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ABSTRACT. We develop a discrete juvenile-adult population model with Ricker-type survivorship

functions. We first show that the extinction equilibrium, or trivial equilibrium, is locally asymptot-

ically stable when the inherent net reproductive number is less than one. When it is greater than

one, we show that the system is persistent. Given the inherent complexity of the system, several nu-

merical examples are used to convey the rich chaotic behavior exhibited. Using bifurcation analysis,

the effect of the birth rate on the system’s dynamics is explored. It is shown that for certain birth

rates the system exhibits chaotic behavior. In addition to bifurcation diagrams, phase portraits of

the system’s attractors are used to develop a deeper understanding of the model’s dynamics. Ap-

proximations of the system’s Lyapunov exponents are then used to show that for certain birth rates

sensitivity to initial conditions is present. Then the case of periodic birth rates is considered.

1. Introduction

Although a few decades ago chaos was seen by some to be insignificant in the

study of population dynamics [17], today the importance of chaos throughout math-

ematics and ecology is recognised. Sir Robert May was one of the first to suggested

that erratic fluctuations in population models could arise from deterministic processes

[20, 21, 22]. Prior to his work, it was generally accepted that such fluctuations were

the result of environmental noise or errors in collected data sets [12]. In recent years

chaos has been investigated in a wide range of areas including the study of plants

[28, 29], rodents [30], infectious diseases [14, 25], and insects [4, 13, 27]. There has

even been nonlinear demographic models developed that have successfully predicted

chaotic behavior that was observed in laboratory experiments involving flour beetles

[7, 8, 10].
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In this paper, we develop a discrete juvenile-adult model that is inspired by a

paper written by Ackleh and Chiquet which explored the dynamics of a population

of green tree frogs, Hyla Cinera [3]. Their paper was motivated by the work done in

a joint effort between the University of Louisiana at Lafayette and the United States

Geological Survey National Wetlands Research Center to study an urban population

of green tree frogs [26]. There are two main reasons why the populations of these frogs

merit investigation. First, global frog populations are declining and by examining a

small population of frogs one may be able to find the cause of this decline and possibly

shed light on the long-term behavior of global frog populations. Second, frogs act as

an indicator species in the sense that by examining how their populations react to

certain environmental stresses we can gain insight into how other wildlife populations

may be affected. The model studied in [3] is given by
Jt+1 = (1− γ)S1(Jt)Jt + b(t)At

At+1 = γS1(Jt)Jt + S2(At)At

(J0, A0) ∈ R2
+\(0, 0),

(1.1)

where Jt and At represent the population of juveniles and adults, respectively, and

γ is the percentage of juveniles that mature to adulthood after each time-step. The

survivorship rates of the juvenile class and adult class are given by S1(Jt) and S2(At),

respectively. Note that we have no inter-class competition as is characteristic of

amphibious populations, such as tadpoles and adult frogs.

In their work, Ackleh and Chiquet utilized survivorship functions which satisfied

the following conditions:

(C1) Sk(x) ∈ C1 [0,∞), S ′k(x) < 0, limx→∞ Sk(x) = 0, Sk(0) = ak(0 < ak < 1),

(C2) (Sk(x)x)′ > 0, and limx→∞ Sk(x)x = âk <∞.

An example of such a function would be the Beverton-Holt function given by

Si(x) =
ai

1 + kix
.

Many ecological models use different types of survivorship functions. As in [7, 8, 10],

we will exam the effects of using Ricker-type survivorship functions on a population

using a model similar to (1.1). Using the Ricker-type functions will yield much richer

dynamics than that presented in [3] including chaos.

The paper is organized as follows: in Section 2, we develop a discrete juvenile-

adult model with Ricker-type survivorship functions. We show that the extinction

equilibrium, or trivial equilibrium, is locally asymptotically stable when the inherent

net reproductive number is less than one, and when it is greater than one, we show

that the system is persistent. In Section 3, we investigate the chaotic tendencies of

the model via bifurcation diagrams, phase portraits, and Lyapunov exponents. Then

in Section 4, the model is altered to study the effect periodic birthing strategies have
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on the dynamics of our model. A summary of the results and concluding remarks are

given in Section 5.

2. Discrete model with strong nonlinearities

Throughout this paper, we will utilize Ricker-type survivorship functions for our

model. Thus, our survivorship functions will be of the form

Si(x) = aie
−kix, for x = Ji, Ai.

Note that these functions only have properties given in (C1). Both Ricker and

Beverton-Holt nonlinearities behave in similar fashions, but there are significant dif-

ferences between them, mainly the Ricker-type functions are overcompensatory while

Beverton-Holt functions are compensatory. Let Jt and At represent the population of

juveniles and adults, respectively. We denote the time-dependent birth rate as b(t).

Hence, the model is given by

(2.1)


Jt+1 = (1− γ)a1e

−k1JtJt + b(t)At

At+1 = γa1e
−k1JtJt + a2e

−k2AtAt

(J0, A0) ∈ R2
+\(0, 0),

where γ retains the same meaning as in (1.1). For the remainder of this section and

Section 3, we will assume that b(t) = b, a positive constant.

2.1. Extinction equilibrium. Before examining the inherent chaos of system (2.1),

we first classify the stability of the extinction equilibrium E0 = (0, 0). It is clear that

E0 is indeed an equilibrium of system (2.1). In order to show the stability of E0, we

first find the inherent net reproductive number, R0, by implementing methods used

in [3, 11]. The inherent net reproductive number is the total number of offspring an

individual is expected to produce, on average, over the course of its lifespan. This

number is intimately related to the stability of equilibria and will be given in terms

of the system’s parameters.

First system (2.1) can be written as

Xt+1 = P (Xt)Xt,

where P (Xt) is the projection matrix and is defined by

(2.2) P (Xt) =

(
(1− γ)a1e

−k1Jt b

γa1e
−k1Jt a2e

−k2At

)
.

Evaluating (2.2) at E0, we obtain

(2.3) P (E0) =

(
(1− γ)a1 b

γa1 a2

)
.
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In order to calculate R0, we decompose (2.3) into a fertility matrix given by

F =

(
0 b

0 0

)

and a transition matrix given by

T =

(
(1− γ)a1 0

γa1 a2

)
.

The inherent net reproductive number is thus given by the positive strictly dominant

eigenvalue of the matrix F (I − T )−1. Calculating this we get

R0 ≡
γba1

(1− a2)(1− (1− γ)a1)
.

The following theorem summarizes the stability of E0, the proof of which is similar

to [24].

Theorem 2.1. Let b(t) = b > 0. If R0 < 1, system (2.1) has only the trivial steady

state E0 = (0, 0), and E0 is locally asymptotically stable.

Proof. Assume R0 < 1. Define the map P : R2
+ → R2

+ to be the right hand side of

system (2.1). Linearizing system (2.1) and evaluating the Jacobian at E0 gives us

(2.4) D(E0) =

(
(1− γ)a1 b

γa1 a2

)
.

We can establish local asymptotic stability of E0 by showing the following inequality

holds (see Theorem 2.37 in [15]):

(2.5) | tr(D(E0))| < 1 + det(D(E0)) < 2.

From (2.4), we see that tr(D(E0)) > 0 and that det(D(E0)) < 1. Thus, we need only

show tr(D(E0)) < 1 + det(D(E0)). From our assumption that R0 < 1, we obtain

1 > (1− γ)(1− a2)a1 + a2 + γba1.

Hence, we have

1 + det(D(E0)) > (1− γ)(1− a2)a1 + a2 + a2γba1 + (1− γ)a1a2 − γa1b

= (1− γ)a1 + a2

= tr(D(E0)).

Therefore, E0 is locally asymptotically stable.
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2.2. Uniform Persistence. We now want to show that system (2.1) is uniformly

persistent when R0 > 1. We will be using an argument similar to that in [1, 3]. We

will need the following information from [19]. This setup is taken directly from [19].

Let H be a metric space with metric d, f : H → H be a continuous map and

Y ∈ H is closed with f(H \ Y) ⊂ H \ Y . Assume that H has a global attractor X,

that is, X is the maximal compact invariant subset of H and d(fn(x), X) → 0 as

n → ∞, for all x ∈ H. Note that Y is in general not a positively invariant set. Let

M be the maximal compact invariant set in Y . Then M ⊂ Y . Let the stable set of

M , denoted W s(M), be defined as follows:

W s(M) := {x ∈ X : fn(x)→M as n→ +∞}.

Then we have the following theorem from [19].

Theorem 2.2. f is uniformly persistent (w.r.t Y) if and only if

(1) M is isolated in X, and

(2) W s(M) ⊂ Y.

We will also need the following lemma.

Lemma 2.3. There exists a compact set K ∈ R2
+ such that every forward solution

sequence of system (2.1) enters K in at most 2 time steps and remains in K forever

after.

Proof. Clearly, one can see that R2
+ is positively invariant. Also we know that f(Jt) =

a1e
−k1JtJt and f(At) = a2e

−k2AtAt are bounded, i.e.,

(2.6) f(Jt) ≤ m1 and f(At) ≤ m2 ∀t = 0, 1, . . . ,

for some m1 > 0 and m2 > 0. Now from (2.6) and (C1) it follows that

A(t+ 1) = γa1e
−k1JtJt + a2e

−k2AtAt ≤ γm1 +m2 ≤ m1 +m2

∀t = 0, 1, . . . . Therefore, we have

A(t) ≤ m1 +m2 ∀t = 1, 2, . . . .

Using this we get

J(t+ 1) ≤ (1− γ)m1 + b(m1 +m2) ∀t = 1, 2, . . . ,

hence

J(t) ≤ (b+ 1)m1 + bm2 ∀t = 2, 3, . . . .

Thus, every forward solutions enters the following compact set in at most two time

steps and remain there forever:

(2.7) K = {(J,A) ∈ R2
+|J ∈ [0, (b+ 1)m1 + bm2], A ∈ [0,m1 +m2]}.
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The following result will establish the uniform persistence of system (2.1) when

R0 > 1 and show the origin is unstable.

Theorem 2.4. Let b(t) = b > 0. If R0 > 1, the trivial steady state E0 = (0, 0) of

system (2.1) is unstable and system (2.1) is uniformly persistent.

Proof. Assume R0 > 1. From Theorem 1.1.3 in [9], P (E0) has a positive strictly

dominant eigenvalue λ > 1. Therefore, we conclude that E0 is unstable. Now, let

H = R2
+, Y = bd(R2

+), and define the map f : R2
+ → R2

+ to be the right hand

side of system (2.1). Since int(R2
+) is positively invariant for system (2.1), we have

f(H \ Y) ⊂ H \ Y . Using Lemma 2.3 and Theorem 2.1 in [16], it follows that there

exists a global attractor X in H. Let M be the maximal compact invariant set in Y ,

which in our context is M = {E0}. Now we can use Theorem 2.2 to prove uniform

persistence. As in [1], we will actually prove a stronger result that M is a repeller.

Once we show that M is a repeller, we have that by Theorem 2.1 of [19], this is

equivalent to showing that M is isolated in H and W s(M) ⊂M . Hence, system (2.1)

is uniformly persistent. Now we show M is a repeller using an argument similar to

one in [2] .

Since P (E0) is non-negative, irreducible, and primitive, its dominant eigenvalue

λ > 1 has a corresponding left eigenvector v > 0. That is,

vTP (E0) = λvT .

Pick λ∗ ∈ (1, λ) such that vTP (E0)− λ∗vT > 0. Then there exists a neighborhood U

of M ∈ R2
+ such that

vTP (x)− λ∗vT > 0

for every x ∈ U since P (x) is continuous. Define L : R2
+ → R+ to be

L(x) = vTx.

Now, L(x) = 0 for x ∈ U if and only if x ∈ M and is positive elsewhere in U . Also,

we have

L(f(x)) = vTP (x)x > λ∗vTx > L(x)

for all x ∈ U \M . Therefore, M is a repeller. It follows that system (2.1) is uniformly

persistent.

3. Chaotic dynamics

We now want to explore the chaotic dynamics exhibited by our system brought

about as a result of the Ricker-type survivorship rates. We will first create a bifur-

cation diagram associated with the total population with our bifurcation parameter

being the birth rate. We will then examine some phase portraits associated with
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the bifurcation diagram. Then we will approximate the Lyapunov exponents for our

system. The parametric values used for all of the analysis in Section 3 for model (2.1)

are given in Table 1. These values are loosely based on the ones used in [3].

Parameter Numerical Value

γ 0.5

a1 0.2

k1 0.05

a2 0.5

k2 0.05
Table 1. Parametric values used in numerical simulations

3.1. Bifurcation analysis and attractors. We will only plot the bifurcation dia-

gram associated with the total population because the results obtain by examining

the juvenile and adult population separately are similar. Figure 1 is the bifurcation

diagram of system (2.1) with respect to the birthrate b. It appears our system under-

goes a discrete Hopf bifurcation. We see that for lower values of b, the system settles

into an equilibrium state, but once b reaches a critical value an invariant loop bifur-

cates from the equilibria. Figure 1(a) shows the systems behavior for 0 < b < 3000,

while (b) is local amplification to the interval [0, 400] and (c) a further amplification

to [75, 120]. For small values of b, the system has an interior equilibrium, but as

the birth rate is increased, more complex behaviors are exhibited, including periodic

solutions of different periods, invariant loops, and chaos.

We now want to look at our system’s attractor in phase space. The phase portraits

associated with Figure 1 are given in Figure 2. For small values of b the system is

drawn inward towards an interior equilibria. As b is varied the figures clearly show

the process of how a smooth invariant curve bifurcates from the stable fixed point.

Also present is the temporary deterioration of the invariant curve and the emergence

of a period five solution. As the birth rate is increased further, an invariant loop

reemerges. Once the birth rate becomes large enough and the onset of chaos occurs,

the system’s attractor become increasingly deformed. An attractor associated with a

chaotic birth rate is shown in the bottom, rightmost diagram of Figure 2.
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(a) Bifurcation diagram of System (2.1) with respect to the birth rate

(b) (c)

Figure 1. Bifurcation diagram of system (2.1) with respect to the

birth rate (a), and local amplifications (b) and (c)

Figure 2. Phase portraits for various values of b, which correspond to

Figure 1

3.2. Lyapunov exponents. The simplest and most intuitive definition of chaos is

extreme sensitivity to initial conditions [18]. Lyapunov exponents are commonly

used to measure this sensitivity. Alligood et. al. explain that for an m dimensional

system, the Lyapunov exponents measure the rate of separation from the current
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orbit point along m orthogonal directions [6]. Hence, whenever a Lyapunov exponent

is positive, the system is exhibiting sensitivity to initial conditions, i.e. exhibiting

chaotic behavior. The Lyapunov exponent which determines sensitivity for a system

of difference equations is defined as,

λ(x0, y0) = lim
t→∞

1

t
ln ρ

(
t−1∏
k=0

D (xk, yk)

)
,

where ρ(·) is the spectral radius of a matrix, and D(xk, yk) is the Jacobian of the

system evaluated at (xk, yk) [5]. Note that the Lyapunov exponents depend upon the

initial condition (x0, y0) chosen.

Since system (2.1) is two dimensional, each Jacobian has two eigenvalues associ-

ated with it and thus has two Lyapunov exponents. While only the Lyapunov expo-

nent based on the spectral radius is needed to determine where a system is chaotic, we

extend Allen’s definition in order to account for both Lyapunov exponents. Letting

the eigenvalues of
∏t−1

k=0D (xk, yk) be represented by Λ1,Λ2, define

ρ1

(
t−1∏
k=0

D (xk, yk)

)
= max {|Λ1|, |Λ2|}

and

ρ2

(
t−1∏
k=0

D (xk, yk)

)
= min {|Λ1|, |Λ2|} .

Thus, the two Lyapunov exponents of system (2.1) are given by,

(3.1) λi(J0, A0) = lim
t→∞

1

t
ln

(
ρi

(
t−1∏
k=0

D(Jk, Ak)

))
for i ∈ {1, 2} .

In order to calculate our Lyapunov exponents numerically we make use of the

algorithm outlined in [6], which uses the Gram-Schmidt orthogonalization procedure.

Since we are interested in what effect varying the birth rate has on our system’s

dynamics, we approximate the Lyapunov exponents for several values of b. The values

of the Lyapunov exponents as a function of b are plotted in Figure 3. Here the top

graph represents λ1, while the bottom graph represents λ2.
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(a)

(b)

Figure 3. Lyapunov exponents for model composed of Ricker sur-

vivorship functions, where (b) is a local amplification of (a)

Examining Figure 3, we see that it is remarkably reminiscent of Figure 1. We see

that for low values of the birth rate the system does not exhibit sensitivity to initial

conditions, but once it reaches a certain birth rate, it has regions of sensitivity and

insensitivity to initial conditions. For a set range of values, we see that the system

looses sensitivity for an extended period of time before returning to its previous

behavior. These regions correspond to the regions noted in Figure 1 where our system

enters into periodic solutions of lower period. While Figure 3 shows that transition

between chaotic and non-chaotic regions is indeed common, it does not show to what

extent. A periodic attractor is present when λ1 = 0 and λ2 < 0, while a chaotic

attractor is present when λ1 > 0. By keeping track of the number of investigated

birth rates that fall into these respective classes, we can estimate the frequency that

our system possesses a periodic and chaotic attractor. These results are further

summarized in Table 2.
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Type of Attractor Lyapunov Exponents Frequencies

Chaotic λ1 > 0 28.67%

Quasiperiodic λ1 = λ2 = 0 58.18%

Periodic λ1 = 0, λ2 < 0 12.99%

Fixed Point λ1 < 0, λ2 < 0 0.17%

Table 2. Observed frequencies for different types of attractors

Figure 4 shows how the approximation of Lyapunov exponents behave for different

types of attractors. For quasiperiodic attractors, the approximation converges to

zero (Figure 4(a)). When the system posseses a periodic attractor, the Lyapunov

exponent approximations converge to a negative numbers (Figure 4(b)). The final

example illustrates how the Lyapunov exponents converge to a positive number when

the system is exhibiting chaotic dynamics (Figure 4(c)).

4. Periodic birthrates

In many ecosystems, species do not reproduce year round. Instead they have a

specific breeding season. Thus, it is important to examine the effect periodic birth

rates have on a system. In this section, we consider the case where the breeding in

system (2.1) is seasonal. We shall examine three separate birthing strategies. First we

consider the case where the birth rate is periodic of period 2. For example, when the

time step is taken to be one year, this corresponds to 6 months of sexual reproductivity

and 6 months sexual dormancy. Next, we consider the case when the birth rate is of

period 3. For this type of birth rate, we will consider two different birthing strategies,

the case where the population is sexually active for an 8 month interval every year

and the scenario where the population reproduces for only 4 months out of the year.

We now examine the case where the birth rate is periodic of period 2. Thus, the

birth rate, b(t), is defined by

(4.1) b(t) =

{
0 if t = 0, 2, 4, . . .

b̂ if t = 1, 3, 5, . . . ,

where b̂ is positive constant. Figure 5 shows the dynamics exhibited when the

birthrate is periodic of period 2. Notice that while the system does still exhibit

chaotic behavior, the onset of it is delayed. The route to chaos is also markedly

different than the continuous case. Instead of undergoing a Hopf bifurcation and

reaching chaos via the quasiperiodic route, the system reaches chaos via the period

doubling route. The transitions in and out of chaos are still present in the system

with period two birth rates.
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Figure 4. Convergence of the Lyapunov exponent for dynamics of

(top) quasiperiodic, (mid) periodic, and (bottom) chaotic attractor

when b = 200, b = 300, b = 2200 respectively.

It can be shown, through means similar to those implemented in Section 2.1,

that the extinction equilibria is locally asymptotically stable when the inherent net

reproductive number is less than one and the system is persistent when the inherent

net reproductive number is greater than one. Next, we examine the two distinct

birthing strategies associated with periodic birth rates of period 3. First, we consider
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Figure 5. Bifurcation diagram with birth strategy given in (4.1)

the scenario where the population breeds for 8 months out of the year. Thus, our

birthrate, b(t) is now given by

(4.2) b(t) =


0 if t = 0, 3, 6, . . .

b̂ if t = 1, 4, 7, . . .

b̂ if t = 2, 5, 8, . . . ,

where b̂ is a positive constant. The associated bifurcation diagram is given in Fig-

ure 6(a). Once again we see a delay of chaos, when compared to system (2.1) and

that chaos is reached via the period doubling route.

Finally, we consider the case where the population is reproductive for only a 4

month period out of the year. The birth rate is then given by,

(4.3) b(t) =


0 if t = 0, 3, 6, . . .

0 if t = 1, 4, 7, . . .

b̂ if t = 2, 5, 8, . . . ,

where b̂ is again defined to be a positive constant. Here again we have a delay in the

onset of chaotic dynamics and the system takes the period doubling route to chaos.

5. Concluding remarks

In conclusion, we develop and analyze a discrete juvenile-adult model with Ricker-

type survivorship functions. We first show when R0 is less than one, the extinction

equilibrium is locally asymptotically stable. We then show that when R0 is greater

than one, our system is persistent. The presence of chaotic tendencies in our model is

then explored via bifurcation diagrams. These diagrams suggest that when the birth

rate is varied the system undergoes a discrete Hopf bifurcation and transitions to

chaos via the quasiperiodic route. The bifurcation diagrams also show that after the

initial onset of chaos there exists large range of birth rates for which chaos is absent.
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(a)

(b)

Figure 6. Bifurcation diagrams associated with the two birthing

strategies for period 3 birth rates where (a) looks at birth strategy

given in (4.2), and (b) looks at the birth strategy given in (4.3)

Over the range of the birth rates where chaos disappears it is characteristic of the

model to possess low periodic solutions.

We then employ numerical methods to approximate the Lyapnunov exponents

for system (2.1) thereby confirming the results of the bifurcation diagrams and phase

portraits. It is shown that for low birth rates system (2.1) does not exhibit any

sensitivity to initial condition, but when the birth rates are increased past a certain

point, system (2.1) did respond sensitively to small perturbations in initial conditions.

We then briefly examine the influence of periodic birth rates, with period 2 and 3. It

is conjectured that built-in periodicity had a delay effect on the occurrence of chaos.

More significant is the change in the route to chaos. Instead of the previous observed

quasiperiodic route, the system reaches chaos via the more common period doubling

route. In the future, it would be interesting to see how other breeding strategies

would influence the behavior of a population.
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