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ABSTRACT. In this paper, we consider a scalar integro-differential equation of nonconvolution

type

x′ = −

∫

t

t−r

a(t, s)g(x(s))ds

and give conditions on a and g to ensure that the zero solution is asymptotically stable by applying

the Contraction Mapping Principle. These conditions do not require a fixed sign of the coefficient

function a(t, s), nor do they involve the sign of any derivative of a(t, s). An asymptotic stability

theorem with a necessary and sufficient condition is proved.
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1. INTRODUCTION

The purpose of this paper is to study the stability properties of the scalar equation

(1.1) x′ = −

∫ t

t−r

a(t, s)x(s)ds

as well as its nonlinear analogue

(1.2) x′ = −

∫ t

t−r

a(t, s)g(x(s))ds

by means of contraction mappings. Here r is a positive constant, a : [0,∞) ×

[−r,∞) → R is piecewise continuous, R = (−∞,∞), and g : R → R is continu-

ous with xg(x) > 0 for x 6= 0. We set

A(t, s) =:

∫ r

t−s

a(u+ s, s)du for t ≥ 0 and t− r ≤ s ≤ t

and present our stability results in terms of A(t, s). With other conditions, we show

that
∫ ∞

0
A(s, s)ds = ∞ is a necessary and sufficient condition for asymptotic stability.
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Equation (1.2) and its nonlinear perturbations including Volterra equations have

been the center of investigation for a very long time. In early 1950s, Brownell and

Ergen [1] studied a form of (1.2) in connection with reactor dynamics. Levin and

Nohel ([9],[11]) expended the investigation in 1960s. The work continues with new

methods and results (see Burton [2], [3]). Levin and Nohel [11] are able to show that

the zero solution of (1.2) with a(t, s) = a(t − s) is globally asymptotically stable if

xg(x) > 0 for x 6= 0 and

(1.3) a(r) = 0, a(t) ≥ 0, a′(t) ≤ 0, a′′(t) ≥ 0, for 0 ≤ t ≤ r

by constructing a Liapunov functional. The technique is also extended to equations

of nonconvolution type (Levin [10]). For more historical background and discussion

of applications to dynamical models, we refer the reader to, for example, the work of

Burton [4], Hale [7], Graef, Qian, and Zhang [6], Krasovskii [8], Yoshizawa [13], and

the references contained therein.

In this part of investigation, we derive stability criteria for (1.1) and (1.2) with

integral conditions by means of contraction mapping without asking the sign of a(t, s)

or the sign of any derivative of a(t, s). We list two early theorems of Burton here for

reference.

Theorem A (Burton [2]). Suppose that r > 0 and there exists a constant α < 1

such that

(1.4)

∫ t

t−r

|a(s+ r)|ds+

∫ t

0

e−
R

t

s
a(u+r)du |a(s+ r)|

∫ s

s−r

|a(u+ r)|duds ≤ α

for all t ≥ 0 and
∫ ∞

0
a(s)ds = ∞. Then for every continuous initial function ψ :

[−r, 0] → R, the solution x(t, 0, ψ) of x′ = −a(t)x(t− r) is bounded and tends to zero

as t→ ∞.

A similar result with variable delays is also obtained in Zhang [15], and it is

shown that the condition
∫ ∞

0
a(s)ds = ∞ is necessary and sufficient for asymptotic

stability.

Theorem B (Burton [3]). Suppose that A(t, t) ≥ 0 and there exists a constant α < 1

such that

(1.5) 2

∫ t

t−r

|A(t, u)|du ≤ α

for all t ≥ 0. If
∫ t

0
A(s, s)ds → ∞ as t → ∞, then the zero solution of (1.1) is

asymptotically stable. The same assertion holds for (1.2) with additional conditions

on g.

Our aim here is to generalize Theorem B without asking A(t, t) ≥ 0 and improve

condition (1.5). We show that
∫ t

0
A(s, s)ds → ∞ as t → ∞ is a necessary and
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sufficient condition for asymptotic stability. We discuss equations (1.1) and (1.2) in

Section 2 and Section 3, respectively. We ask that there is a constant α < 1 with

(1.6)

∫ t

t−r

|A(t, s)|ds+

∫ t

0

e−
R

t

s
A(u,u)du |A(s, s)|

∫ s

s−r

|A(s, τ)|dτds ≤ α

for all t ≥ 0. We see that (1.6) is satisfied if (1.5) holds with A(t, t) ≥ 0. If the

equation is of convolution type, then (1.6) can be easily verified. In fact, for a(t, s) =

a(t− s), we have

A(t, s) = A(t− s) =

∫ r

t−s

a(u)du

and
∫ t

t−r

|A(t, s)|ds =

∫ t

t−r

∣

∣

∫ r

t−s

a(u)du
∣

∣ds =

∫ r

0

∣

∣

∫ r

s

a(u)du
∣

∣ds.

If
∫ r

0
a(u)du > 0, then

∫ ∞

0
A(s, s)ds = ∞ and (1.6) becomes

∫ r

0

∣

∣

∫ r

s

a(u)du
∣

∣ds < 1/2.

We also notice that if A(t, s) = (sin t)n(2s+ 1)/(3s+ 1) and 3/4 < r < 1, then (1.6)

holds for sufficiently large even integer n, but (1.5) fails since the value of the first

integral of (1.6) is in (1/2, 1), while the second integral tends to zero as n→ ∞ even

if A(t, t) ≥ 0.

2. THE LINEAR EQUATION

We return to Equation (1.1) from Section 1, which we rewrite for reference

x′ = −

∫ t

t−r

a(t, s)x(s)ds.

Here r is a positive constant, a : [0,∞) × [−r,∞) → R is piecewise continuous.

The elegant theory derived for (1.1) here will provide bases for much of the study of

nonlinear equations such as (1.2). We state the stability results on [0,∞) and always

look at a solution x(t) = x(t, t0, ψ) for t0 ≥ 0, where ψ : [t0−r, t0] → R is a continuous

initial function and x(t, t0, ψ) = ψ(t) on [t0 − r, t0].

Theorem 2.1. Suppose that (1.6) holds and

(2.1)

∫ t

0

A(s, s)ds→ ∞ as t→ ∞.

Then the zero solution of (1.1) is asymptotically stable.

Proof. Let t0 ≥ 0 and ψ : [t0 − r, t0] → R be a given continuous initial function. We

denote by C the set of continuous functions and define

(2.2) M = {φ : [t0 − r,∞) → R | φt0 = ψ, φ ∈ C, φ(t) → 0 as t→ ∞}

so that if ‖ · ‖ is the supremum metric ‖φ‖ = sup{|φ(s)| : s ≥ t0 − r}, then (M, ‖ · ‖)

is a complete metric space. Here φt0 = ψ means that φ(t) = ψ(t) for t0 − r ≤ t ≤ t0.
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We will also use ‖ψ‖ to denote the supremum norm of ψ on [t0r, t0] if there is no

confusion occurs.

Write (1.1) as

(2.3) x′(t) = −A(t, t)x(t) +
d

dt

∫ t

t−r

A(t, s)x(s)ds

or

d

dt

[

x(t) −

∫ t

t−r

A(t, s)x(s)ds
]

= −A(t, t)[x(t) −

∫ t

t−r

A(t, s)x(s)ds
]

−A(t, t)

∫ t

t−r

A(t, s)x(s)ds.

By variation of parameters formula, we obtain for t ≥ t0,

x(t) = e
−

R

t

t0
A(s,s)ds

[

ψ(t0) −

∫ t0

t0−r

A(t0, s)ψ(s)ds
]

+

∫ t

t−r

A(t, s)x(s)ds−

∫ t

t0

e−
R

t

s
A(u,u)duA(s, s)

∫ s

s−r

A(s, τ)x(τ)dτds.(2.4)

Use (2.4) to define a mapping P : M →M as follows: for φ ∈ M , let (Pφ)(t) = ψ(t)

if t0 − r ≤ t ≤ t0 and if t > t0, let

(Pφ)(t) = e
−

R

t

t0
A(s,s)ds[

ψ(t0) −

∫ t0

t0−r

A(t0, s)ψ(s)ds
]

+

∫ t

t−r

A(t, s)φ(s)ds−

∫ t

t0

e−
R

t

s
A(u,u)duA(s, s)

∫ s

s−r

A(s, τ)φ(τ)dτds(2.5)

A fixed point of P is a solution of (1.1).

We see that φ ∈ M implies that Pφ is continuous on [t0 − r,∞). The first two

terms of Pφ tend to zero as t→ ∞ since
∫ ∞

0

A(s, s)ds = ∞,

∫ t

t−r

|A(t, s)|ds < 1, and φ(t) → 0 as t→ ∞.

Let I3 denote the last term of Pφ. To see I3 tends to zero as t → ∞, ∀ε > 0, find

T1 > t0 such that |φ(s− r)| < ε for s ≥ T1. Thus, for t ≥ T1, we have

|I3| =
∣

∣

∫ t

t0

e−
R

t

s
A(u,u)du A(s, s)

∫ s

s−r

A(s, τ)φ(τ)dτds
∣

∣

≤

∫ T1

t0

e−
R

t

s
A(u,u)du |A(s, s)|

∫ s

s−r

|A(s, τ)φ(τ)|dτds

+

∫ t

T1

e−
R

t

s
A(u,u)du |A(s, s)|

∫ s

s−r

|A(s, τ)φ(τ)|dτds

≤ ‖φ‖ e
−

R

t

T1
A(u,u)du

∫ T1

t0

e−
R

T1

s
A(u,u)du |A(s, s)|

∫ s

s−r

|A(s, τ)|dτds

+ ε

∫ t

T1

e−
R

t

s
A(u,u)du|A(s, s)|

∫ s

s−r

|A(s, τ)|dτds
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≤ ‖φ‖ e
−

R

t

T1
A(u,u)du

+ αε.

By (2.1), there exists T2 > T1 such that t ≥ T2 implies

‖φ‖e
−

R

t

T1
A(u,u)du

< (1 − α)ε.

This yields |I3| < (1 − α)ε+ αε = ε, and therefore, I3 → 0 as t → ∞. We now have

(Pφ)(t) → 0 as t→ ∞ and Pφ ∈M .

To see P is a contraction, consider φ, η ∈M . For t ≥ t0, we have by (1.6) that

|(Pφ)(t) − (Pη)(t)| ≤

∫ t

t−r

|A(t, s)||φ(s) − η(s)|ds

+

∫ t

t0

e−
R

t

s
A(u,u)du |A(s, s)|

∫ s

s−r

|A(s, τ)||φ(τ) − η(τ)|dτds

≤ ‖φ− η‖

[
∫ t

t−r

|A(t, s)|ds+

∫ t

0

e−
R

t

s
A(u,u)du|A(s, s)|

∫ s

s−r

|A(s, τ)|dτds

]

≤ α‖φ− η‖.

By the Contraction Mapping Principle (Smart [12, p. 2]), P has a unique fixed point

x ∈ M which is a solution of (1.1) with x(s) = ψ(s) for t0 − r ≤ s ≤ t0 and

x(t) = x(t, t0, ψ) → 0 as t→ ∞.

To obtain the asymptotic stability, we need to show that the zero solution of (1.1)

is stable. To this end, let ε > 0 be given and choose δ > 0 (δ < ε) satisfying

2δKe
R t0

0
A(s,s)ds + αε < ε

where

(2.6) K = sup
t≥0

e−
R

t

0
A(s,s)ds.

If x(t) = x(t, t0, ψ) is a solution of (1.1) with ‖ψ‖ < δ, then x(t) satisfies (2.4). We

claim that |x(t)| < ε for all t ≥ t0. Note that |x(t)| < ε on [t0 − r, t0]. If there exists

t∗ > t0 such that |x(t∗)| = ε and |x(s)| < ε for t0 ≤ s < t∗, then it follows from (2.4)

that

|x(t∗)| ≤ ‖φ‖

[

1 +

∫ t0

t0−r

|A(t0, s)|ds

]

e
−

R

t
∗

t0
A(u,u)du

+ ε

[
∫ t∗

t∗−r

|A(t∗, s)|ds+

∫ t∗

t0

e−
R

t
∗

s
A(u,u)du|A(s, s)|

∫ s

s−r

|A(s, τ)|dτds

]

≤ 2δKe
R t0

0
A(s,s)ds + αε < ε(2.7)

which contradicts the definition of t∗. Thus, |x(t)| < ε for all t ≥ t0, and the zero

solution of (1.1) is stable. This shows that the zero solution of (1.1) is asymptotically

stable on [0,∞). The proof is complete.
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Next we rewrite condition (2.1) below for reference and show that it is a necessary

condition for asymptotic stability if
∫ t

0
A(u, u)du is bounded below. The technique

used here has its root in Zhang [14].

Theorem 2.2. Suppose that (1.6) holds and

(2.8) lim inf
t→∞

∫ t

0

A(s, s)ds > −∞.

Then the zero solution of (1.1) is asymptotically stable if and only if

∫ t

0

A(s, s)ds→ ∞ as t→ ∞.

Proof. It follows from Theorem 2.1 that if (1.6) holds, then (2.1) is sufficient for the

asymptotic stability of the zero solution of (1.1). Thus, we only need to show that

(2.1) is a necessary condition under (2.8). Since (2.8) holds, we define the constant

K as in (2.6). Now suppose that (2.1) fails. Then by (2.8), there exists a sequence

{tn}, tn → ∞ as n→ ∞ such that

lim
n→∞

∫ tn

0

A(s, s)ds = ℓ

for some ℓ ∈ R. We may also choose a positive number J satisfying

−J ≤

∫ tn

0

A(s, s)ds ≤ J

for all n ≥ 1. To simplify expressions, we define

ω(s) = |A(s, s)|

∫ s

s−r

|A(s, u)|du

for all s ≥ 0. By (1.6), we have
∫ tn

tn−r

|A(tn, s)|ds+

∫ tn

0

e−
R

tn

s
A(u,u)duω(s)ds ≤ α.

This yields
∫ tn

0

e
R

s

0
A(u,u)duω(s)ds ≤ αe

R

tn

0
A(u,u)du ≤ eJ

The sequence {
∫ tn

0
e

R

s

0
A(u,u)duω(s)ds} is bounded, so there exists a convergent subse-

quence. For brevity in notation, we may assume

lim
n→∞

∫ tn

0

e
R

s

0
A(u,u)duω(s)ds = γ

for some γ ∈ R+ = [0,∞) and choose a positive integer k̄ so large that
∫ tn

t
k̄

e
R

s

0
A(u,u)duω(s)ds < δ0/4K

for all n ≥ k̄, where δ0 > 0 satisfies 4δ0Ke
J + α < 1.
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By (2.8), the number K in (2.6) is well defined. We now consider the solution of

x(t) = x(t, tk̄, ψ) of (1.1) with ψ(tt̄k) = δ0 and |ψ(s)| ≤ δ0 for tk̄ − r ≤ s ≤ tk̄. An

argument similar to that in (2.7) shows |x(t)| ≤ 1 for t ≥ tk̄. We may choose ψ so

that

(2.9) ψ(tk̄) −

∫ t
k̄

t
k̄
−r

A(tk̄, s)ψ(s)ds ≥
1

2
δ0.

It follows from (2.4) that for n ≥ k̄,
∣

∣

∣
x(tn) −

∫ tn

tn−r

A(tn, s)x(s)ds
∣

∣

∣

≥
1

2
δ0e

−
R

tn

t
k̄

A(u,u)du
−

∫ tn

t
k̄

e−
R

tn

s
A(u,u)duω(s)ds

=
1

2
δ0e

−
R

tn

t
k̄

A(u,u)du
− e−

R

tn

0
A(u,u)du

∫ tn

t
k̄

e
R

s

0
A(u,u)duω(s)ds

= e
−

R

tn

t
k̄

A(u,u)du

[

1

2
δ0 − e−

R t
k̄

0
A(u,u)du

∫ tn

t
k̄

e
R

s

0
A(u,u)duω(s)ds

]

≥ e
−

R

tn

t
k̄

A(u,u)du

[

1

2
δ0 −K

∫ tn

t
k̄

e
R

s

0
A(u,u)duω(s)ds

]

≥
1

4
δ0e

−
R

tn

t
k̄

A(u,u)du
≥

1

4
δ0e

−2J > 0.(2.10)

On the other hand, if the zero solution of (1.1) is asymptotically stable, then x(t) =

x(t, tk̄, ψ) → 0 as t→ ∞. Since tn − r → ∞ as n→ ∞ and (1.6) holds, we have

x(tn) −

∫ tn

tn−r

A(tn, s)x(s)ds→ 0 as t→ ∞

which contradicts (2.10). Hence, it is necessary that (2.1) holds if the zero solution

of (1.1) is asymptotically stable. The proof is complete.

Corollary 1. Suppose that (1.6) holds with A(t, t) ≥ 0 for t ≥ 0. Then the zero

solution of (1.1) is asymptotically stable if and only if (2.1) holds.

3. A NONLINEAR EQUATION

We return to Equation (1.2) from Section 1, which we rewrite for reference

x′ = −

∫ t

t−r

a(t, s)g(x(s))ds.

Here r is a positive constant, a : [0,∞) × [−r,∞) → R is piecewise continuous, and

g : R→ R is continuous.

Remark. We assume that there exists an L > 0 such that on [−L,L], g is Lipschitz

continuous, xg(x) > 0 for x 6= 0, and limx→0 g(x)/x = g∗(0) exists. To simplify

expressions, we may redefine g and a by setting a(t, s)g(x) = a(t, s)D(g(x)/D) for
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a positive constant D. In case that g∗(0) 6= 0, we may redefine g and a so that

g∗(0) = 1. We note that if this set of conditions holds for one L > 0, then it holds

for all smaller L. Define g∗(x) = g(x)/x for x 6= 0.

Theorem 3.1. Suppose that there exists an L > 0 such that on [−L,L], g is Lipschitz

continuous and xg(x) > 0 for x 6= 0 with g∗(0) = 1. If (1.6) is satisfied with

A(t, t) ≥ 0 for t ≥ 0, then the zero solution of (1.2) is asymptotically stable if and

only if (2.1) holds.

Proof. First, suppose that (2.1) holds, that is,
∫ t

0
A(s, s)ds → ∞ as t → ∞. Write

(1.2) as

x′(t) = −A(t, t)g(x(t)) +
d

dt

∫ t

t−r

A(t, s)g(x(s))ds.

Let t0 ≥ 0 and ψ : [t0−r, t0] → R be a continuous initial function. Since g is Lipschitz

continuous on [−L,L], there exists a unique local solution x(t, t0, ψ) =: z(t) of (1.2).

This solution exists on [t0,∞) since z(t) is bounded on [t0,∞) (see proof below). If

we set A∗(t, s) = A(t, s)g∗(z(s)), then z(t) is the unique solution of

(3.1) x′(t) = −A∗(t, t)x(t) +
d

dt

∫ t

t−r

A∗(t, s)x(s)ds.

By variation of parameters formula, we write (3.1) as

x(t) = e
−

R

t

t0
A∗(s,s)ds[

ψ(t0) −

∫ t0

t0−r

A∗(t0, s)ψ(s)ds
]

+

∫ t

t−r

A∗(t, s)x(s)ds

−

∫ t

t0

e−
R

t

s
A∗(u,u)duA∗(s, s)

∫ s

s−r

A∗(s, τ)x(τ)dτds(3.2)

for t ≥ t0. Define

(3.3) S = {φ : [t0 − r,∞) → R | φt0 = ψ, φ ∈ C, |φ(t)| ≤ L, φ(t) → 0 as t→ ∞}

where the magnitude of ψ and the size of L will be restricted later. We see that S is

a complete metric space with the supremum norm.

Use (3.2) to define a mapping P : S → S as follows: for φ ∈ S, let (Pφ)(t) = ψ(t)

if t0 − r ≤ t ≤ t0 and if t > t0, let

(Pφ)(t) = e
−

R

t

t0
A∗(s,s)ds

[

ψ(t0) −

∫ t0

t0−r

A∗(t0, s)ψ(s)ds
]

+

∫ t

t−r

A∗(t, s)φ(s)ds

−

∫ t

t0

e−
R

t

s
A∗(u,u)duA(s, s)

∫ s

s−r

A(s, τ)φ(τ)dτds(3.4)

A fixed point of P is a solution of (3.1).
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Since A(t, t) ≥ 0,
∫ t

t−r
A(t, s)ds ≤ α, and

∫ t

0
A(s, s)ds→ ∞ as t→ ∞, we see

∫ t

t0

e−
R

t

s
A∗(u,u)duA∗(s, s)

∫ s

s−r

|A(s, τ)|dτds

→ 0

∫ t

t0

e−
R

t

s
A(u,u)duA(s, s)

∫ s

s−r

|A(s, τ)|dτds

in the supremum norm as ‖g∗(z(s)) − 1‖ → 0.

We now find a constant µ > 0 with µ(1 + α) < (1 − α) so that

(3.5)

∫ t

t−r

|A(t, s)|ds+

∫ t

0

e−
R

t

s
A∗(u,u)duA∗(s, s)

∫ s

s−r

|A(s, τ)|dτds ≤
1 + α

2

for all t ≥ t0 whenever ‖g∗(z(s)) − 1‖ ≤ µ. Next, we find a sufficiently small L > 0

so that |u| ≤ L implies |g∗(u) − 1| < µ. Note that

(1 + µ)(1 + α)

2
<

(

1 +
1 − α

1 + α

)

(1 + α)

2
= 1.

We now find δ > 0 with

(1 + 2α)δ +
(1 + µ)(1 + α)

2
L < L.

Let ‖ψ‖ < δ. We first claim that |z(t)| < L for all t ≥ t0. Note that z(t) satisfies

(3.2) with z(t) = x(t) and |z(t)| < ε on [t0 − r, t0]. If there exists t∗ > t0 such that

|z(t∗)| = L and |z(s)| < L for t0 ≤ s < t∗, then it follows from (3.2) that

|z(t∗)| ≤ ‖ψ‖

[

1 + (1 + µ)

∫ t0

t0−r

|A(t0, s)|ds

]

e
−(1−µ)

R

t
∗

t0
A(u,u)du

+ (1 + µ)L

[
∫ t∗

t∗−r

|A(t∗, s)|ds

]

+ (1 + µ)L

[
∫ t∗

t0

e−
R

t
∗

s
A∗(u,u)duA∗(s, s)

∫ s

s−r

|A(s, τ)|dτds

]

≤ (1 + 2α)δ +
(1 + µ)(1 + α)

2
L < L.(3.6)

which contradicts the definition of t∗. Thus, |z(t)| < L for all t ≥ t0. These estimates

will work for (Pφ)(t), yielding |(Pφ)(t)| < L whenever φ ∈ S. We again see that

φ ∈ S implies that Pφ is continuous on [t0 − r,∞). An argument similar to that in

the proof of Theorem 1.1 shows that (Pφ)(t) → 0 as t→ ∞, and therefore, Pφ ∈ S.

To see P is a contraction, consider φ, η ∈ S. For t ≥ t0, we have by (1.6) that

|(Pφ)(t) − (Pη)(t)| ≤

∫ t

t−r

|A∗(t, s)||φ(s) − η(s)|ds

+

∫ t

t0

e−
R

t

s
A∗(u,u)du|A∗(s, s)|

∫ s

s−r

|A∗(s, τ)||φ(τ) − η(τ)|dτds

≤ (1 + µ)‖φ− η‖

∫ t

t−r

|A(t, s)|ds
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+ (1 + µ)‖φ− η‖

∫ t

0

e−
R

t

s
A∗(u,u)duA∗(s, s)|

∫ s

s−r

|A(s, τ)|dτds

≤
(1 + µ)(1 + α)

2
‖φ− η‖

= β‖φ− η‖.

Since β < 1, we see that P is a contraction and has a unique fixed point x ∈ S

which is a solution of (3.1) with x(s) = ψ(s) for t0 − r ≤ s ≤ t0 and x(t) → 0 as

t → ∞. Since z(t) is the unique solution of (3.1) with zt0 = ψ, we have z(t) = x(t)

and x(t, t0, ψ) = z(t) → 0 as t→ ∞.

To see we have obtained stability, substitute ε for L in the argument above and

conclude that ‖ψ‖ < δ implies |x(t)| < ε for all t ≥ t0. Thus, the zero solution of

(1.2) is asymptotically stable. The proof is complete.

Conversely, suppose that (2.1) fails. Since A(t, t) ≥ 0, this implies that

J = sup
t≥0

∫ t

0

A(s, s)ds <∞.

Let δ, µ and L be defined above. We choose t0 > 0 so large that

(1 + µ)L
[

e
(1+µ)

R

t

t0
A(u,u)du

− 1
]

<
δ

4

for t ≥ t0 and consider the solution x(t) = x(t, t0, ψ) of (1.2) with ψ(tt̄k) = δ and

|ψ(s)| ≤ δ for t0 − r ≤ s ≤ t0. An argument similar to that in (3.6) shows |x(t)| ≤ L

for t ≥ t0. We may choose ψ so that

(3.7) ψ(t0) −

∫ t0

t0−r

A∗(t0, s)ψ(s)ds ≥
1

2
δ.

It follows from (3.2) with z(t) = x(t) that for t ≥ t0,

∣

∣

∣

∣

x(t) −

∫ t

t−r

A∗(t, s)x(s)ds

∣

∣

∣

∣

≥
1

2
δe

−(1+µ)
R

t

t0
A(u,u)du

− (1 + µ)L

∫ t

t0

e−
R

t

s
A∗(u,u)duA∗(s, s)ds

=
1

2
δe

−(1+µ)
R

t

t0
A(u,u)du

− (1 + µ)L
[

1 − e
−

R

t

t0
A∗(u,u)du

]

≥
1

2
δe

−(1+µ)
R

t

t0
A(u,u)du

− (1 + µ)L
[

1 − e
−(1+µ)

R

t

t0
A(u,u)du

]

= e
−(1+µ)

R

t

t0
A(u,u)du

[

1

2
δ − (1 + µ)L

(

e
(1+µ)

R

t

t0
A(u,u)du

− 1
)

]

≥
1

4
δe

−(1+µ)
R

t

t0
A(u,u)du

≥
1

4
δe−(1+µ)J > 0.(3.8)
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On the other hand, if the zero solution of (1.2) is asymptotically stable, then x(t) =

x(t, t0, ψ) → 0 as t→ ∞. Since (1.6) holds and |g∗(x(t))| ≤ 1 + µ, we have

x(t) −

∫ t

t−r

A∗(t, s)x(s)ds→ 0 as t→ ∞

which contradicts (3.8). Hence, it is necessary that (2.1) holds if the zero solution of

(1.2) is asymptotically stable. The proof is complete.

Remark. Constructing a mapping function for a nonlinear equation presents a sig-

nificant challenge for investigators. The method used here has its root in Burton and

Furumochi [5]. We have avoided having a term
∫ t

t0

e−
R

t

s
A(u,u)duA(s, s)[φ(s) − g(φ(s))]ds

in the definition of (Pφ). Such a term may require additional conditions on g and A

(see Burton [3]).
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