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ABSTRACT. The article is devoted to the study of global attractors of quasi-linear non-autonomous

difference equations and their structure. The results obtained are applied to the study of a two-

dimensional triangular economic growth model of Solow type with Variable Elasticity of Substitution

production function and endogenous population growth rate described by the Beverton-Holt equa-

tion.
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1. INTRODUCTION

The present paper is dedicated to the study of global attractors of quasi-linear

non-autonomous difference equations

un+1 = A(σnω)un + F (un, σ
nω), (A ∈ C(Ω, [E]), F ∈ C(E × Ω, E))

where Ω is a metric space, E is a finite-dimensional Banach space, (Ω, Z+, σ) is a

dynamical system with discrete time Z+, [E] is the space of all the linear operators

acting on E equipped with operator norm, C(Ω, [E]) (respectively, C(E × Ω, E))

is the space of all the continuous functions defined on Ω (respectively, on E × Ω)

with values in [E] (respectively, E) equipped with compact-open topology and F is a

“small” perturbation. An analogous problem it was studied by Cheban D. et al. [11],

when Ω is an invariant set. In this work a more general case is considered, when Ω

is not invariant, but there exists a compact invariant subset J ⊆ Ω (Levinson center)

attracting every compact subset from Ω.

The results obtained are applied to the study of a special class of triangular

maps describing a discrete-time growth model of the Solow type where workers and

shareholders have different but constant saving rates as in Bohm and Kaas [7] and the
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population growth rate evolution is described by the Beverton-Holt (BH) equation

(see [1]).

Differently from previous works, we consider a Variable Elasticity of Substitution

(VES) production function as proposed by Brianzoni et al. in [5], while assuming

that the population growth rate evolves according to the BH equation as investigated

in Brianzoni et al. [2] and Cheban et al. [11].

Our main goal is to study the long run dynamics of the economic model to show

that, for suitable values of the parameters, it admits a compact global attractor and

to describe its structure.

This paper is organized as follows.

In Section 2 we collect some notions and facts from the theory of dynamical sys-

tems (semigroup dynamical system, cocycle, full trajectory, non-autonomous dynam-

ical system, compact global attractor) used in our paper. We also give some results

of the existence of compact global attractors of quasi-linear dynamical systems.

Section 3 is dedicated to the study of a special class of the triangular maps T :

R2
+ → R2

+ describing an economic growth model with endogenous population growth

rate. The analysis is performed applying the general results previously reached.

Section 4 concludes our paper.

2. SOME NOTIONS AND FACTS FROM DYNAMICAL SYSTEMS

In this Section we put together some notions and facts from the theory of dy-

namical systems (both with continuous and discrete time) that are used in our paper.

Let W and Ω be two complete metric spaces and denote by X := W × Ω their

Cartesian product. Recall [9, 20] that a continuous map F : X → X is called

triangular if there are two continuous maps f : W × Ω → W and g : Ω → Ω such

that F = (f, g), i.e., F (x) = F (u, ω) = (f(u, ω), g(ω)) for all x =: (u, ω) ∈ X.

Consider a system of difference equations

(2.1)

{

un+1 = f(un, ωn)

ωn+1 = g(ωn),

for all n ∈ Z+, where Z is the set of all integer numbers and Z+ := {n ∈ Z : n ≥ 0}.

Along with system (2.1) we consider the family of equations

(2.2) un+1 = f(un, g
nω) (ω ∈ Ω),

which is equivalent to system (2.1). Let ϕ(n, u, ω) be a solution of equation (2.2)

passing through the point u ∈ W for n = 0. It is easy to verify that the map

ϕ : Z+ × W × Ω → W ((n, u, ω) 7→ ϕ(n, u, ω) ) satisfies the following conditions:

1. ϕ(0, u, ω) = u for all u ∈ W and ω ∈ Ω;
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2. ϕ(n + m, u, ω) = ϕ(n, ϕ(m, u, ω), σ(m, ω)) for all n, m ∈ Z+, u ∈ W and ω ∈ Ω,

where σ(n, ω) := gnω;

3. the map ϕ : Z+ × W × Ω → W is continuous.

Denote by (Ω, Z+, σ) the semigroup dynamical system generated by positive pow-

ers of the map g : Ω → Ω, i.e., σ(n, ω) := gnω for all n ∈ Z+ and ω ∈ Ω.

Recall [8, 19] that a triple 〈W, ϕ, (Ω, Z+, σ)〉 (in brief ϕ) is called a cocycle over

the semigroup dynamical system (Ω, Z+, σ) with fiber W .

Let X := W × Ω and (X, Z+, π) be a semigroup dynamical system on X, where

π(n, (u, ω)) := (ϕ(n, u, ω), σ(n, ω)) for all u ∈ W and ω ∈ Ω, then (X, Z+, π) is called

[19] a skew-product dynamical system, generated by the cocycle 〈W , ϕ, (Ω, Z+, σ)〉.

Remark 2.1. Then, the reasoning above shows that every triangular map generates

a cocycle and, obviously, vice versa, i.e., if we have a cocycle 〈W, ϕ, (Ω, Z+, σ)〉, we

can define a triangular map F : W × Ω → W × Ω by the equality

F (u, ω) := (f(u, ω), g(ω)),

where f(u, ω) := ϕ(1, u, ω) and g(ω) := σ(1, ω) for all u ∈ W and ω ∈ Ω. The

semigroup dynamical system defined by the positive powers of the map F : X →

X (X := W × Ω) coincides with the skew-product dynamical system, generated by

the cocycle 〈W, ϕ, (Ω, Z+, σ)〉.

Taking into consideration this remark we can study triangular maps in the frame-

work of cocycles with discrete time.

Let (X, Z+, π) (respectively, 〈W, ϕ, (Ω, Z+, σ)〉) be a semigroup dynamical system

(respectively, a cocycle). A map γ : Z → X is called an entire trajectory of the

semigroup dynamical system (X, Z+, σ) passing through the point x ∈ X if γ(0) = x

and γ(n + m) = π(m, γ(n)) for all n ∈ Z and m ∈ Z+.

Let Ω be a complete metric space, (X, Z+, π) (respectively, (Ω, Z+, σ)) a semi-

group dynamical system on X (respectively, Ω), and h : X → Ω a homomorphism

of (X, Z+, π) onto (Ω, Z+, σ). Then the triple 〈(X, Z+, π), (Ω, Z+, σ), h〉 is called a

non-autonomous dynamical system (NDS).

Let W and Ω be complete metric spaces, (Ω, Z+, σ) a semigroup dynamical system

on Y and 〈W, ϕ, (Ω, Z+, σ)〉 a cocycle over (Ω, Z+, σ) with fiber W (or, in short, ϕ).

We denote by X := W × Ω and define on X a skew product dynamical system

(X, Z+, π) (π = (ϕ, σ), i.e., π(t, (w, ω)) = (ϕ(t, w, ω), σ(t, ω)) for all t ∈ Z+ and

(w, ω) ∈ W × Ω). Then the triple 〈(X, Z+, π), ((Ω, Z+, σ), h〉 is a non-autonomous

dynamical system generated by the cocycle ϕ), where h = pr2 : X 7→ Ω is the

projection on the second component.

Let M be a family of subsets from X.
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A semigroup dynamical system (X, Z+, π) will be called M-dissipative if for every

ε > 0 and M ∈ M there exists L(ε, M) > 0 such that π(n, M) ⊆ B(K, ε) for any

n ≥ L(ε, M), where K is a certain fixed subset from X depending only on M. In this

case we will call K an attracting set for M.

As far as the applications are concerned, the most important cases are those

when K is bounded or compact and M := {{x} | x ∈ X} or M := C(X), or

M := {B(x, δx) | x ∈ X, δx > 0}, or M := B(X) where C(X) (respectively, B(X))

is the family of all compact (respectively, bounded) subsets from X.

The system (X, Z+, π) is called [8]:

− point dissipative if there exists K ⊆ X such that for every x ∈ X

(2.3) lim
n→+∞

ρ(π(n, x), K) = 0;

− compactly dissipative if the equality (2.3) takes place uniformly w.r.t. x on the

compact subsets from X.

Let (X, Z+, π) be a compactly dissipative semigroup dynamical system and K be

an attracting set for C(X). We denote by

J := Ω(K) =
⋂

n≥0

⋃

m≥n

π(m, K),

then the set J does not depend on the choice of K and is characterized by the

properties of the semi-group dynamical system (X, Z+, π). The set J is called a

Levinson center of the semigroup dynamical system (X, Z+, π).

Let (X, Z+, π) be a dynamical system and x ∈ X. Denote by

ωx := Ω({x}) =
⋂

n≥0

⋃

m≥n

π(m, x)

the ω-limit set of point x.

If (X, Z+, π) is a two sided dynamical system (i.e., the map π(1, ·) : X 7→ X is a

homeomorphism) then the set

αx =
⋂

n≤0

⋃

m≤n

π(m, x)

is said to be α-limit set of x.

Let E be a finite-dimensional Banach space with norm | · | and 〈E, ϕ, (Ω, Z+, σ)〉

be a cocycle over (Ω, Z+, σ) with fiber E (or shortly ϕ).

A cocycle ϕ is called:

- dissipative, if there exists a number r > 0 such that

lim sup
t→+∞

|ϕ(t, u, ω)| ≤ r

for all ω ∈ Ω and u ∈ E;
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- uniformly dissipative, if there exists a number r > 0 such that

lim sup
t→+∞

sup
ω∈Ω

′
,|u|≤R

|ϕ(t, u, ω)| ≤ r

for all compact subsets Ω
′

⊆ Ω and R > 0.

Theorem 2.2 ([10]). If the dynamical system (Ω, Z+, σ) is compactly dissipative

and the cocycle ϕ is uniformly dissipative, then the skew-product dynamical system

(X, Z+, π) is compactly dissipative.

Below we present some results on the existence of compact global attractors of

quasi-linear dynamical systems.

Let (Ω, Z+, σ) be a semigroup dynamical system on Ω with discrete time.

Let W be a complete metric space. Denote by C(Ω, W ) the space of all the

continuous functions f : Ω → W endowed with the compact-open topology, i.e., the

uniform convergence on compact subsets in Ω.

Consider a linear equation

(2.4) un+1 = A(σ(n, ω))un, (ω ∈ Ω)

where A ∈ C(Ω, [E]).

Let U(n, ω) be the Cauchy operator of linear equation (2.4).

We will say that equation (2.4) is uniformly exponential stable if there exist

constants 0 < q < 1 and N > 0 such that

‖U(n, ω)‖ ≤ Nqn

for all ω ∈ Ω and n ∈ Z+.

Consider a difference equation

(2.5) un+1 = F(un, σ(n, ω)) (ω ∈ Ω).

Denote by ϕ(n, u, ω) a unique solution of equation (2.5) with the initial condition

ϕ(0, u, ω) = u.

Equation (2.5) is said to be dissipative (respectively, uniformly dissipative), if the

cocycle ϕ generated by equation (2.5) is so, i.e., there exists a positive number r such

that

lim sup
n→+∞

|ϕ(n, u, ω)| ≤ r (respectively, lim sup
n→+∞

sup
ω∈Ω′,|u|≤R

|ϕ(n, u, ω)| ≤ r)

for all u ∈ E and ω ∈ Ω (respectively, for all compact subset Ω′ ⊆ Ω and R > 0).

Consider a quasi-linear equation

(2.6) un+1 = A(σ(n, ω))un + F (un, σ(n, ω)),
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where A ∈ C(Ω, [E]) and the function F ∈ C(E × Ω, E) satisfies ”the condition of

smallness” (condition (ii) in Theorem 2.3).

Denote by U(n, ω) the Cauchy matrix for the linear equation

un+1 = A(σ(n, ω))un.

Theorem 2.3 ([10]). Suppose that the following conditions hold:

1. equation (2.4) is uniformly exponential stable, i.e., there are positive numbers N

and q < 1 such that

(2.7) ‖U(n, ω)‖ ≤ Nqn (n ∈ Z+);

2. |F (u, ω)| ≤ C + D|u| (C ≥ 0, 0 ≤ D < (1 − q)N−1) for all u ∈ E and ω ∈ Ω.

Then equation (2.6) is uniformly dissipative.

Theorem 2.4 ([9]). Let (Ω, Z+, σ) be a compactly dissipative system and ϕ be a

cocycle generated by equation (2.6). Under the conditions of Theorem 2.3 the skew-

product system (X, Z+, π) (X := E × Ω and π := (ϕ, σ)), generated by the cocycle ϕ

admits a compact global attractor.

Remark 2.5. Theorems 2.3 and 2.4 remain true if we replace the phase space E by

positively invariant (with respect to the cocycle ϕ generated by (2.5)) subset V ⊂ E.

3. A BUSINESS–CYCLE MODEL WITH VES TECHNOLOGY AND

POPULATION GROWTH RATE

3.1. The Model. The Solow-Swan growth model (see [21] and [22]) with Variable

Elasticity of Substitution (VES) technology was firstly studied by Karagiannis et

al. [15] assuming continuous time. The authors showed that the model can exhibit

unbounded endogenous growth despite the absence of exogenous technical change and

the presence of non-reproducible factors. However, their model is unable to produce

economic fluctuations.

More recently, in [16], Palivos and Karagiannis proved that the variable elasticity

of substitution plays a key role in the growth process. Following this contribution, in

[5], Brianzoni et al. studied the discrete time Solow-Swan growth model, where the

two types of agents, workers and shareholders, have different but constant saving rates

as in Bohm and Kaas [7] and where the production function f : R+ → R+, mapping

capital per worker u into output per worker f(u), is of the VES type. More precisely,

following [16], they considered the specification of the VES production function in

intensive form given by Revamkar [17] as follows:

(3.1) f(u) = Auaγ[1 + bau](1−a)γ (u ≥ 0),
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being A > 0, a ∈ (0, 1], b ≥ −1 and 1/u ≥ −b, while assuming that the production

function exhibits constant return to scale, i.e., γ = 1 and that the labor force grows

at a constant rate.

The hypothesis of constant population growth rate is usually assumed in stan-

dard economic growth theory, however, this assumption is unable to explain possible

fluctuations in the growth rate. For this reason a number of economic growth model

with endogenous population growth have been proposed (see, for instance, Brianzoni

et al. [2, 3, 4]). In particular Brianzoni et al. [2] and Cheban et al. [11] investi-

gated the neoclassical growth model with differential saving and Constant Elasticity

of Substitution (CES) production function under the assumption that the labor force

dynamics is described by the BH equation (see Beverton and Holt [1]). The relevance

of this iteration scheme is due to the fact that the BH equation is the solution in dis-

crete time of the logistic model that describes a density dependent population growth

mechanism having the following realistic economic properties: 1) when population is

small in proportion to environmental carrying capacity, then it grows at a positive

constant rate, 2) when population is larger in proportion to environmental carrying

capacity, the resources become relatively more scarce and, as a result, the population

growth rate is negatively affected.

In the present work we consider the Solow-Swan growth model in discrete time

with differential saving and VES production function as proposed by Brianzoni et al.

in [5] while assuming that the population growth rate evolves according to the BH

equation as in Brianzoni et al. [2] and Cheban et al. [11]. Our main goal is to study

the long run dynamics of the economic model in order to show that a compact global

attractor is owned and to describe its structure.

Let us consider the following equation describing the evolution of the capital

per capita u in the standard neoclassical Solow-Swan growth model with differential

saving (see [7]):

(3.2) F (u, ω) =
1

1 + ω
[(1 − δ)u + sww(u) + sruf ′(u)],

where δ ∈ (0, 1) is the depreciation rate of capital, sw ∈ (0, 1) and sr ∈ (0, 1) are

the constant saving rates for workers and shareholders respectively. The wage rate

equals the marginal product of labor which is w(u) := f(u) − uf ′(u), furthermore

shareholders receive the marginal product of capital f ′(u), which implies that the

total capital income per worker is uf ′(u).

Observe that ω ≥ 0 represents the labor force growth rate: in our formulation

we let it vary with time. More precisely we add a further assumption, that is the

population growth rate evolves according to the BH equation given by:

ω′ =
rhω

h + (r − 1)ω
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where h > 0 is the carrying capacity (for example resource availability) and r > 0 is

the inherent growth rate (this rate being determined by life cycle and demographic

properties such as birth rate etc.).

By substituting the VES production function given by (3.1) (with γ = 1) in (3.2)

we obtain the following map describing the evolution of capital accumulation:

(3.3) H(u, ω) =
1

1 + ω
{(1 − δ)u + Aua(1 + abu)−a[sw(1 − a) + sr(a + abu)]}

The resulting system, T = (ω′, u′), describing capital per worker (u) and popula-

tion growth rate (ω) dynamics, is given by:

(3.4) T :=











u′ = 1
1+ω

[(1 − δ)u + Aua(1 + abu)−a[sw(1 − a) + sr(a + abu)]]

ω′ = rhω
h+(r−1)ω

.

We get a discrete-time dynamical system described by the iteration of a map of

the plane of triangular type. In fact, the second component of the previous system

does not depend on u, therefore the map is characterized by the triangular structure:

(3.5) T :=

{

u′ = g(u, ω)

ω′ = f(ω)
.

As a consequence, the dynamics of the map T are influenced by the dynamics of

the one–dimensional map f , that is the Beverton-Holt map.

3.2. Dynamics of the Beverton-Holt Map f(ω) = rhω
h+(r−1)ω

. In this Subsection

we study the dynamics of the one-dimensional monotone dissipative dynamical sys-

tems (R+, Z+, π), generated by a strictly monotone increasing map f : R+ 7→ R+.

Consider a continuous mapping f : R+ 7→ R+.

Theorem 3.1. Suppose that the following conditions are fulfilled:

1. f(0) = 0;

2. f is strictly monotone increasing;

3. the function f is bounded on R+;

4. there exists a number α > 0 such that f(α) > α.

Then the following statements hold:

1. there exists a number x0 > α such that f(x0) = x0;

2. the dynamical system (R+, f) is point dissipative and ωx ⊆ [0, b] for all x ∈ R+,

where b = lim
x→∞

f(x);

3. the dynamical system (R+, f) admits a compact global attractor J ⊂ R+;

4. J = [0, x0], where x0 is some fixed point of f ;

5. ωx = {x0} for all x > x0;
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6. for any x ∈ (0, x0) there exist two fixed points p and q of the map f such that

lim
n→∞

fn(x) = p and lim
n→∞

f−n(x) = q;

7. if the mapping f , in addition, is strictly convex (i.e., the set Gf := {(x, y) : x ∈

R+ and 0 ≤ y ≤ f(x)} is strictly convex in R2), then

(a) x0 is a unique positive fixed point of the mapping f ;

(b) lim
n→∞

f−n(x) = 0 for all x ∈ [0, x0);

(c) lim
n→∞

fn(x) = x0 for all x > 0;

(d) the fixed point x0 is Lyapunov stable, i.e., for all ε > 0 there exists a number

δ = δ(ε) > 0 such that |x − x0| < δ implies |fn(x) − x0| < ε or all n ≥ 0;

(e) the point 0 is Lyapunov stable in the negative direction, i.e., for all ε > 0

there exists a number δ = δ(ε) > 0 such that 0 ≤ x < δ implies 0 ≤ f−n(x) <

ε or all n ≥ 0.

Proof. Consider the function g(x) := f(x) − x and note that g(α) > 0 and g(β) < 0

for all sufficiently large β (β > b) and, consequently, there exists x0 ∈ (α, β) such

that g(x0) = 0 or f(x0) = x0.

Let x ∈ R+ be an arbitrary point. Since the semi-trajectory Σ+
x := {x, f(x), . . .,

fn(x), . . .} ⊆ {x}
⋃

[0, b] is relatively compact, then the set ωx is nonempty, compact

and invariant. Let q ∈ ωx, then there exists a sequence {nk} ⊂ Z+ such that q =

lim
k→+∞

fnk(x) and nk → ∞ as k → ∞ and, consequently, q ∈ [0, b]. Thus the dynamical

system (R+, f) is point dissipative.

Since the phase space R+ of the dynamical system (R+, f) is local compact, then

by Theorem 1.10 [8, ChI] it is compactly dissipative and by Theorem 1.6 [8, ChI]

(R+, f) admits a compact global attractor J (J is its maximal compact invariant

set).

According to Theorem 1.32 [8, ChI] the global attractor J (Levinson center) of

(R+, f) is connected because the phase space R+ is so. On the other hand 0 is a

fixed point and, consequently, 0 ∈ J . Thus 0, α ∈ J and, consequently, there exists a

number x0 ≥ α > 0 such that J = [0, x0]. To complete this statement it is sufficient

to show that f(x0) = x0. Note that the boundary ∂J = {0, x0} of the invariant set

J is also invariant. In particular this means that f(x0) = x0 or f(x0) = 0. Since the

mapping f is strictly monotone decreasing and x0 > 0, then the equality f(x0) = 0

is not possible and, consequently, f(x0) = x0.

Consider x > x0. Since the set J = [0, x0] is invariant, then fn(x) > x0 for all

n ∈ Z+ and, consequently, ωx ⊂ [x0, +∞). On the other hand ωx ⊆ J = [0, x0] and,

consequently, ωx ⊆ [x0, +∞)
⋂

[0, x0] = {x0}.

Let x ∈ (0, x0) be an arbitrary number. Since the function f is strictly monotone

increasing and bounded on R+, then there exists a limit b := lim
x→∞

f(x) and the reverse

function f−1 : [0, b) 7→ R+ is also strictly monotone increasing. Consider the sequence
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{fn(x)}. We will show that the sequence {fn(x)} is monotone. In fact, if f(x) > x

(respectively f(x) < x), then fn+1(x) > fn(x) (respectively, fn+1(x) < fn(x)) for

all n ∈ N. Since J is invariant, then fn(x) ∈ J for all n ∈ N. Thus the sequence

{fn(x)} is bounded and monotone and, consequently, there exists lim
n→∞

fn(x) = p.

It is easy to check that f(p) = p. Taking into account that the mapping f is an

homeomorphism on the set J and it is invariant, by reasoning as above it is easy to

show that the sequence {f−n(x)} is monotone and bounded and, consequently, there

exists lim
n→∞

f−n(x) = q and f(q) = q.

Suppose now that the function f is also strictly convex. We will show that in

this case x0 is a unique positive fixed point of f . Suppose that it is not so, then there

exists a fixed point x̄ ∈ (0, x0). Note that the points (0, 0), (x̄, x̄) and (x0, x0) belong

to Gf and ∆+ := {(x, x) : x ∈ R+}. Thus (x̄, x̄) ∈ Gf

⋂

∆+ and x̄ = λx0, where λ is

a number from (0, 1). The last inclusion contradicts to the strictly convexity of the

set Gf . The contradiction obtained proves our statement.

To complete the proof of the theorem it is sufficient to show that the point

x0 (respectively, point 0) is Lyapunov stable in the positive (respectively, negative)

direction. Note that the set A := {x0} (respectively, B := {0}) is a locally maximal

compact invariant set of the map f . Now Lyapunov stability in the positive direction

(respectively, in the negative direction) of the point x0 (respectively, 0) follows from

Theorem 8.2 [8, ChVIII].

Remark 3.2. Note that the item (iv) of Theorem 3.1 remains true without the

assumption that the mapping f is bounded. It is sufficient to suppose that the dy-

namical system (f, R+) is compactly dissipative and f is strictly monotone increasing.

In what follows we assume r > 1 in order for an economic analysis to be of

interests.

Lemma 3.3. Consider f(x) := hrx
h+(r−1)x

for all x ∈ R+, h > 0 and r > 1, then the

following statements hold:

1. f ′(x) = rh2

(h+(r−1)x)2
for all x > 0;

2. f ′′(x) = −2r(r−1)h2

(h+(r−1)x)3
for all x > 0;

3. f(α) > α, where α := h/2.

Proof. This statement is evident.

Corollary 3.4. Consider f(x) := hrx
h+(r−1)x

for all x ∈ R+, h > 0 and r > 1, then the

following statements hold:

1. the mapping f is strict monotone increasing and convex;

2. f admits two fixed points x = 0 and x = h;
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3. the fixed point 0 is asymptotically stable in the negative direction and W u(0) :=

{x ∈ R+ : lim
n→∞

f−n(x) = 0} = [0, h);

4. the fixed point h is asymptotically Lyapunov stable in the positive direction and

W s(0) := {x ∈ R+ : lim
n→∞

fn(x) = h} = (0, +∞);

5. the dynamical system (R+, f) is compactly dissipative and its Levinson center

(compact global attractor) J = [0, h].

Proof. This statement follows from Theorem 3.1 and Lemma 3.3.

The mapping f : R+ 7→ R+ is said to admit a holomorphic extension if there

exists δ > 0 and a holomorphic function f̃ : Bδ 7→ C such that f̃
∣

∣

R+
= f , where

Bδ :=
⋃

r≥0

{(x, y) : (x − r)2 + y2 < δ2}.

Theorem 3.5. Under the conditions of Theorem 3.1, if the function f admits an

olomorphic extension, then f has a finite number of fixed points.

Proof. Consider the holomorphic function F (z) := f̃(z) − z defined on Bδ. Denote

by Fix(f) := {x ∈ R+ : f(x) = x} and note that Fix(f) ⊂ J = [0, x0]. On the

other hand every point z ∈ Fix(f) is a null of the holomorphic function F . Since

holomorphic function admits at most a finite number of nulls on every compact subset,

then the set Fix(f) contains at most a finite number of points.

Thus, the dynamical system (R+, f), generated by the Beverton-Holt map f

admits a compact global attractor J for all r > 1. In addition J possesses the

following property: if h > 0 and r > 1, then J = [0, h] and in this case the fixed point

ω = 0 is a repeller (i.e., ω = 0 is an asymptotically stable in the negative direction

fixed point), but ω = h is an attractor with domain of attraction (0, +∞).

3.3. Existence of a Compact Global Attractor. In what follows we assume

b ∈ (0, +∞).

Lemma 3.6. The function H(u, ω) can be presented in the following form

(3.6) H(u, ω) =
1

1 + ω
{(1 − δ + srab

A

(ab)a
)u} + R(u, ω),

where R(u, ω) is bounded, i.e., there exists a positive constant C such that |R(u, ω)| ≤

C for all ω ∈ [0, +∞) and u ∈ [0, +∞).

Proof. This statement can be proved with slight modification of the proof of Lemma 6.1

from [12].

Theorem 3.7. Consider b > 0 and δ > srab A
(ab)a , then the dynamical system (R2

+, T ),

generated by map (3.4), admits a compact global attractor J ⊂ R2
+ which possesses

the following properties:
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1. the set J is connected;

2. for every ω ∈ [0, h] the set Jω := {(x, ω) : (x, ω) ∈ J} is connected;

3. for all ω ∈ (0, h) there exists a positive number bω such that Iω = [0, bω], where

Iω := pr1(Jω);

4. for all x := (u, ω) ∈ R
2
+ we have:

(a) ωx ⊆ Jh if ω 6= 0 (i.e., if p ∈ ωx, then pr2(p) = h);

(b) αx ⊆ J0 if x ∈ J and ω 6= h (this means that pr2(q) = 0 for all q ∈ αx).

Proof. Consider b > 0, then by Lemma 3.6 the function H can be written in the form

(3.7) T1(u, ω) =
1

1 + ω
{(1 − δ + srab

A

(ab)a
)u} + R(u, ω),

where R(u, ω) is bounded, i.e., there exists a positive constant M such that |R(u, ω)| ≤

M for all (u, ω) ∈ R2
+.

Since 0 ≤ 1
1+ω

≤ 1 for all ω ∈ R+, then from (3.7) we obtain

(3.8) 0 ≤ T1(u, ω) ≤ αu + M

for all (u, ω) ∈ R2
+, where α := 1 − δ + srab A

(ab)a < 1.

Since the map T is triangular, to prove the existence of compact global attractor

J it is sufficient to apply Theorem 2.4 (see also Remark 2.5).

According to Theorem 1.32 from [8, ChI] the set J is connected. To prove the

connectedness of the set Jω we note that the map f : R+ 7→ R+ (f(ω) := Hrω
H+(r−1)ω

for

all ω ∈ R+) is reversible, then by Theorem 2.25 [8, ChII] the set Iω and, consequently,

the set Jω is also connected because Jω = Iω × {ω}. Thus for all ω ∈ [0, ω] there are

two numbers aω, bω ∈ R+ such that Iω = [aω, bω]. It easy to see that aω = 0 for all

ω ∈ [0, h] because (0, ω) ∈ J for all ω ∈ [0, H ]. At this point to complete the proof of

this theorem it is sufficient to note that bω > 0 for all ω ∈ (0, H). If we suppose that

it is not so then there exists an ω̄ ∈ (0, H) such that bω̄ = 0. From the last equality

it follows that ω̄ is a fixed point of f (i.e., f(ω̄) = ω̄). The contradiction obtained

proves our statement.

Let x = (u, ω) ∈ R2
+ with the condition ω 6= 0. Note that π(t, x) = (ϕ(t, u, ω), f tω).

Since ω 6= 0, then f tω → H as t → +∞. Let p ∈ ωx, then there exists a sequence

tk → +∞ (tk ∈ Z+) such that π(tk, x) = (ϕ(tk, u, ω), f tkω) → p as k → ∞, i.e.,

pr2(p) = lim
k→∞

f tkω = H . If x ∈ J and q ∈ αx, then reasoning as above and taking

into consideration that lim
t→∞

f−tω = 0 (for all ω ∈ (0, H)) we prove that pr2(q) = 0.

3.4. Structure of the Attractor. In this subsection we suppose that b > 0. Let

us consider H(u) = (1− δ)u + f(u)[sw(1− a) + sr(a + abu)] and H(u, ω) = 1
1+ω

H(u).

Lemma 3.8. The following statements hold:



NON-AUTONOMOUS DIFFERENCE EQUATIONS 29

1. let f(u) := Aua(1 + abu)−a, then

(3.9) f ′(u) =
af(u)

u(1 + abu)
;

2. if H(u) = (1 − δ)u + f(u)[sw(1 − a) + sr(a + abu)], then

(3.10) H ′(u) = 1 − δ +
( a

u(1 + abu)
[sw(1 − a) + sr(a + abu)] + srab

)

f(u).

Proof. This statement is evident.

Lemma 3.9. The following statements hold:

1. H ′(u) ≥ 1 − δ > 0 for all u ∈ (0, +∞);

2.

(3.11) lim
u→∞

H ′(u) = 1 − δ and lim
u→0+

H ′(u) = +∞;

3. there exists u0 > 0 such that H(u) ≥ (h + 2)u for all u ∈ [0, u0].

Proof. The first and second statements are evident. To prove the third statement we

note that from (3.11) it follows that, for given h > 0, there exists a positive number

u0 such that H ′(u) ≥ h + 2 for all u ∈ (0, u0]. Let now ξ ∈ (0, u0), then we have

(3.12) H(u) − H(ξ) = H ′(θ)(u − ξ) ≥ (h + 2)(u − ξ)

for all u ∈ (0, u0), where θ ∈ (ξ, u). Passing into limit in (3.12) as ξ → 0 and taking

into account the continuity of H(u) at the point u = 0 and the equality H(0) = 0,

we obtain H(u) ≥ (h + 2)u for all u ∈ (0, u0). Lemma is proved.

Lemma 3.10. Let (R2
+, T ) be a dynamical system generated by map (3.4) (i.e.,

T t(u, ω) = (ϕ(t, u, ω), f t(ω))) and ϕ(t, u, ω) ∈ [0, u0] for all t ∈ Z+, then ϕ(t, u, ω) ≥

u for all t ∈ Z+, u ∈ (0, u0] and ω ∈ [0, h + 1].

Proof. Note that H(u, ω) = 1
1+ω

H(u) and ϕ(t, u, ω) is a unique solution of equation

(3.13) ut+1 = H(ut, f
t(ω))

with initial data ϕ(0, u, ω) = u. Let u ∈ [0, u0], then by Lemma 3.9 we have

ϕ(1, u, ω) = H(u, ω) ≥ u for all u ∈ [0, u0] because 1
1+ω

∈ [ 1
h+2

, 1] for all ω ∈ [0, h+1].

Note that f t[0, h+1] ⊆ [0, h+1] for all t ∈ Z+. If we suppose that ϕ(t, u, ω) ≥ u for all

t = 1, 2, . . . , n, then we obtain ϕ(t + 1, u, ω) = ϕ(1, ϕ(t, u, ω), f t(ω)) ≥ ϕ(t, u, ω) ≥ u.

Lemma is proved.

Lemma 3.11 ([5]). The following statements hold:

1. let ω = ω̄ ≥ 0, if ω+δ
A

> (ab)−aabsr, then H(ω̄, u) has two fixed points: u1 = 0

and u2 = k∗ > 0;

2. the fixed point u1 (respectively, u2) is locally unstable (respectively, stable).
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Let (X, T, π) be a dynamical system. The subset A ⊆ X is said to be chain

transitive (see [13, 14]) if, for any a, b ∈ A, and any ε > 0 and L > 0, there are finite

sequences x1, x2, . . . , xm ∈ A with a = x1, b = xm, and t1, t2, . . . , tm ≥ L such that

ρ(π(ti, xi), xi+1) < ε (1 ≤ i ≤ m − 1). The sequence {x1, x2, . . . , xm} is called an

ε–chain in A connecting a and b.

Recall that the invariant set M ⊂ X of dynamical system (X, Z+, π) is said to

be dynamically decomposable if there are two nonempty invariant subsets Mi ⊂ M

(i = 1, 2) such that M1

⋂

M2 = ∅ and M = M1

⋃

M2. Otherwise the set M is said to

be dynamically undecomposable.

Remark 3.12. 1. If the positive semi-trajectory Σ+
x :=

⋃

t≥0 π(t, x) is relatively com-

pact, then its ω-limit set ωx is chain transitive [6, 13, 18] (respectively, dynamically

undecomposable [6]).

2. If the dynamical system (X, Z+, π) is two-sided and the negative semi-trajectory

Σ−
x :=

⋃

t≤0 π(t, x) is relatively compact, then its α-limit set αx is chain transitive

[6, 13, 18] (respectively, dynamically undecomposable [6]).

Theorem 3.13. Consider δ > srab A
(ab)a , then the following statements hold:

1. the dynamical system (f0, Z+) (respectively, (f1, Z+)) is compactly dissipative,

where f0(u) := H(0, u) (respectively, f1(u) := H(h, u)) for all u ∈ R+;

2. J0 = [0, k∗
0] (respectively, J1 = [0, k∗

1]), where J0 (respectively, J1) is the Levinson

center of the dynamical system (f0, Z+) (respectively, (f1, Z+)) and k∗
0 (respec-

tively, k∗
1) is its positive fixed point;

3. for all x = (ω, u) ∈ R2
+ with ω 6= 0, h and u > 0 we have ωx = {(h, k∗

1)};

4. for all x = (ω, u) ∈ J with ω ∈ [0, h) we have αx = {(0, 0)} or αx = {(0, k∗
0)}.

Proof. The first statement follows from Theorem 3.7 because the set {(0, u) : u ∈ R+}

(respectively, {(h, u) : u ∈ R+}) is an invariant subset of the dynamical system

(R2
+, T ).

Let J0 (respectively, J1) be the Levinson center of (f0, R+) (respectively, (f1, R+)).

Note the function f0 (respectively, f1) is strictly monotone increasing because

∂uH(ω, u) > 0

for all (ω, u) ∈ R2
+. The second statement of the theorem follows from Lemma 3.11,

Theorem 3.1 (item (iv)) and Remark 3.2.

Let x = (u, ω) ∈ R2
+ with u > 0 and ω 6= 0 and (R2

+, π) be a dynamical system

generated by the triangular map T (see (3.5)), i.e., π(t, x) = (ϕ(t, u, ω), f tω) for all

t ∈ Z+ and (u, ω) ∈ R2
+, where ϕ(t, u, ω) is a unique solution of equation

u(t + 1) = H(f tω, u(t))
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passing through the point u at the initial moment t = 0. Since the function f is strictly

monotone and ∂uH(u, ω) > 0, then the semigroup dynamical system (R2
+, π) is two

sided, i.e., every motion can be extended uniquely on Z. Taking into account that the

dynamical system (R2
+, π) is compactly dissipative, then the positively semi-trajectory

Σ+
x is relatively compact, ωx is a nonempty, compact, invariant and dynamically

undecomposable set. Since the set ωx is chain transitive, then ωx = {(k∗
1, h)} or

ωx = {(0, h)}. We will establish that the last equality is not possible. Suppose that

ωx = {(0, h)}, then there exists a moment t0 ∈ Z+ such that

(3.14) f tω ∈ [0, h + 1] and ϕ(t, u, ω) ∈ (0, u0)

for all t ≥ t0. Taking into account (3.14) without loss of generality we can suppose

that t0 = 0 (if it is necessary we can take in the quality of x = (u, ω) the point

x0 := π(t0, x), because ωx = ωx0
). Since ωx = {(h, 0)}, then we have

(3.15) lim
t→+∞

ϕ(t, u, ω) = 0.

On the other hand by Lemma 3.10 we have

(3.16) ϕ(t, u, ω) ≥ u

for all t ∈ Z+. The conditions (3.15) and (3.16) are contradictory. The contradiction

obtained proves our statement.

Let now x = (u, ω) ∈ J with ω ∈ [0, h), then by Theorem 3.7 we have αx ⊆

J0. Note that the set αx is chain transitive. On the other hand αx is dynamically

undecomposable and, consequently, αx = {(0, 0)} or αx = {(0, k∗
0)}. The theorem is

completely proved.

4. CONCLUSIONS

In the present paper we studied a discrete time neoclassical one-sector growth

model with differential savings while assuming a VES production function and en-

dogenous population growth rate described by the BH equation.

By proving some results on the existence of compact global attractors of quasi-

linear dynamical systems, we showed that the growth model admits a compact global

attractor if the elasticity of substitution between production factors is greater than

one (i.e. b > 0) for suitable values of the parameters (for instance if the saving rate

of shareholders sr is low enough).

This result confirms the evidences reached in Brianzoni et al. [5] for the case of

constant population growth rate. Furthermore, our setup can be compared with the

model studied by Brianzoni et al. [2] and Cheban et al. [11] in which the Costant

Elasticity of Substitution (CES) production function was into account: in both cases

the economy has a compact global attractor where the asymptotic dynamics occurs.
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Finally, differently from Cheban et al. [12] in which the evolution of the popula-

tion growth rate was described by the logistic equation, once our model was considered

in the interior of its domain (i.e. starting from initial conditions with both positive

capital per capita and population growth rate), we found that it admits a unique

globally asymptotically stable fixed point, providing that in the long run the eco-

nomic growth will convergetoward a positive steady state, while fluctuations or more

complex dynamics are ruled out.

The analysis proposed represents a first step in the study of the determinants

of economic growth, when the elasticity of substitution between production factors

and the population growth rate are not constant. A further step in this research

line would take into account how long run dynamics change if population growth

rate evolution depends also on the capital per capita level. The final discrete time

dynamical system is no longer triangular, and a different analysis must be used to

determine the qualitative and quantitative properties of economic growth.
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