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ABSTRACT. We discuss the existence of multiple positive solutions for a nonlocal fractional

problem recently considered by Nieto and Pimentel. Our approach relies on classical fixed point

index.
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1. INTRODUCTION

Recently, Nieto and Pimentel [22] studied the existence of positive solutions of

the nonlocal fractional boundary value problem (BVP)

CDαu(t) + f(t, u(t)) = 0, t ∈ (0, 1),

u′(0) = 0, βCDα−1u(1) + u(η) = 0,
(1.1)

where 1 < α ≤ 2, CDα denotes the Caputo fractional derivative of order α, β > 0,

0 ≤ η ≤ 1 and f is continuous. The reason, given in [22], for studying the BVP (1.1)

is that it is seen as a mathematical generalisation of the BVP

u′′(t) + f(t, u(t)) = 0, t ∈ (0, 1),

u′(0) = 0, βu′(1) + u(η) = 0,
(1.2)

that was studied by Infante and Webb [14], who were motivated by the previous work

of Guidotti and Merino [10]. The BVP (1.2) can be used as a model for heated bar

of length 1 with a thermostat, where a controller at t = 1 adds or removes heat

according to the temperature detected by a sensor at t = η. Heat-flow problems of
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this type have been studied recently, see for example [4, 12, 13, 15, 18, 24, 27, 28, 31]

and references therein.

Here we discuss the existence of multiple positive solutions for the nonlocal BVP

CDαu(t) + f(t, u(t)) = 0, t ∈ (0, 1),

u′(0) + λ[u] = 0, βCDα−1u(1) + u(η) = 0,
(1.3)

where λ[·] is a functional given by

λ[u] = Λ0 +

∫ 1

0

u(s) dΛ(s),

involving a Stieltjes integral. This type of BCs includes as special cases

λ[u] =
m

∑

i=1

λiu(ξi) (m-point problems)

and

λ[u] =

∫ 1

0

λ(s)u(s) ds (continuously distributed cases).

Multi-point and integral BCs are widely studied objects, see, for example, Karakostas

and Tsamatos [16, 17], Ma [21], Ntouyas [23], Webb [29, 30], Henderson and co-

authors [11], Infante and Webb [15, 32], Zima [33].

We mention that John Graef and co-authors have actively contributed to the

study of nonlocal and fractional problems with interesting papers, for some of their

recent works see [6, 7, 8, 9].

In this note, we use the methodology developed in [15], that is to rewrite the

BVP (1.3) as a perturbed Hammerstein integral equation of the form

(1.4) u(t) = γ(t)λ[u] +

∫ 1

0

k(t, s)f(s, u(s)) ds,

and use the classical theory of fixed point index, for example see [1, 5], in order to gain

the existence of positive solutions of (1.4), by working in a suitable cone of positive

functions. The existence of positive solutions of (1.4) provide the existence of positive

solutions of the BVP (1.3).

2. PRELIMINARIES

We firstly recall the definition of the Caputo derivative. For its properties we

refer to the books [2, 3, 25, 26].

Definition 2.1. For a function y : [0, +∞) → R, the Caputo derivative of fractional

order α > 0 is given by

CDαy(t) =
1

Γ(n − α)

∫ t

0

y(n)(s)

(t − s)α+1−n
ds, n = [α] + 1,



A NONLOCAL FRACTIONAL BOUNDARY VALUE PROBLEM 717

where Γ denotes the Gamma function, that is

Γ(s) =

∫ +∞

0

xs−1e−xdx,

and [α] denotes the integer part of a number α.

We now recall some results from [15], regarding the existence of multiple positive

solutions of perturbed Hammerstein integral equations

(2.1) u(t) = γ(t)λ[u] +

∫ 1

0

k(t, s)f(s, u(s)) ds := Tu(t),

We point out that a cone K in a Banach space X, is a closed, convex set such

that λx ∈ K for all x ∈ K and λ ≥ 0, and K ∩ (−K) = {0}.

We work in the space of continuous functions C[0, 1] endowed with the usual

supremum norm and we look for fixed points of T in the following cone of non-

negative functions

(2.2) K =

{

u ∈ C[0, 1], u ≥ 0 : min
t∈[a,b]

u(t) ≥ c‖u‖

}

,

with c a positive constant related to the kernel k and the function γ.

The cone (2.2) was first used by Krasnosel’skĭı, see e.g. [19], and D. Guo, see e.g.

[5], and then used by many authors.

The following assumptions on the terms that occur in (2.1) are a special case of

the ones in [15].

• f : [0, 1] × [0,∞) → [0,∞) is continuous.

• k : [0, 1] × [0, 1] → [0,∞) is continuous.

• There exist a function Φ : [0, 1] → [0,∞), Φ ∈ L1[0, 1], an interval [a, b] ⊂ [0, 1]

and a constant c1 ∈ (0, 1] such that

k(t, s) ≤ Φ(s) for t, s ∈ [0, 1] and

c1Φ(s) ≤ k(t, s) for t ∈ [a, b] and s ∈ [0, 1].

• λ is an affine functional given by

(2.3) λ[u] = Λ0 +

∫ 1

0

u(s) dΛ(s),

where Λ0 ≥ 0 and dΛ is a positive Stieltjes measure with Λ1 :=
∫ 1

0
dΛ(s) < ∞.

• γ : [0, 1] → [0,∞) is continuous, there exists a constant c2 ∈ (0, 1] such that

γ(t) ≥ c2‖γ‖ for t ∈ [a, b].

and

λ̃[γ] :=

∫ 1

0

γ(t) dΛ(t) < 1,
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The assumptions above enable us to use the cone (2.2) with c = min{c1, c2}. A

routine argument shows that T maps K into K and is compact.

We make use, for our index calculations, of the following open bounded sets

(relative to K):

Kρ = {u ∈ K : ‖u‖ < ρ}, Vρ =

{

u ∈ K : min
t∈[a,b]

u(t) < ρ

}

.

These sets have the key property that

Kρ ⊂ Vρ ⊂ Kρ/c.

The first Lemma is a special case of Lemma 2.4 of [15] and ensures that, for a

suitable ρ > 0, the fixed point index is 0 on the set Vρ.

Lemma 2.2. Assume that

(I0ρ) there exists ρ > 0 such that for some λ0 ≥ 0

(2.4) λ[u] ≥ λ0ρ for u ∈ ∂Vρ, c2‖γ‖λ0 + fρ,ρ/c ·
1

M
> 1,

where

fρ,ρ/c = inf

{

f(t, u)

ρ
: (t, u) ∈ [a, b] × [ρ, ρ/c]

}

and
1

M
= inf

t∈[a,b]

∫ b

a

k(t, s) ds.

Then iK(T, Vρ) = 0.

The next Lemma is a special case of Lemma 2.6 of [15] provides a condition that

yields, for a suitable ρ > 0, that the index is 1 on a set Kρ.

Lemma 2.3. Assume that

(I1ρ) there exists ρ > 0 such that

(2.5)
Λ0‖γ‖

ρ(1 − ˜λ[γ])
+

(

‖γ‖

1 − λ̃[γ]

∫ 1

0

K(s) ds +
1

m

)

f 0,ρ < 1,

where

K(s) =

∫ 1

0

k(t, s) dΛ(t),

f 0,ρ = sup

{

f(t, u)

ρ
: (t, u) ∈ [0, 1] × [0, ρ]

}

and

1

m
= sup

t∈[0,1]

∫ 1

0

k(t, s) ds.

Then iK(T, Kρ) = 1.

The two Lemmas above give the following result on the existence of multiple

positive solutions for Eq. (2.1). The proof follows from the properties of fixed point

index and is omitted.
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Theorem 2.4. The integral equation (2.1) has at least one non-zero solution in K if

any of the following conditions hold.

(S1) There exist ρ1, ρ2 ∈ (0,∞) with ρ1/c < ρ2 such that (I0ρ1
) and (I1ρ2

) hold.

(S2) There exist ρ1, ρ2 ∈ (0,∞) with ρ1 < ρ2 such that (I1ρ1
) and (I0ρ2

) hold.

The integral equation (2.1) has at least two non-zero solutions in K if one of the

following conditions hold.

(S3) There exist ρ1, ρ2, ρ3 ∈ (0,∞) with ρ1/c < ρ2 < ρ3 such that (I0ρ1
), (I1ρ2

) and (I0ρ3
)

hold.

(S4) There exist ρ1, ρ2, ρ3 ∈ (0,∞) with ρ1 < ρ2 and ρ2/c < ρ3 such that (I1ρ1
), (I0ρ2

)

and (I1ρ3
) hold.

The integral equation (2.1) has at least three non-zero solutions in K if one of the

following conditions hold.

(S5) There exist ρ1, ρ2, ρ3, ρ4 ∈ (0,∞) with ρ1/c < ρ2 < ρ3 and ρ3/c < ρ4 such that

(I0ρ1
), (I1ρ2

), (I0ρ3
) and (I1ρ4

) hold.

(S6) There exist ρ1, ρ2, ρ3, ρ4 ∈ (0,∞) with ρ1 < ρ2 and ρ2/c < ρ3 < ρ4 such that

(I1ρ1
), (I0ρ2

), (I1ρ3
) and (I0ρ4

) hold.

3. THE NONLOCAL BVP

A direct calculation shows that solution of the linear equation

CDαu + y = 0,

under the BCs

u′(0) + λ[u] = 0, βCDα−1u(1) + u(η) = 0,

can be written in the form

u(t) =

(

β

Γ(3 − α)
+ η − t

)

λ[u] + β

∫ 1

0

y(s)ds

+

∫ η

0

(η − s)α−1

Γ(α)
y(s)ds−

∫ t

0

(t − s)α−1

Γ(α)
y(s)ds.

Therefore the solution of the BVP (1.3) is

u(t) = γ(t)λ[u] +

∫ 1

0

k(t, s)f(s, u(s))ds

where

γ(t) =

(

β

Γ(3 − α)
+ η − t

)

and

k(t, s) = β +
1

Γ(α)







(η − s)α−1, s ≤ η

0, s > η
−

1

Γ(α)







(t − s)α−1, s ≤ t

0, s > t.
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Here we focus on the case

βΓ(α) > (1 − η)α−1, β > (1 − η)Γ(3 − α),

where [a, b] can be chosen equal to [0, 1].

Upper and lower bounds for k(t, s) were given in [22] as follows:

Φ(s) =
βΓ(α) + ηα−1

Γ(α)
, c1 =

βΓ(α) − (1 − η)α−1

βΓ(α) + ηα−1
.

Furthermore, by direct computation, we have

‖γ‖ = η +
β

Γ(3 − α)
, c2 =

β + (η − 1)Γ(3 − α)

β + ηΓ(3 − α)
.

Hence we work with the cone

K =

{

u ∈ C[0, 1] : min
t∈[0,1]

u(t) ≥ c‖u‖

}

,

where

(3.1) c = min

{

βΓ(α) − (1 − η)α−1

βΓ(α) + ηα−1
,
β + (η − 1)Γ(3 − α)

β + ηΓ(3 − α)

}

.

Example 3.1. Consider the BVP

CDαu(t) + f(t, u(t)) = 0, t ∈ (0, 1),

u′(0) + λu(ξ) = 0, βCDα−1u(1) + u(η) = 0, ξ, η ∈ [0, 1].
(3.2)

For this BVP we may take in (2.3) Λ0 = 0 and dΛ(s) the Dirac measure of weight

λ > 0 at ξ. A direct calculation gives

m =
Γ(α + 1)

βΓ(α + 1) + ηα
and

1

M
=

Γ(α + 1)

βΓ(α + 1) + ηα − 1
.

Here we may take in (2.4) λ0 = λ since, for u ∈ ∂Vρ, we have

λ[u] = λu(ξ) ≥ λρ.

For these BCs, (2.4) reads

(3.3)
λ(β + (η − 1)Γ(3 − α))

Γ(3 − α)
+ fρ,ρ/c ·

1

M
> 1,

and so, iK(T, Vρ) = 0.

From Lemma 2.3, we have that iK(T, Kρ) = 1 if λ̃[γ] < 1 and

(3.4)

(

β + ηΓ(3 − α)

(1 − λ̃[γ])Γ(3 − α)

∫ 1

0

K(s) ds +
1

m

)

f 0,ρ < 1.

So we need

λ̃[γ] =

∫ 1

0

γ(t) dΛ(t) = λγ(ξ) = λ

(

β

Γ(3 − α)
+ η − ξ

)

< 1.
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Since K(s) = λk(ξ, s), we obtain
∫ 1

0

K(s) ds = λ

∫ 1

0

k(ξ, s) ds = λ

(

β +
ηα

Γ(α + 1)
−

ξα

Γ(α + 1)

)

.

Note that all the numbers in (3.3) and (3.4) can be computed. For example the choice

of

α = 3/2, β = 4/5, η = 3/4, ξ = 1/4, λ = 1/2

gives c = 0.132. Then the iK(T, Vρ) = 0 condition needs

fρ,ρ/c > 0.218

and iK(T, Kρ) = 1 requires

f 0,ρ < 1.255.
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