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ABSTRACT. Differential and integral inequalities have played a dominant role in the qualitative

study of differential and integral equations. In this work, we will study fractional differential and in-

tegral inequalities. The fractional differential and integral inequalities will include both the Riemann

Liouville type as well as Caputo type. These inequalities are useful in proving theoretical existence

and uniqueness results for nonlinear fractional differential and integral equations. It is also useful in

developing iterative techniques which are both theoretical and computational. We can prove the ex-

istence and compute the minimal and maximal solutions or coupled minimal and maximal solutions

of the nonlinear fractional equations by the iterative technique. Further, if uniqueness conditions

are satisfied, we can prove the existence of a unique solution which can be computed numerically.
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Key Words and Phrases: Differential and Integral inequalities, Riemann Lioville and Caputo

derivatives

1. Introduction

Nonlinear problems (nonlinear dynamic systems or nonlinear differential equa-

tions) naturally occur, in mathematical models in various branches of science, engi-

neering, finance, economics, etc. So far, in literature, most models are differential

equations with integer derivatives. A vast literature for the qualitative study of dy-

namic systems with integer order is available, see [5, 8]. However, the qualitative and

quantitative study of fractional differential and integral equations has gained impor-

tance recently due to its applications. See [1, 3, 4, 6, 9, 11] for details of the study of

fractional integral and differential equations of both Riemann Liouville and Caputo
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type. Many practical applications of fractional differential and integral equations have

also been provided in the references of the monographs cited above. The qualitative

study of fractional differential and integral equations of various types has been estab-

lished in [2, 3, 4, 6, 10, 11, 12, 13]. Among the type of fractional dynamic systems,

the study of Riemann Liouville and Caputo type of fractional dynamic systems has

gained more importance.

Integral and differential inequalities have played a significant role in the qualita-

tive study of dynamic systems which can be seen in [5, 6]. In this work we recall some

known results of integral and differential inequalities of both integer and fractional

order for the scalar equations. In this work we have developed results for coupled

fractional and ordinary integral inequalities where the nonlinear function is the sum

of an increasing and a decreasing function. We have also developed the corresponding

coupled fractional and ordinary differential inequality results without requiring the

increasing or decreasing nature of the nonlinear function. In fact, we have developed

results for coupled differential and integral inequalities for both ordinary and frac-

tional equations. These results will be useful in the qualitative study of ordinary and

fractional dynamic systems of both Riemann Liouville and Caputo forms.

2. Differential and Integral Inequalities for Integer order

In this section we recall the known results relative to ordinary differential equation

with initial conditions of the form

(2.1) x′ = f(t, x), x(t0) = x0

where f(t, x) ∈ C[[t0, T ] × RN , RN ], for t ≥ t0, and ‖ f(t, x) ‖≤ g(t, ‖ x ‖).

Assuming the estimate on ‖f(t, x)‖ ≤ g(t, ‖x‖) where g(t, x) ∈ C[[t0, T ] × R, R],

and setting m(t) = ‖x‖ we can obtain the following integral inequality,

(2.2) m(t) ≤ m(t0) +

∫ t

t0

g(s, m(s)ds, t ≥ t0.

Consider the scalar equation with initial condition of the form:

(2.3)
du

dt
= g(t, u), u(t0) = u0,

where g(t, u) ∈ C[[t0, T ] × R, R]. Further, if g(t, u) is nondecreasing in u, we can

prove that

(2.4) m(t) ≤ r(t, t0, u0),

whenever m(t0) ≤ u0, where r(t, t0, u0) is the maximal solution of (2.3), for t ≥ t0 or

on the interval of existence.
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Similarly, we can deduce the differential inequality

(2.5)
dm

dt
≤ g(t, m(t)), m(t0) ≤ u0,

using the estimate

(2.6) ‖x + hf(t, x)‖ ≤ ‖x‖ + hg(t, ‖x‖) + o(h),

in place of ‖f(t, x)‖ ≤ g(t, ‖x‖). The advantage of (2.6) is that g need not be

nondecreasing to make the conclusion as in (2.4). In fact, g need not be nonnegative

either, and thus we get a better estimate for ‖x(t)‖. See [5] for details. The integral

inequalities, especially the Bellman-Gronwall type of inequalities, are very useful in

obtaining the rate of convergence in the quasilinearization method and Generalized

quasilinearization method. See [8].

Next, we obtain comparison results using integral and differential inequalities

relative to the scalar differential equation of the form:

(2.7)
du

dt
= f(t, u) + g(t, u), u(0) = u0,

where f(t, x), and g(t, x) ∈ C[[0, T ]×R, R]. Initially, we prove the integral inequality

result relative to (2.7).

Theorem 2.1. Let v, w ∈ C[J, R] satisfy the following coupled integral inequalities:

(i) v(t) ≤ v(0) +
∫ t

0
f(s, v(s))ds +

∫ t

0
g(s, w(s))ds,

(ii) w(t) ≥ w(0) +
∫ t

0
f(s, w(s))ds +

∫ t

0
g(s, v(s))ds,

(iii) f(t, u) is nondecreasing in u for each t ∈ J = [0, T ], and f(t, u) satisfies the one

sided Lipschitz condition of the form

f(t, u1) − f(t, u2) ≤ L(u1 − u2),

for some L > 0, whenever u1 ≥ u2;

(iv) g(t, u) is nonincreasing in u for each t ∈ J = [0, T ], and g(t, u) satisfies the one

sided Lipschitz condition of the form

g(t, u1) − g(t, u2) ≥ −M(u1 − u2),

for some M > 0, whenever u1 ≥ u2. Then v(0) ≤ w(0) implies that v(t) ≤ w(t),

on J .

Proof. If g(t, u) ≡ 0, then this is the well known integral inequality result. Initially,

we prove our result when one of the inequalities is strict and v(0) < w(0). For that

purpose, set m(t) = v(t) − w(t). Certainly. m(0) < 0. If the conclusion m(t) < 0,

that is v(t) < w(t), on J is not true, then there exists a t1 > 0, such that v(t) < w(t)

on [0, t1) and v(t1) = w(t1). It follows from the hypotheses, that

0 = m(t1) <

∫ t1

0

[f(s, v(s)) − f(s, w(s))]ds +

∫ t1

0

[g(s, w(s))− g(s, v(s))]ds ≤ 0,
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which leads to a contradiction. This proves that v(t) < w(t), on J .

In order to prove the result for non strict inequality we construct

vǫ(t) = v(t) − ǫe2(L+M)t and wǫ(t) = w(t) + ǫe2(L+M)t

which satisfies strict inequalities. Consider

vǫ(t) = v(t) − ǫe2(L+M)t ≤ vǫ(0) + ǫ +

∫ t

0

[f(s, v(s)) − f(s, vǫ(s)) + f(s, vǫ(s))]ds

+

∫ t

0

[g(s, w(s))− g(s, wǫ(s)) + g(s, wǫ(s))]ds − ǫe2(L+M)t

≤ vǫ(0) +

∫ t

0

f(s, vǫ(s))ds +

∫ t

0

g(s, wǫ(s))ds +
ǫ

2
(1 − e2(L+M)t)

< vǫ(0) +

∫ t

0

f(s, vǫ(s))ds +

∫ t

0

g(s, wǫ(s))

for t > 0. Similarly, we can get a strict inequality for wǫ(t)). Now using the strict

inequality result, we get

vǫ(t) < wǫ(t)).

Taking the limit as ǫ → 0, the conclusion follows.

Next, we can prove a comparison theorem for the differential inequality relative

to (2.7). We merely state the theorem and indicate a brief proof.

Theorem 2.2. Let v, w ∈ C[J, R] satisfy the following coupled integral inequalities

(i) v′(t) ≤ f(t, v(t)) + g(t, w(t)), v(0) ≤ u0;

(ii) w′(t) ≥ f(t, w(t)) + g(t, v(t)), w(0) ≥ u0;

(iii) f(t, u) satisfies the one sided Lipschitz condition of the form

f(t, u1) − f(t, u2) ≤ L(u1 − u2),

for some L > 0, whenever u1 ≥ u2;

(iv) g(t, u) satisfies the one sided Lipschitz condition of the form

g(t, u1) − g(t, u2) ≥ −M(u1 − u2),

for some M > 0, whenever u1 ≥ u2. Then v(0) ≤ w(0) implies v(t) ≤ w(t), on

J .

Proof. Follows on the same lines as in [7] when g = 0. Even if g 6= 0, the proof follows

on the same lines as if we have natural lower and upper solutions instead of coupled

lower and upper solutions.
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3. Riemann Liouville Fractional Differential and Integral Inequalities

In this section, we develop some fractional differential and integral inequalities

of Riemann Liouville type. For that purpose we recall some definitions, and some

known results, and develop a few results which are useful in applications. Initially

we consider the Riemann-Liouville (R-L) derivative of order q, 0 < q < 1. Note, for

simplicity we only consider results on the interval J = (t0, T ], where t > t0. Further,

we will let J0 = [t0, T ], that is J0 = J .

Definition 3.1. Let 0 < q < 1, p = 1 − q and a function φ(t) ∈ C(J, R) is a Cp

continuous function if (t − t0)
1−qφ(t) ∈ C(J0, R). The set of Cp functions is denoted

Cp(J, R). Further, given a function φ(t) ∈ Cp(J, R) we call the function (t−t0)
1−qφ(t)

the continuous extension of φ(t).

Riemann Liouville fractional derivative of order q is given by

Dqu(t) =
1

Γ(1 − q)

d

dt

∫ t

t0

(t − s)−qu(s)ds,

where 0 < q < 1. Similarly the Riemann Liouville right-fractional integral of order q

is given by

t0D
−qu(t) =

1

Γ(q)

∫ t

t0

(t − s)q−1u(s)ds,

where 0 < q < 1.

Consider the Riemann Liouville Volterra fractional integral equation given by

(3.1) u(t) =
u0(t − t0)

q−1

Γ(q)
+

1

Γ(q)

∫ t

t0

(t−s)(q−1)(f(s, u(s)+g(s, u(s))ds, t0 < t ≤ T,

where u0 = Γ(q)(t − t0)
1−qu(t)|t=t0. We need the following definition of the Mittag

Leffler function, before we state our next result.

Definition 3.2. The Mittag Leffler function with parameters q and r is given by

Eq,r(λ((t − t0)
q)) =

∞∑
k=0

(λ(t − t0)
q)k

Γ(qk + r)
,

which is entire for when q, r > 0. Also when r = 1, we get

Eq,1(λ((t − t0)
q) =

∞∑
k=0

(λ(t − t0)
q)k

Γ(qk + 1)
,

where q > 0.

It is easy to observe that E1,1(λ(t − t0) = eλ(t−t0). Further, using the fact that

Eq.q is entire, we have that

(3.2) Dq((t − t0)
q−1Eq,q(λ(t − t0)

q) = λ(t − t0)
q−1Eq,q(λ(t − t0)

q),
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where λ is any constant. From the above relation it follows that

(3.3) D−q((t − t0)
q−1Eq,q(λ(t − t0)

q) =
1

λ
(t − t0)

q−1Eq,q(λ(t − t0)
q).

Theorem 3.3. Let v, w ∈ Cp[J, R], f, g,∈ C[J0 × R, R] and satisfy the following

coupled integral inequalities

(i) v(t) ≤ v0(t−t0)q−1

Γ(q)
+ 1

Γ(q)

∫ t

t0
(t − s)(q−1)(f(s, v(s)) + g(s, w(s)))ds,

(ii) w(t) ≥ w0(t−t0)q−1

Γ(q)
+ 1

Γ(q)

∫ t

t0
(t − s)(q−1)(f(s, w(s)) + g(s, v(s)))ds,

(iii) f(t, u) is nondecreasing in u for each t ∈ J0, and f(t, u) satisfies the one sided

Lipschitz condition of the form

f(t, u1) − f(t, u2) ≤ L(u1 − u2),

for some L > 0, whenever u1 ≥ u2;

(iv) g(t, u) is non increasing in u for each t ∈ J0, and g(t, u) satisfies the one sided

Lipschitz condition of the form

g(t, u1) − g(t, u2) ≥ −M(u1 − u2),

for some M > 0, whenever u1 ≥ u2. Then v0 ≤ w0 implies v(t) ≤ w(t), on J .

Proof. Initially, we prove the result when one of the inequalities is strict and v0 < w0.

For that purpose, let m(t) = v(t) − w(t). Certainly. m0 < 0. If the conclusion

m(t) < 0, that is v(t) < w(t), on J is not true, then there exists a t1 > 0, such that

v(t) < w(t) on [t0, t1) and v(t1) = w(t1). It follows from the hypotheses, that

0 = m(t1)

<
1

Γ(q)

∫ t1

t0

(t1 − s)q−1[[f(s, v(s)) − f(s, w(s))] + [g(s, w(s)) − g(s, v(s))]]ds ≤ 0,

since f(t, v(t))− f(t, w(t)) + g(t, w(t))− g(t, v(t)) ≤ 0, on [0, t1], using the increasing

and decreasing nature of f(t, u)andg(t, u) respectively. This leads to a contradiction.

This proves that v(t) < w(t), on J0.

In order to prove the result for non strict inequality we construct vǫ(t) and wǫ(t):

vǫ(t) = v(t) − ǫ(t − t0)
q−1Eq,q(2(L + M)(t − t0)

q)

and

wǫ(t) = w(t) + ǫ(t − t0)
q−1Eq,q(2(L + M)(t − t0)

q).

It is easy to observe that v0
ǫ < v0 ≤ w0 < w0

ǫ . Now using the one sided Lipschitz

conditions for f(t, u) and g(t, u) and (3.3) we can show that

vǫ(t) <
v0

ǫ (t − t0)
q−1

Γ(q)
+

1

Γ(q)

∫ t

t0

(t − s)(q−1)(f(s, vǫ(s) + g(s, wǫ)(s)ds,
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and

wǫ(t) >
w0

ǫ (t − t0)
q−1

Γ(q)
+

1

Γ(q)

∫ t

t0

(t − s)(q−1)(f(s, wǫ(s) + g(s, vǫ(s))ds.

It easily follows from the strict inequality results that

vǫ(t) ≤ wǫ(t)

on J . Taking the limit as ǫ → 0, we get v(t) ≤ w(t), on J0. Next, in order to obtain a

comparison result relative to the Riemann-Liouville fractional differential inequality,

we recall the following result.

Lemma 3.4. Let m(t) ∈ Cp[J, R] (where J0 = [t0, T ]) be such that for some t1 ∈

(t0, T ], m(t1) = 0 and m(t) ≤ 0, on J , then Dqm(t1) ≥ 0.

Proof. See [2, 13, 14] for details. However note that we have not assumed m(t) to be

Holder continuous as in [6]. In order to prove Lemma 3.4, without using the Holder

continuity assumption, we have used the fact that (t− t0)
1−qm(t) is continuous on J0,

hence uniformly continuous. The above lemma is true for Caputo derivatives also,

using the relation cDqx(t) = Dq(x(t)− x(t0)) between the Caputo derivative and the

Reimann-Liouville derivative. The next lemma states the Caputo derivative version,

which we will be using in our next section.

Lemma 3.5. Let m(t) ∈ C1[J, R] (where J = [0, T ]) be such that m(t) ≤ 0 on J and

for t1 > 0, m(t1) = 0, then cDqm(t1) ≥ 0.

Now we, are in a position to prove the comparison result relative to the Riemann-

Liouville fractional differential inequalities. For that purpose, consider the Riemann-

Liouville fractional differential equation of the form:

(3.4) Dqu(t) = f(t, u(t)) + g(t, u(t)), Γ(q)(t − t0)
1−qu(t)|t=t0 = u0,

where f, g ∈ C[J0 ×R, R]. The next result is the differential inequality result relative

to the Riemann-Liouville fractional differential equation (3.4).

Theorem 3.6. Let v, w ∈ Cp[J, R], f, g,∈ C[J0 × R, R] and satisfy the following

coupled differential inequalities

(i) Dq(v(t)) ≤ f(t, v(t)) + g(t, w(t)), Γ(q)(t − t0)
1−qv(t)|t=t0 ≤ u0;

(ii) Dq(w(t)) ≥ f(t, w(t)) + g(t, v(t)), Γ(q)(t − t0)
1−qw(t)|t=t0 ≥ u0;

(iii) f(t, u) satisfies the one sided Lipschitz condition of the form

f(t, u1) − f(t, u2) ≤ L(u1 − u2),

for some L > 0, whenever u1 ≥ u2;
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(iv) g(t, u) satisfies the one sided Lipschitz condition of the form

g(t, u1) − g(t, u2) ≥ −M(u1 − u2),

for some M > 0, whenever u1 ≥ u2. Then v0 ≤ w0 implies v(t) ≤ w(t), on J .

Proof. We prove our result when one of the inequalities in (i) or (ii) of the hypotheses

is strict. In this case set m(t) = v(t)−w(t). Since m(t) is Cp[J, R] and v0 < w0, if the

conclusion does not hold with strict inequality, there exists a t1 > t0, where m(t) < 0

on (t0, t1) and m(t1) = 0. Using Lemma 3.4 we get Dqm(t1) ≥ 0. This yields,

0 ≤ Dqm(t1) = Dqv(t1) − Dqw(t1)

< [f(t1, v(t1)) + g(t1, w(t1))] − [f(t1, w(t1)) + g(t1, v(t1))] = 0

which is a contradiction. In order to prove the result for non strict inequalities, set

vǫ(t) = v(t) − ǫ(t − t0)
q−1Eq,q(2(L + M)(t − t0)

q)

and

wǫ(t) = w(t) + ǫ(t − t0)
q−1Eq,q(2(L + M)(t − t0)

q),

as in the proof of Theorem 3.3. From this it follows that v0
ǫ < v0 ≤ u0 ≤ w0 < w0

ǫ .

Using Lipschitz conditions on f(t, u) and g(t, u) and the relation (3.2) we can obtain

Dq(vǫ(t)) < f(t, vǫ(t)) + g(t, wǫ(t)),

and

Dq(wǫ(t)) > f(t, wǫ(t)) + g(t, vǫ(t)).

From the strict inequality result we get vǫ(t) < wǫ(t), on J . The conclusion

follows by taking the limit as ǫ → 0. This completes the proof.

4. Caputo Fractional Differential and Integral Inequalities

In this section we develop results relative to the Caputo fractional differential

and integral inequalities.

The Caputo fractional derivative of order q is given by

cDqu(t) =
1

Γ(1 − q)

∫ t

t0

(t − s)−qu′(s)ds,

where 0 < q < 1. Similarly the Caputo right-fractional integral of order q is given by

c
t0
D−qu(t) =

1

Γ(q)

∫ t

0

(t − s)q−1u(s)ds,

where 0 < q < 1.

Consider the Caputo fractional differential equation of order q where 0 < q < 1,

of the form:

(4.1) cDqu(t) = f(t, u(t)) + g(t, u(t), u(t0) = u0,
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where f, g ∈ C[J0 × R, R].

The integral representation of (4.1) is given by equation

(4.2) u(t) = u0 +
1

Γ(q)

∫ t

t0

(t − s)q−1[f(s, u(s)) + g(s, u(s))]ds,

where Γ(q) is the Gamma function.

The equivalence of (4.1) and (4.2) is established in [4]. See [4] for details. In order

to compute the solution of the linear fractional differential equation with constant

coefficients, we use the Mittag Leffler function. Also, consider the linear Caputo

fractional differential equation

(4.3) cDqu(t) = λu(t) + f(t), u(t0) = u0, on J

where J = [t0, T ], λ is a constant and f(t) ∈ C[J, R].

The solution of (4.3) exists and is unique. The explicit solution of (4.3) is given

by

(4.4) u(t) = u0Eq,1(λ(t − t0)
q) +

∫ t

t0

(t − s)q−1Eq,q(λ(s − t0)
q)f(s)ds.

See [6] for details. In particular, if λ = 0, the solution u(t) is given by

(4.5) u(t) = u0 +
1

Γ(q)

∫ t

t0

(t − s)q−1f(s)ds,

where Γ(q) is the Gamma function.

Note that if cDqu(t) ≤ λu(t)+f(t), u(t0) = u0, on J in (4.3), then the conclusions

in (4.4) and (4.5) will hold good with ≤ in place of equality. These inequalities will

be useful in computing the rate of convergence of approximate solutions.

We recall the following definitions which are useful in proving the existence of

solution and computation of the solution of (4.1).

Definition 4.1. The functions v, w ∈ C1([t0, T ], R) are called natural lower and

upper solutions of (4.1) if:

cDqv(t) ≤ f(t, v) + g(t, v), v0(t0) ≤ u0,

and
cDqw(t) ≥ f(t, w) + g(t, w), w(t0) ≥ u0.

Definition 4.2. The functions v, w ∈ C1([0, T ], R) are called coupled lower and upper

solutions of type I of (4.1) if:

cDqv(t) ≤ f(t, v) + g(t, w), v(t0) ≤ u0,

and
cDqw(t) ≥ f(t, w) + g(t, v), w(t0) ≥ u0.
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One can easily prove the existence of solution of (4.1) on the interval [t0, T ] when

we have natural lower and upper solution for (4.1), such that v(t) ≤ w(t). Also, we

can compute coupled minimal and maximal solution of (4.1) on the interval [t0, T ],

using generalized monotone method when we have coupled lower and upper solutions

of type I of (4.1) with v(t) ≤ w(t), without any extra assumption. In this section we

merely state the differential inequality result for coupled lower and upper solutions

of type I.

Theorem 4.3. Let v, w ∈ C1[J, R], f, g,∈ C[J × R, R] are coupled lower and upper

solutions of type I,such that

(i) f(t, u) satisfies the one sided Lipschitz condition of the form

f(t, u1) − f(t, u2) ≤ L(u1 − u2),

for some L > 0, whenever u1 ≥ u2;

(ii) g(t, u) satisfies the one sided Lipschitz condition of the form

g(t, u1) − g(t, u2) ≥ −M(u1 − u2),

for some M > 0, whenever u1 ≥ u2. Then v(t0) ≤ w(t0) implies v(t) ≤ w(t), on

J .

The proof follows on the same lines as the proof of Theorem 3.6, and Lemma 3.5

with the Mittag-Leffler function Eq,1(λ(t − t0)
q), in place of Eq,q(λ((t − t0)

q)).

Remark 4.4. We can develop Caputo integral inequality results similar to The-

orem 3.3. The integral inequality results need an extra assumption which is not

required for the corresponding scalar differential inequality results. Thus, the differ-

ential inequality results are useful in iterative methods like the monotone quasilin-

earization methods. The integral inequality results are useful in proving uniqueness,

continuous dependency on the initial condition and also in finding the order of con-

vergence.

5. Conclusion

In literature the integral inequality results require the increasing nature of the

nonlinear term, whereas the differential inequality results do not require this assump-

tion. In this work, we have developed results for Volterra type integral inequalities

when the nonlinear function is the sum of an increasing and decreasing functions.

We have extended this result to Riemann-Liouville type of Volterra integral inequal-

ities. Earlier known Volterra integral inequalities can be obtained as a special case

of our results. In addition we have developed differential inequality results with

integer derivatives, Riemann-Lioville derivative and Caputo derivatives for coupled

differential inequalities without any extra assumption which was required for integral
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inequalities. Both types of inequalities are useful in the qualitative study of ordinary

and fractional integral and differential equations.
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