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ABSTRACT. We extend a recent result on third and fourth-order Cauchy-Euler equations by

establishing the Hyers-Ulam stability of higher-order linear non-homogeneous Cauchy-Euler dynamic

equations on time scales. That is, if an approximate solution of a higher-order Cauchy-Euler equation

exists, then there exists an exact solution to that dynamic equation that is close to the approximate

one. We generalize this to all higher-order linear non-homogeneous factored dynamic equations with

variable coefficients.
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1. INTRODUCTION

Stan Ulam [27] posed the following problem concerning the stability of functional

equations: give conditions in order for a linear mapping near an approximately linear

mapping to exist. The problem for the case of approximately additive mappings was

solved by Hyers [10], who proved that the Cauchy equation is stable in Banach spaces,

and the result of Hyers was generalized by Rassias [24]. Obloza [19] appears to be

the first author who investigated the Hyers-Ulam stability of a differential equation.

Since then there has been a significant amount of interest in Hyers-Ulam stability,

especially in relation to ordinary differential equations, for example see [7, 8, 11, 12,

13, 14, 15, 16, 17, 18, 21, 22, 25, 28]. Also of interest are many of the articles in a

special issue guest edited by Rassias [23], dealing with Ulam, Hyers-Ulam, and Hyers-

Ulam-Rassias stability in various contexts. Also see Popa et al [5, 20, 21, 22]. András

and Mészáros [2] recently used an operator approach to show the stability of linear

dynamic equations on time scales with constant coefficients, as well as for certain

integral equations. Tunç and Biçer [26] proved the Hyers-Ulam stability of third

and fourth-order Cauchy-Euler differential equations. Anderson et al [1, Corollary

2.6] proved the following concerning second-order non-homogeneous Cauchy-Euler

equations on time scales:
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Theorem 1.1 (Cauchy-Euler Equation). Let λ1, λ2 ∈ R (or λ2 = λ1, the complex

conjugate) be such that

t+ λkµ(t) 6= 0, k = 1, 2

for all t ∈ [a, σ(b)]T, where a ∈ T satisfies a > 0. Then the Cauchy-Euler equation

(1.1) x∆∆(t) +
1 − λ1 − λ2

σ(t)
x∆(t) +

λ1λ2

tσ(t)
x(t) = f(t), t ∈ [a, b]T

has Hyers-Ulam stability on [a, b]T. To wit, if there exists y ∈ C∆2

rd [a, b]T that satisfies
∣

∣

∣

∣

y∆∆(t) +
1 − λ1 − λ2

σ(t)
y∆(t) +

λ1λ2

tσ(t)
y(t) − f(t)

∣

∣

∣

∣

≤ ε

for t ∈ [a, b]T, then there exists a solution u ∈ C∆2

rd [a, b]T of (1.1) given by

u(t) = eλ1
t

(t, τ2) y (τ2) +

∫ t

τ2

eλ1
t

(t, σ(s))w(s)∆s, any τ2 ∈ [a, σ2(b)]T,

where for any τ1 ∈ [a, σ(b)]T the function w is given by

w(s) = eλ2−1

σ(s)

(s, τ1)

[

y∆(τ1) −
λ1

τ1
y(τ1)

]

+

∫ s

τ1

eλ2−1

σ(s)

(s, σ(ζ))f(ζ)∆ζ,

such that |y − u| ≤ Kε on [a, σ2(b)]T for some constant K > 0.

The motivation for this work is to extend Theorem 1.1 to the general nth-order

Cauchy-Euler dynamic equation, and thus extend the results in [26] as well, with an

approach different from [2]. We will show the stability in the sense of Hyers and Ulam

of the equation
n
∑

k=0

αkMky(t) = f(t),

where

M0y(t) := y(t), Mk+1y(t) := ϕ(t) (Mky)
∆ (t), k = 0, 1, . . . , n− 1.

This is essentially [4, (2.14)] if ϕ(t) = t and f(t) = 0. In the last section we will

analyze the nth-order factored equation with differential operators D and I, where

Dy = y∆ and Iy = y, of the form

n
∏

k=1

(ϕkD − ψkI) y(t) = f(t), t ∈ [a, b]T,

for right-dense continuous functions ϕk and ψk, a more general dynamic equation

with variable coefficients than the Cauchy-Euler equation. Throughout this work we

assume the reader has a working knowledge of time scales as can be found in Bohner

and Peterson [3, 4], originally introduced by Hilger [9].
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2. HYERS-ULAM STABILITY FOR HIGHER-ORDER

CAUCHY-EULER DYNAMIC EQUATIONS

In this section we establish the Hyers-Ulam stability of the higher-order non-

homogeneous Cauchy-Euler dynamic equation on time scales of the form

(2.1)

n
∑

k=0

αkMky(t) = f(t),

where

M0y(t) := y(t), Mk+1y(t) := ϕ(t) (Mky)
∆ (t), k = 0, 1, . . . , n− 1

for given constants αk ∈ R with αn ≡ 1, and for functions ϕ, f ∈ Crd[a, b]T, using the

following definition.

Definition 2.1 (Hyers-Ulam stability). Let ϕ, f ∈ Crd[a, b]T and n ∈ N. If whenever

Mkx ∈ C∆
rd[a, b]T satisfies

∣

∣

∣

∣

∣

n
∑

k=0

αkMkx(t) − f(t)

∣

∣

∣

∣

∣

≤ ε, t ∈ [a, b]T

there exists a solution u of (2.1) with Mku ∈ C∆
rd[a, b]T for k = 0, 1, . . . , n − 1 such

that |x− u| ≤ Kε on [a, σn(b)]T for some constant K > 0, then (2.1) has Hyers-Ulam

stability [a, b]T.

Remark 2.2. Before proving the Hyers-Ulam stability of (2.1) we will need the

following lemma, which allows us to factor (2.1) using the elementary symmetric

polynomials [6] in the n symbols ρ1, . . . , ρn given by

sn
1 = s1(ρ1, . . . , ρn) =

∑

i

ρi

sn
2 = s2(ρ1, . . . , ρn) =

∑

i<j

ρiρj

sn
3 = s3(ρ1, . . . , ρn) =

∑

i<j<k

ρiρjρk

sn
4 = s4(ρ1, . . . , ρn) =

∑

i<j<k<ℓ

ρiρjρkρℓ

...

sn
t = st(ρ1, . . . , ρn) =

∑

i1<i2<···<it

ρi1ρi2 . . . ρit

...

sn
n = sn(ρ1, . . . , ρn) = ρ1ρ2ρ3 . . . ρn.
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In general, we let sj
i represent the ith elementary symmetric polynomial on j symbols.

Then, given the αk in (2.1), introduce the characteristic values λk ∈ C via the elemen-

tary symmetric polynomial sn
t on the n symbols −λ1, . . . ,−λn, where αn = s0 ≡ 1

and

(2.2) αk = sn
n−k = sn−k(−λ1, . . . ,−λn) =

∑

i1<i2<···<in−k

(−1)n−kλi1λi2 · · ·λin−k .

Lemma 2.3 (Factorization). Given y, ϕ ∈ Crd[a, b]T and αk ∈ R with αn ≡ 1,

let Mky ∈ C∆
rd[a, b]T, where M0y(t) := y(t) and Mk+1y(t) := ϕ(t) (Mky)

∆ (t) for

k = 0, 1, . . . , n− 1. Then we have the factorization

(2.3)

n
∑

k=0

αkMky(t) =

n
∏

k=1

(ϕD − λkI) y(t), n ∈ N,

where the differential operator D is defined via Dx = x∆ for x ∈ C∆
rd[a, b]T, and I is

the identity operator.

Proof. We proceed by mathematical induction on n ∈ N, utilizing the substitution

defined in (2.2). For n = 1,

n
∑

k=0

αkMky(t) = α0M0y(t) + α1M1y(t) = s1(−λ1)y(t) + 1 · ϕ(t)y∆(t)

= (ϕD − λ1I) y(t)

and the result holds. Assume (2.3) holds for n ≥ 1. Then we have αn+1 ≡ 1 and

n+1
∑

k=0

αkMky(t) = α0y(t) +

n
∑

k=1

αkMky(t) +Mn+1y(t)

= sn+1
n+1y(t) +

n
∑

k=1

sn+1
n+1−kMky(t) + ϕ(t) (Mny)

∆ (t)

= −λn+1s
n
ny(t) +

n
∑

k=1

(

sn
n+1−k − λn+1s

n
n−k

)

Mky(t) + ϕ(t)D (Mny) (t)

= −λn+1

[

sn
ny(t) +

n
∑

k=1

sn
n−kMky(t)

]

+

n
∑

k=1

sn
n+1−kMky(t)

+ ϕ(t)D (Mny) (t)

= −λn+1

n
∑

k=0

sn
n−kMky(t) + ϕ(t)D

(

n
∑

k=1

sn
n+1−kMk−1y(t) +Mny

)

(t)

= −λn+1

n
∑

k=0

sn
n−kMky(t) + ϕ(t)D

(

n−1
∑

k=0

sn
n−kMky(t) +Mny

)

(t)

= −λn+1

n
∑

k=0

sn
n−kMky(t) + ϕ(t)D

n
∑

k=0

sn
n−kMky(t)



HYERS-ULAM STABILITY 657

= (ϕ(t)D − λn+1I)

n
∑

k=0

sn
n−kMky(t)

= (ϕ(t)D − λn+1I)

n
∑

k=0

αkMky(t)

= (ϕ(t)D − λn+1I)

n
∏

k=1

(ϕD − λkI) y(t)

and the proof is complete.

Theorem 2.4 (Hyers-Ulam Stability). Given y, ϕ, f ∈ Crd[a, b]T with |ϕ| ≥ A > 0

for some constant A, and αk ∈ R with αn ≡ 1, consider (2.1) with Mky ∈ C∆
rd[a, b]T

for k = 0, . . . , n− 1. Using the λk from the factorization in Lemma 2.3, assume

(2.4) ϕ(t) + λkµ(t) 6= 0, k = 1, 2, . . . , n

for all t ∈ [a, σn−1(b)]T. Then (2.1) has Hyers-Ulam stability on [a, b]T.

Proof. Let ε > 0 be given, and suppose there is a function x, with Mkx ∈ C∆
rd[a, b]T,

that satisfies
∣

∣

∣

∣

∣

n
∑

k=0

αkMkx(t) − f(t)

∣

∣

∣

∣

∣

≤ ε, t ∈ [a, b]T.

We will show there exists a solution u of (2.1) with Mku ∈ C∆
rd[a, b]T for k =

0, 1, . . . , n− 1 such that |x− u| ≤ Kε on [a, σn(b)]T for some constant K > 0.

To this end, set

g1 = ϕx∆ − λ1x = (ϕD − λ1I) x

g2 = ϕg∆
1 − λ2g1 = (ϕD − λ2I) g1

...

gk = ϕg∆
k−1 − λkgk−1 = (ϕD − λkI) gk−1

...

gn = ϕg∆
n−1 − λngn−1 = (ϕD − λnI) gn−1.

This implies by Lemma 2.3 that

gn(t) − f(t) =
n
∑

k=0

αkMkx(t) − f(t),

so that

|gn(t) − f(t)| ≤ ε, t ∈ [a, b]T.

By the construction of gn we have
∣

∣ϕg∆
n−1 − λngn−1 − f

∣

∣ ≤ ε, that is
∣

∣

∣

∣

g∆
n−1 −

λn

ϕ
gn−1 −

f

ϕ

∣

∣

∣

∣

≤ ε

|ϕ| ≤
ε

A
.
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By [1, Lemma 2.3] and (2.4) there exists a solution w1 ∈ C∆
rd[a, b]T of

(2.5) w∆(t) − λn

ϕ(t)
w(t) − f(t)

ϕ(t)
= 0, or ϕ(t)w∆(t) − λnw(t) − f(t) = 0,

t ∈ [a, b]T, where w1 is given by

w1(t) = eλn
ϕ

(t, τ1)gn−1(τ1) +

∫ t

τ1

eλn
ϕ

(t, σ(s))
f(s)

ϕ(s)
∆s, any τ1 ∈ [a, σ(b)]T,

and there exists an L1 > 0 such that

|gn−1(t) − w1(t)| ≤ L1ε/A, t ∈ [a, σ(b)]T.

Since gn−1 = ϕg∆
n−2 − λn−1gn−2, we have that

|ϕg∆
n−2 − λn−1gn−2(t) − w1(t)| ≤ L1ε/A, t ∈ [a, σ(b)]T.

Again we apply [1, Lemma 2.3] to see that there exists a solution w2 ∈ C∆
rd[a, σ(b)]T

of

w∆(t) − λn−1

ϕ(t)
w(t) − w1(t)

ϕ(t)
= 0, or ϕ(t)w∆(t) − λn−1w(t) − w1(t) = 0,

t ∈ [a, σ(b)]T, where w2 is given by

w2(t) = eλn−1
ϕ

(t, τ2)gn−2(τ2) +

∫ t

τ2

eλn−1
ϕ

(t, σ(s))
w1(s)

ϕ(s)
∆s, any τ2 ∈ [a, σ2(b)]T,

and there exists an L2 > 0 such that

|gn−2(t) − w2(t)| ≤ L2L1ε/A
2, t ∈ [a, σ2(b)]T.

Continuing in this manner, we see that for k = 1, 2, . . . , n − 1 there exists a

solution wk ∈ C∆
rd[a, σ

k−1(b)]T of

w∆(t) − λn−k+1

ϕ(t)
w(t) − wk−1(t)

ϕ(t)
= 0, or ϕ(t)w∆(t) − λn−k+1w(t) − wk−1(t) = 0,

t ∈ [a, σk−1(b)]T, where wk is given by

(2.6)

wk(t) = eλn−k+1
ϕ

(t, τk)gn−k(τk)+

∫ t

τk

eλn−k+1
ϕ

(t, σ(s))
wk−1(s)

ϕ(s)
∆s, any τk ∈ [a, σk(b)]T,

and there exists an Lk > 0 such that

|gn−k(t) − wk(t)| ≤
k
∏

j=1

Ljε/A
k, t ∈ [a, σk(b)]T.

In particular, for k = n− 1,

|g1(t) − wn−1(t)| ≤
n−1
∏

j=1

Ljε/A
n−1, t ∈ [a, σn−1(b)]T
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implies by the definition of g1 that
∣

∣

∣

∣

x∆(t) − λ1

ϕ(t)
x(t) − wn−1(t)

ϕ(t)

∣

∣

∣

∣

≤
n−1
∏

j=1

Ljε/A
n, t ∈ [a, σn−1(b)]T.

Thus there exists a solution wn ∈ C∆
rd[a, σ

n−1(b)]T of

w∆(t) − λ1

ϕ(t)
w(t) − wn−1(t)

ϕ(t)
= 0, or ϕ(t)w∆(t) − λ1w(t) − wn−1(t) = 0,

t ∈ [a, σn−1(b)]T, where wn is given by

(2.7) wn(t) = eλ1
ϕ

(t, τn)x(τn) +

∫ t

τn

eλ1
ϕ

(t, σ(s))
wn−1(s)

ϕ(s)
∆s, any τn ∈ [a, σn(b)]T,

and there exists an Ln > 0 such that

(2.8) |x(t) − wn(t)| ≤ Kε :=

n
∏

j=1

Ljε/A
n, t ∈ [a, σn(b)]T.

By construction,

(ϕD − λ1I)wn(t) = wn−1(t)

2
∏

k=1

(ϕD − λkI)wn(t) = (ϕD − λ2I)wn−1(t) = wn−2(t)

...

n
∏

k=1

(ϕD − λkI)wn(t) = (ϕD − λnI)w1(t)
(2.5)
= f(t)

on [a, σn−1(b)]T, so that u = wn is a solution of (2.1), with u ∈ C∆
rd[a, σ

n−1(b)]T and

|x(t) − wn(t)| ≤ Kε for t ∈ [a, σn(b)]T by (2.8). Moreover, using (2.7) and (2.6), we

have an iterative formula for this solution u = wn in terms of the function x given at

the beginning of the proof.

3. EXAMPLE

Letting Dy = y∆ and I be the identity operator, consider the non-homogeneous

fifth-order Cauchy-Euler dynamic equation

(3.1)
[

(tD)5 + 15(tD)4 + 85(tD)3 + 225(tD)2 + 274tD + 120I
]

y(t) = f(t)

for some right-dense continuous function f , on [a, b]T; in factored form it is

(tD + 5I)(tD + 4I)(tD + 3I)(tD + 2I)(tD + I)y(t) = f(t).

If T = R, this is equivalent to the non-homogeneous fifth-order Cauchy-Euler differ-

ential equation

t5y(5) + 25t4y(4) + 200t3y′′′ + 600t2y′′ + 600ty′ + 120y = f(t),

By Theorem 2.4 we have that (3.1) has Hyers-Ulam stability.
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4. HIGHER-ORDER LINEAR NON-HOMOGENEOUS FACTORED

DYNAMIC EQUATIONS WITH VARIABLE COEFFICIENTS

Generalizing away from higher-order Cauchy-Euler equations, we consider the

following higher-order linear non-homogeneous factored dynamic equations with vari-

able coefficients given by

(4.1)

n
∏

k=1

(ϕkD − ψkI) y(t) = f(t), t ∈ [a, b)T,

where ϕk, ψk, f ∈ Crd[a, b)T for k = 1, 2, . . . , n, Dy(t) = y∆(t), I is the identity

operator, and |ϕk(t)| ≥ A > 0 for all t ∈ [a, b)T, for some constant A > 0. Here we

allow for b = ∞ for those time scales that are unbounded above. Before our main

result in this section we need the following lemma.

Lemma 4.1. Let ϕ, ψ, f ∈ Crd[a, b)T with |ϕ(t)| ≥ A > 0 for some constant A, and

assume

(4.2) ϕ(t) + µ(t)ψ(t) 6= 0 and

∫ t

a

∣

∣

∣

∣

eψ
ϕ

(t, σ(τ))
1

ϕ(τ)

∣

∣

∣

∣

∆τ < L

for all t ∈ [a, b)T, for some constant 0 < L < ∞. Then the first-order dynamic

equation

(ϕD − ψI) y − f = 0

has Hyers-Ulam stability on [a, b)T.

Proof. Suppose there exists a function x such that

|(ϕD − ψI) x(t) − f(t)| ≤ ε

for some ε > 0, for all t ∈ [a, b)T. Set

q(t) = (ϕD − ψI) x(t) − f(t), t ∈ [a, b)T.

Clearly |q(t)| ≤ ε for all t ∈ [a, b)T, and we can solve for x to obtain

x(t) = eψ
ϕ

(t, a)x(a) +

∫ t

a

eψ
ϕ

(t, σ(τ))
q(τ) + f(τ)

ϕ(τ)
∆τ.

Let y be the unique solution of the initial-value problem

(ϕD − ψI) y(t) − f(t) = 0, y(a) = x(a).

Then y is given by

y(t) = eψ
ϕ

(t, a)x(a) +

∫ t

a

eψ
ϕ

(t, σ(τ))
f(τ)

ϕ(τ)
∆τ,

and

|y(t) − x(t)| =

∣

∣

∣

∣

∫ t

a

eψ
ϕ

(t, σ(τ))
q(τ)

ϕ(τ)
∆τ

∣

∣

∣

∣

≤ ε

∫ t

a

∣

∣

∣

∣

eψ
ϕ

(t, σ(τ))
1

ϕ(τ)

∣

∣

∣

∣

∆τ ≤ Lε

by condition (4.2).
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Remark 4.2. The convergence condition on the integral in (4.2) is essentially the

same as S1 and S2 in [2], and can be met for various functions. For example, if T = R,

ϕ(w) = w2, ψ(w) = sinw, and a = 1, then
∫ t

a

∣

∣

∣

∣

eψ
ϕ

(t, σ(τ))
1

ϕ(τ)

∣

∣

∣

∣

∆τ =

∫ t

1

e sinw
w2

(t, τ)
1

τ 2
dτ ∈

[

1 − e−1+ 1
t , −1 + e1−

1
t

]

for all t ≥ 1, and so clearly converges on [1,∞)R. If T = N, ϕ(w) = w, ψ(w) = −5/2,

and a = 3, then

∫ t

a

∣

∣

∣

∣

eψ
ϕ

(t, σ(τ))
1

ϕ(τ)

∣

∣

∣

∣

∆τ =
t−1
∑

τ=3

Γ(1 + τ)Γ(t− 5/2)

τΓ(t)Γ(τ − 3/2)
=

2

5
− 4 Γ(t− 5/2)

5
√
π Γ(t)

∈ [0, 2/5)

for all integers t ≥ 3, and so clearly converges on [3,∞)N, where Γ is the gamma

function.

Theorem 4.3 (Hyers-Ulam Stability). Given ϕk, ψk, f ∈ Crd[a, b)T with |ϕk(t)| ≥
A > 0 for some constant A, assume

(4.3) ϕk(t) + µ(t)ψk(t) 6= 0 and

∫ t

a

∣

∣

∣

∣

eψk
ϕk

(t, σ(τ))
1

ϕk(τ)

∣

∣

∣

∣

∆τ < Lk−1

for k = 1, 2, . . . , n and for all t ∈ [a, b)T, where 0 < Lk−1 < ∞ is some constant.

Then (4.1) has Hyers-Ulam stability on [a, b)T.

Proof. Suppose there exists a function x such that
∣

∣

∣

∣

∣

n
∏

k=1

(ϕkD − ψkI)x(t) − f(t)

∣

∣

∣

∣

∣

≤ ε

for some ε > 0, for all t ∈ [a, b)T. Define the new functions x0 := x, yn := f , and

(4.4) xk := (ϕkD − ψkI)xk−1, k = 1, . . . , n.

Then

xk(t) = ϕk(t)x
∆
k−1(t) − ψk(t)xk−1(t),

that can be solved to yield

xk−1(t) = eψk
ϕk

(t, a)xk−1(a) +

∫ t

a

eψk
ϕk

(t, σ(τ))
xk(τ)

ϕk(τ)
∆τ

for k = 1, . . . , n. Note that

|xn − yn|(t) = |xn − f |(t) ≤ ε,

so

|ϕnx
∆
n−1 − ψnxn−1 − yn| = |ϕnx

∆
n−1 − ψnxn−1 − f | ≤ ε.

Hyers-Ulam stability of this first-order equation by Lemma 4.1 implies there exists a

function yn−1 such that

|xn−1 − yn−1| ≤ Ln−1ε
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and

ϕn(t)y∆
n−1(t) − ψn(t)yn−1(t) = yn(t) = f(t),

for some constant Ln−1 > 0, where yn−1 is given by

yn−1(t) = eψn
ϕn

(t, a)yn−1(a) +

∫ t

a

eψn
ϕn

(t, σ(τ))
yn(τ)

ϕn(τ)
∆τ.

Then

|ϕn−1x
∆
n−2 − ψn−1xn−2 − yn−1| ≤ Ln−1ε,

so again Hyers-Ulam stability of the first-order equation implies there exists a function

yn−2 such that

|xn−2 − yn−2| ≤ Ln−2Ln−1ε

and

ϕn−1(t)y
∆
n−2(t) − ψn−1(t)yn−2(t) = yn−1(t),

for some constant Ln−2 > 0, where yn−2 is given by

yn−2(t) = eψn−1
ϕn−1

(t, a)yn−2(a) +

∫ t

a

eψn−1
ϕn−1

(t, σ(τ))
yn−1(τ)

ϕn−1(τ)
∆τ.

Continuing in this way, we obtain a function y0 such that

(4.5) |x0 − y0| = |x− y0| ≤ ε
n−1
∏

j=0

Lj

and

ϕ1(t)y
∆
0 (t) − ψ1(t)y0(t) = y1(t),

for some constant L0 > 0, where y0 is given by

y0(t) = eψ1
ϕ1

(t, a)y0(a) +

∫ t

a

eψ1
ϕ1

(t, σ(τ))
y1(τ)

ϕ1(τ)
∆τ.

Note that by construction of y0 and generally yk, we have

n
∏

k=1

(ϕkD − ψkI) y0(t) =

n
∏

k=2

(ϕkD − ψkI) y1(t)

=

n
∏

k=3

(ϕkD − ψkI) y2(t)

...

= (ϕnD − ψnI) yn−1(t) = yn(t) = f(t),

making y0 a solution of (4.1). This fact, together with inequality (4.5), shows that

(4.1) has Hyers-Ulam stability.
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Birkhäuser, Boston, 2003.
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