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ABSTRACT. The authors study a nonlinear fractional boundary value problem with a separated
boundary condition. The associated Green’s function is constructed as a series of functions by
applying the spectral theory. A criterion for the existence and uniqueness of solutions is obtained

based on it.
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1. Introduction

We study the boundary value problem (BVP) consisting of the nonlinear frac-
tional differential equation
(1.1) —Df u+a(t)y =w(t)f(t,u), 0<t<l1,
and the boundary condition (BC)
(1.2) u(0) =u'(0) = u(1) =0,

where 2 < a < 3, a € C'[0,1], w € L[0,1] such that w(t) # 0 a.e. on [0,1], f €
C([0,1] x R,R), and D, h is the a-th Riemann-Liouville fractional derivative of h
for h: [0,1] — R defined by

«a 1 dl ' l—a—1
(1.3) (Dg h)(t) = mﬁfo (t—s) h(s)ds, 1= |a]+1,
provided the right-hand side exists with I the Gamma function.

The Green’s functions play an important role in the study of nonlinear BVPs as
the existence of solutions or positive solutions of a nonlinear BVP can be established

by constructing a completely continuous operator based on the associated Greens

Received May 2013 1056-2176 $15.00 (©Dynamic Publishers, Inc.



692 L. KONG, Q. KONG, AND M. WANG

function and finding the fixed point of the operator. This idea has been widely used
in the study of nonlinear BVPs of both integer and fractional orders; the reader is
referred to [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] and references therein
for some recent results. Due to the unusual feature of the fractional calculus, the
Green’s functions for fractional BVPs have not been well developed. In most existing
work in the literature, the Green’s functions were constructed only to solve the BVPs

consisting of

(1.4) —Dg u= f(t,u), 0<t<1l,

and certain BCs, see for example [1, 2, 5, 6]. When a more general equation such as
(1.5) —D u+a(t)u= f(t,u), 0<t<l,

is involved, the method employed in those papers fail to work due to the complexity

caused by the extra term a(t)u.

Recently, Graef, Kong, Kong, and Wang [8, 9] used the Green’s function method
to study the BVPs consisting of Eq. (1.5) with 1 < a < 2 and two different types
of BCs. An approach based on the spectral theory is used to construct the Green’s
functions as series of functions. We refer the reader to[8, Theorem 2.1] and [9, The-
orem 2.1] for the detail. It is notable that this approach can be extended to BVPs
consisting of Eq. (1.5) and some other BCs; however, it cannot be directly applied to
BVP (1.1), (1.2) due to the appearance of the term with w’.

In this paper, by a modified approach, we will first establish the Green’s function
for the BVP consisting of the equation

(1.6) —D u+a(t)y’ =0, 0<t<Il,

and BC (1.2). Based on it, we will then obtain conditions for the existence and
uniqueness of solutions for BVP (1.1), (1.2).

This paper is organized as follows: After this introduction, our main results are

stated in Section 2. One example is also given therein. All the proofs are given in

Section 3.

2. Main results

The Green’s function for BVP (1.4), (1.2) is given by Feng, Zhang, and Ge [5,

Lemma 2.1] as

(1 = s))ot — (¢ — )
() ’
[t — )]
(o) 7

(21) Go(t, S) =



FRACTIONAL BOUNDARY VALUE PROBLEMS 693

It is easy to see that

(L— o)t (1 —5)*7* — (t — 5)°7%)

8GO(tv S) _ F(a) ’
(22) T - (1 _ Oé)ta_l(l _ s)a—2
[(a) ’

We will use (2.1) and (2.2) to construct the Green’s function for BVP (1.6), (1.2).

Let Gy be defined by (2.1) and K : [0, 1] x [0, 1] — R defined by

K(t,5) = o [a(s)Gi(t,)]

(2.3) — d(5)Golt, ) + a(s)aGOai(St’S),

Throughout this paper, we assume that |a(t)| and |a’(t)| are small enough such that

(t,s) € [0,1] x [0, 1].

(H) B :=maxepy [, [K(t,s)|ds < 1.

dGo(t,s)

Clearly, when a is constant, B = |a| max;co,1 fol ‘T ds.
Define G : [0,1] x [0,1] = R and G : [0,1] — R by
_ S o) — Go(s)
(2.4) G(t,s) = ;Gn(t, s) and G(s) = 74,
where G is defined by (2.1),
1
(2.5) Gu(t,s) = / K, 7)Gu1(7,8)dr, n=1,2...,
0
and
1 — a—1 _ _ a—1
I (S ) SO
(2.6) Go(s) = I'(a)
0, s=0,1,

with 6(s) = 1_(1_5)(04871)/(0472)7 s € (0,1).
We then have the following result.

Theorem 2.1. The function G(t,s) defined by (2.4) as a series of functions is uni-
formly convergent for (t,s) € [0,1] x [0,1]. Furthermore, G is the Green’s function
for BVP (1.6), (1.2) and satisfies |G(t,s)| < G(s) on [0,1] x [0,1].

With the Green’s function G given in Theorem 2.1, we may study the existence
and uniqueness of solutions of BVP (1.1), (1.2).

Theorem 2.2. Assume [ satisfies the Lipschitz condition in x
‘f(t,l’l) — f(t,l’g)‘ < ]{Z|LE‘1 — LEQ‘ fOT’ (t,l‘l), (t,l’g) S [0, 1] X R,

with k € (0, 1/f01 G(s)|w(s)|ds). Then BVP (1.1), (1.2) has a unique solution. If in
addition, f(t,0) =0 on [0,1], then BVP (1.1), (1.2) has no nontrivial solution.
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To illustrate the application of our results, we consider the following example.
Example 2.3. Consider the BVP

—D§ u+au =ptan~'u + €',

(2.7)
u(0) = u'(0) = u(l) =0,

where 2 < a < 3 and |a| < (maxep fol |0G(t,s)/0s|ds)™r. We claim that BVP
(2.7) has a unique solution when 0 < p < 1/ fol G(s)ds.

In fact, Assumption (H) holds when |a| < (maxep fol |0Gy(t,5)/0s|ds)™". Let
f(t,r) = ptan™'z + €' and w(t) = 1. Tt is easy to see that |f(t,21) — f(t,z2)| <
plry — xo| for any (t,x1), (t,22) € [0,1] x R. Then by Theorem 2.2, BVP (2.7) has
a unique solution. Furthermore, it is easy to see that the solution is nontrivial since

f(t,0) £ 0.
3. Proofs

The following lemma on the spectral theory in Banach spaces is used to derive
the associated Green’s function. See [16, page 795, items 57b and 57d] for the detail.

Lemma 3.1. Let X be a Banach space, B : X — X a linear operator with the
operator norm || B|| and the spectral radius r(B) of B. Then

(a) r(B) < ||B|;
(b) if r(B) < 1, then (Z — B)™" exists and (Z — B)™' = >_°°, B", where I stands
for the identity operator.

The following lemma is excerpted from [5, Proposition 2.2].

Lemma 3.2. Let Gy and Gy be defined by (2.1) and (2.6), respectively. Then
Golt, ) < Gols) on [0,1] x [0, 1].

In the sequel we let X = C[0, 1] be the Banach space with the standard maximum

norm.

Proof of Theorem 2.1. For any h € X, let u be a solution of the BVP consisting of
—Df u+a(t)u' =h(t), 0 <t <1,
and (1.2). By (2.1),
1
(3.1) u(t) = / Go(t, s)(h(s) — a(s)u'(s))ds,
0

ie.,

u(t)+/0 a(s)Go(t,s)u/(s)ds:/O Go(t, s)h(s)ds.
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By integration by parts and BC (1.2),

1 1
/ a(s)Go(t, s)u'(s)ds = —/ K(t, s)u(s)ds,
0 0
where IC is defined by (2.3). Hence

(3.2) u(t)—/o K(t,s)u(s)ds:/ Go(t, s)h(s)ds.

0
Define A and B: X — X by

(3.3) (AR)(t) = /0 Go(t,s)h(s)ds and (Bh)(t) = /0 K(t,s)h(s)ds.
Then Eq. (3.2) can be written as
(3.4) u— Bu = Ah.

By (H), it is easy to verify that ||B|| < 1. Then by Lemma 3.1, r(B) < 1, and

(3.5) u=(Z—-B)rAh = f: B" Ah.

n=0

By (3.3), (2.5), and induction, we can prove that for n € Ny,
(3.6) (B AR)( / Gt s)
and
|Galt, s)| < B"Go(s) on [0,1] x [0,1],
where B is defined in (H). Since B € [0, 1), by (2.4), for (¢,s) € [0,1] x [0, 1],

G(t,s)| =D Gult.s)] <Y |Gult,s)| <Y B"Go(s) = G(s).

Therefore, G(t, s) as a series of functions is uniformly convergent on [0, 1] x [0, 1]. By
(2.4), (3.5), and (3.6),

(3.7) Z/ ds-/olG(t,s)h(s)ds, telo,1].

On the other hand, let u be defined by (3.7). By (2.4) and (3.6), u satisfies (3.5).
Hence (3.4) holds. By (3.3) and (2.3), u satisfies (3.1). Therefore, u is a solution of
Eq. (3.4).

Thus, G is the Green’s function for BVP (1.6), (1.2). O

Now we prove Theorem 2.2 using the contraction mapping principle.

Proof of Theorem 2.2. Define T': X — X by

:/0 G(t,s)w(s)f(s,u(s))ds, u e X.
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Clearly, T" is completely continuous and u(t) is a solution of BVP (1.1), (1.2) if and
only if u is a fixed point of 7" in X.

For any uy, us € X, and t € [0, 1],

[(Tuy = Tup)(t)| = /O G(t, s)w(s) (f(s,ur(s)) — f(s, ua(s))) ds

< / Cls)uw(s)] [ (5. ua(s)) — (s, ua(s))] ds
< / T(s)w ()l s (5) — uals)|ds
< (k / G(s)luw(s)]ds) ur — ]

Note that l{:fol G(s)|w(s)|ds < 1. Hence T is a contraction mapping. By the con-

traction mapping principle, 7' has a unique fixed point. Thus, BVP (1.1), (1.2) has a

unique solution.

If in addition, f(¢,0) = 0 on [0,1]. Then obviously u(t) = 0 is a solution of

BVP (1.1), (1.2). By the uniqueness of solutions, BVP (1.1), (1.2) has no nontrivial
solutions. 0
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