for each (x, y) ∈ K.

Consequently, we conclude that each of conditions (H1)–(H4) holds. Moreover,

it holds that max {C1, C2} < 1. Therefore, if either of the partial maps t 7→ f(t, 0, 0)

or t 7→ g(t, 0, 0) is a.e. nonzero, then by Theorem 3.2 it follows that problem (1.1)

has at least one positive solution for each (λ1, λ2) ∈ (0,+∞) × (0,+∞).

Remark 3.4. Note that, in some ways, the result of Theorem 3.2 is a generalization

and improvement of [12, Theorem 3.4]. In particular and as mentioned in Section 1,

[12, Theorem 3.4] only allowed for λ = 1 in problem (1.5). Moreover, growth condi-

tions on g(y)
y

were assumed at both 0 and +∞. By way of contrast, our result here

allows for any positive λ1, λ2 and, furthermore, imposes a growth condition on the

functions f and g only at +∞. In addition, Theorem 3.2 evidently applies to systems

rather than only to scalar equations.
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Remark 3.5. We note that we believe it possible to replace the growth condition (H4)

by a slightly more general condition if we abandon the asymptotic Fréchet derivative

approach and instead, say, use a more direct approach by means of the Leray-Schauder

degree. We believe that such approach could follow roughly the arguments provided

in [24]. However, for the sake of simplicity and keeping the exposition shorter we have

elected to focus only on the asymptotic Fréchet derivative approach in the present

paper, and so, we leave the possibility of utilizing alternative fixed point theorems for

future work.

Remark 3.6. We conclude by noting that we could certainly modify the proof of

Theorem 3.2 to allow for a variety of boundary conditions. In particular, it is not

difficult to see that by a suitable and straightforward modification we could admit

the more general boundary conditions

x(0) = ϕ(x)

y(0) = ψ(y)

x(1) = ϕ̃(x)

y(1) = ψ̃(y),

(3.38)

for example, where ϕ̃, ψ̃ : C([0, 1]) → R are (possibly nonlinear) functionals with the

same essential structure as ϕ and ψ.
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