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ABSTRACT. In this paper we study the nonlinear elliptic problem involving p(x)-Laplacian with

nonsmooth potential, where the weighted function λ may change sign. By using critical point theory

for locally Lipschitz functionals due to Chang [6], we obtain conditions which ensure the existence

of a solution for our problem.
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1. Introduction

Let Ω ⊆ R
N be a bounded domain with the smooth boundary ∂Ω. In this paper

we study the following nonlinear hemivariational inequality with p(x)-Laplacian

(1.1)

{
−∆p(x)u(x) − λ|u(x)|p(x)−2u(x) ∈ ∂j(x, u(x)) a.e. in Ω,

u = 0 on ∂Ω,

where p : Ω → R is a continuous function satisfying

1 < p− 6 p(x) 6 p+ < p̂∗ for a.e. x ∈ Ω

with p− := inf
x∈Ω

p(x), p+ := sup
x∈Ω

p(x) and

p̂∗ :=

{
Np−

N−p−
p(x) < N

∞ p(x) > N.

The operator ∆p(x)u(x) := div
(
|∇u(x)|p(x)−2∇u(x)

)
is the so–called p(x)-Laplacian.

The function j(x, t) is locally Lipschitz in the t–variable and measurable in the x–

variable and by ∂j(x, t) we denote the subdifferential with respect to the t–variable

in the sense of Clarke [7].

Recently, hemivariational inequalities have attracted more and more attention.

The study of such problems arises in nonlinear elasticity theory and in physical phe-

nomena, in which we dealt with nonconvex and nonsmooth energy functionals. We
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can find such functions for example in fluid mechanics, in the image restoration and in

the calculus of variations. Moreover, we deal with the variable exponent spaces. The

typical examples of equations stated in the variable exponent spaces are models of

electrorheological fluids. This kind of materials have been intensively investigated re-

cently. Electrorheological fluids change their mechanical properties dramatically when

an external electric field is applied, so the variable exponent settings are natural for

their modelling. Several applications in the electrorheological fluids problems involv-

ing p(x)-growth conditions can be found in the books of Naniewicz-Panagiotopulous

[19] and Ružička [22].

The starting point for hemivariational inequalities with p(x)-Laplacian were this

with constant exponent, it means with p(x) ≡ p. For example, the following differen-

tial inclusion problem was considered

(1.2)

{
−∆pu(x) − λ|u(x)|p−2u(x) ∈ ∂j(x, u(x)) a.e. in Ω,

u = 0 on ∂Ω,

where λ > 0 is a first eigenvalue of p-Laplacian. For instance, the existence of nontrival

solution for Dirichlet problem (1.2) at resonance under different type of conditions

was proved in papers of Gasiński-Papageorgiou [12, 13, 14]. Their methods are based

on the critical point theory for Locally Lipschitz functionals and on the Ekeland

variational principle. Marano-Bisci-Motreanu in [18] proved the existence of multiple

solutions for (1.2) by the use of Struwe techniques and the saddle point theory. There

are also many others authors who studied hemivariational inequalities with Dirichlet

or Neumann boundary conditions.

Partial differential equations involving variable exponents and nonstandard growth

conditions were also studied by many authors. In the paper of Ge-Xue-Zhou [16] the

existence of radial solutions for problem (1.1) was proved. The authors required that

λ > 0 and used a key assumption on the exponent that p+ < N . The problem

with p(x)-Laplacian and with Neumann boundary condition was considered by Qian-

Shen-Yang [20]. They refused the assumption about positivity of λ but still needed

assumption on the variable exponent, it means
√

2p− > N .

In this paper we have the situation that λ ∈ R and we have no restriction on λ

like in Barnaś [2, 3, 4] and the papers of many authors. It is an extension of the theory

considered in the above mentioned papers. Moreover, we abandon the restriction on

the exponent p(x). Our approach is based on the critical point theory for nonsmooth

Lipschitz functionals due to Chang [6].

In the next section we briefly present the basic properties of the generalized

Lebesgue spaces and the generalized Lebesgue-Sobolev spaces. Moreover, we present

the basic notions and facts from the theory, which will be used in the study of problem

(1.1).
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2. Mathematical preliminaries

In order to discuss problem (1.1), we need to state some properties of the spaces

Lp(x)(Ω) and W 1,p(x)(Ω), which we call correspondingly generalized Lebesgue spaces

and generalized Lebesgue-Sobolev spaces (see Fan-Zhao [10, 11]).

Denote by E(Ω) the set of all measurable real functions defined on Ω. Two

functions in E(Ω) are considered to be one element of E(Ω), when they are equal

almost everywhere. The generalized Lebesgue space is defined as

Lp(x)(Ω) = {u ∈ E(Ω) :

∫

Ω

|u(x)|p(x)dx <∞},

equipped with the norm

‖u‖p(x) = ‖u‖Lp(x)(Ω) = inf
{
λ > 0 :

∫

Ω

∣∣∣
u(x)

λ

∣∣∣
p(x)

dx 6 1
}
.

Next, we define the generalized Lebesgue-Sobolev space W 1,p(x)(Ω) by

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : ∇u ∈ Lp(x)(Ω; RN )}

with the norm

‖u‖ = ‖u‖W 1,p(x)(Ω) = ‖u‖p(x) + ‖∇u‖p(x).

Then (Lp(x)(Ω), ‖ · ‖p(x)) and (W 1,p(x)(Ω), ‖ · ‖) are separable and reflexive Banach

spaces. By W
1,p(x)
0 (Ω) we denote the closure of C∞

0 (Ω) in W 1,p(x)(Ω).

Lemma 2.1 (Fan-Zhao [10]). If Ω ⊆ R
N is an open domain, then

(a) if 1 6 q(x) ∈ C(Ω) and q(x) 6 p∗(x) (respectively q(x) < p∗(x)) for any x ∈ Ω,

where

p∗(x) =

{
Np(x)

N−p(x)
p(x) < N

∞ p(x) > N,

then W 1,p(x)(Ω) is embedded continuously (respectively compactly) in Lq(x)(Ω);

(b) Poincaré inequality in W
1,p(x)
0 (Ω) holds i.e., there exists a positive constant c such

that

‖u‖p(x) 6 c‖∇u‖p(x) for all u ∈W
1,p(x)
0 (Ω);

(c) (Lp(x)(Ω))∗ = Lp′(x)(Ω), where 1
p(x)

+ 1
p′(x)

= 1 and for all u ∈ Lp(x)(Ω) and

v ∈ Lp′(x)(Ω), we have
∫

Ω

|uv|dx 6

( 1

p−
+

1

p′−

)
‖u‖p(x)‖v‖p′(x).

Lemma 2.2 (Fan-Zhao [10]). Let ϕ(u) =
∫
Ω
|u(x)|p(x)dx for u ∈ Lp(x)(Ω) and let

{un}n>1 ⊆ Lp(x)(Ω).

(a) for a 6= 0, we have ‖u‖p(x) = a⇐⇒ ϕ(u
a
) = 1;

(b) we have
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‖u‖p(x) < 1 ⇐⇒ ϕ(u) < 1;

‖u‖p(x) = 1 ⇐⇒ ϕ(u) = 1;

‖u‖p(x) > 1 ⇐⇒ ϕ(u) > 1;

(c) if ‖u‖p(x) > 1, then

‖u‖p−

p(x) 6 ϕ(u) 6 ‖u‖p+

p(x);

(d) if ‖u‖p(x) < 1, then

‖u‖p+

p(x) 6 ϕ(u) 6 ‖u‖p−

p(x);

(e) we have

lim
n→∞

‖un‖p(x) = 0 ⇐⇒ lim
n→∞

ϕ(un) = 0;

(f) we have

lim
n→∞

‖un‖p(x) = ∞ ⇐⇒ lim
n→∞

ϕ(un) = ∞.

Similarly to Lemma 2.2, we have the following result.

Lemma 2.3 (Fan-Zhao [10]). Let Φ(u) =
∫
Ω
(|∇u(x)|p(x) + |u(x)|p(x))dx for u ∈

W 1,p(x)(Ω) and let {un}n>1 ⊆W 1,p(x)(Ω). Then

(a) for a 6= 0, we have

‖u‖ = a ⇐⇒ Φ(u
a
) = 1;

(b) we have

‖u‖ < 1 ⇐⇒ Φ(u) < 1;

‖u‖ = 1 ⇐⇒ Φ(u) = 1;

‖u‖ > 1 ⇐⇒ Φ(u) > 1;

(c) if ‖u‖ > 1, then

‖u‖p− 6 Φ(u) 6 ‖u‖p+
;

(d) if ‖u‖ < 1, then

‖u‖p+
6 Φ(u) 6 ‖u‖p−;

(e) we have

lim
n→∞

‖un‖ = 0 ⇐⇒ lim
n→∞

Φ(un) = 0;

(f) we have

lim
n→∞

‖un‖ = ∞ ⇐⇒ lim
n→∞

Φ(un) = ∞.
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Consider the following function

J(u) =

∫

Ω

1

p(x)
|∇u|p(x)dx, for all u ∈W

1,p(x)
0 (Ω).

We know that J ∈ C1(W
1,p(x)
0 (Ω)) and −div(|∇u|p(x)−2∇u) is the derivative operator

of J in the weak sense (see Chang [5]). We denote

A = J ′ : W
1,p(x)
0 (Ω) → (W

1,p(x)
0 (Ω))∗,

then

(2.1) 〈Au, v〉 =

∫

Ω

|∇u(x)|p(x)−2(∇u(x),∇v(x))dx

for all u, v ∈W
1,p(x)
0 (Ω).

Lemma 2.4 (Fan-Zhang [8]). If A is the operator defined above, then A is a con-

tinuous, bounded and strictly monotone operator of type (S)+ i.e., un → u weakly in

W
1,p(x)
0 (Ω) and lim sup

n→∞
〈Aun, un − u〉 6 0 implies that un → u in W

1,p(x)
0 (Ω).

Let (X, ‖ ·‖) be a Banach space and X∗ its topological dual. A function f : X →
R is said to be locally Lipschitz, if for every x ∈ X there exists a neighbourhood U

of x and a constant K > 0 depending on U such that |f(y) − f(z)| 6 K‖y − z‖ for

all y, z ∈ U . From convex analysis it is well know that a proper, convex and lower

semicontinuous function g : X → R = R ∪ {+∞} is locally Lipschitz in the interior

of its domain domg = {x ∈ X : g(x) <∞}.
In analogy with the directional derivative of a convex function, we introduce the

notion of the generalized directional derivative of a locally Lipschitz function f at

x ∈ X in the direction h ∈ X by

f 0(x; h) = lim sup
y→x,λց0

f(y + λh) − f(y)

λ
.

The function h 7−→ f 0(x, h) ∈ R is sublinear and continuous so it is the support

function of a nonempty, w∗-compact and convex set

∂f(x) = {x∗ ∈ X∗ : 〈x∗, h〉 6 f 0(x, h) for all h ∈ X}.

The set ∂f(x) is known as generalized or Clarke subdifferential of f at x. If f is

convex, then the subdifferential in the sense of convex analysis coincides with the

generalized subdifferential introduced above.

The critical point theory for smooth functions uses a compactness condition

known as “Cerami condition” (C-condition for short). In our present nonsmooth

settings, the condition takes the following form.

We say that f satisfies the “nonsmooth Cerami condition” (nonsmooth C-condition

for short), if any sequence {xn}n>1 ⊆ X such that {f(xn)}n>1 is bounded and
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(1 + ‖xn‖)m(xn) → 0 as n → ∞, where m(xn) = min{‖x∗‖∗ : x∗ ∈ ∂f(xn)}, has a

strongly convergent subsequence.

The first theorem is due to Chang [6] and extends to a nonsmooth setting the

well known mountain pass theorem due to Ambrosetti-Rabinowitz [1].

Theorem 2.5. If X is a reflexive Banach space, R : X → R is a locally Lipschitz

functional satisfying C-condition and for some ρ > 0 and y ∈ X such that ‖y‖ > ρ,

we have

max{R(0), R(y)} < inf
‖x‖=ρ

{R(x)} =: η,

then R has a nontrivial critical point x ∈ X such that the critical value c = R(x) > η

is characterized by the following minimax principle

c = inf
γ∈Γ

max
06τ61

{R(γ(τ))},

where Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = y}.

The second theory is an other nonsmooth version of mountain pass theorem.

Theorem 2.6. If X is a reflexive Banach space and R : X → R is a bounded

below and locally Lipschitz functional which satisfies nonsmooth C-condition, then

c = inf{R(x) : x ∈ X} is a critical value of R.

3. Existence of Solutions

We start by introducing our assumptions for the nonsmooth potential j(x, t).

H(j) j : Ω × R → R is a function such that j(x, 0) = 0 a.e. in Ω and

(i) for all t ∈ R, the function Ω ∋ x→ j(x, t) ∈ R is measurable;

(ii) for almost all x ∈ Ω, the function R ∋ t→ j(x, t) ∈ R is locally Lipschitz;

(iii) for almost all x ∈ Ω and all v ∈ ∂j(x, t), we have |v| 6 c1|t|r(x)−1 with r ∈ C(Ω)

such that p+ < r− := min
x∈Ω

r(x) 6 r(x) < p̂∗ and c1 > 0;

(iv) there exists c > 2c1 such that

lim sup
|t|→∞

v∗t− j(x, t)

|t|r(x)
6 −c,

uniformly for almost all x ∈ Ω and all v∗ ∈ ∂j(x, t).

We introduce locally Lipschitz functional R : W
1,p(x)
0 (Ω) → R defined by

R(u) =

∫

Ω

1

p(x)
|∇u(x)|p(x)dx−

∫

Ω

λ

p(x)
|u(x)|p(x)dx−

∫

Ω

j(x, u(x))dx,

for all u ∈W
1,p(x)
0 (Ω).

Lemma 3.1. If hypothesis H(j) hold, then R satisfies the nonsmooth C-condition.
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Proof. Let {un}n>1 ⊆ W
1,p(x)
0 (Ω) be a sequence such that {R(un)}n>1 is bounded and

m(un) → 0 as n→ ∞. We will show that {un}n>1 ⊆W
1,p(x)
0 (Ω) is bounded.

Because |R(un)| 6 M for all n > 1, we have

(3.1) −M 6

∫

Ω

1

p(x)
|∇un(x)|p(x)dx−

∫

Ω

λ

p(x)
|un(x)|p(x)dx−

∫

Ω

j(x, un(x))dx.

Since ∂R(un) ⊆ (W
1,p(x)
0 (Ω))∗ is weakly compact, nonempty and the norm func-

tional is weakly lower semicontinuous in a Banach space, then we can find u∗n ∈ ∂R(un)

such that ‖u∗n‖∗ = m(un) for n > 1.

Consider the operator A : W
1,p(x)
0 (Ω) → (W

1,p(x)
0 (Ω))∗ defined by (2.1). Then, for

every n > 1, we have

(3.2) u∗n = Aun − λ|un|p(x)−2un − v∗n,

where v∗n ∈ ∂ψ(un) ⊆ Lp′(x)(Ω), for n > 1, with 1
p(x)

+ 1
p′(x)

= 1 and ψ : W
1,p(x)
0 (Ω) → R

is defined by ψ(un) =
∫

Ω

j(x, un(x))dx. We know that, if v∗n ∈ ∂ψ(un), then v∗n(x) ∈
∂j(x, un(x)) (see Clarke [7]).

From the choice of the sequence {u∗n}n>1 ⊆ W
1,p(x)
0 (Ω), at least for a subsequence,

we have

(3.3) |〈u∗n, w〉| 6
εn‖w‖

1 + ‖un‖
for all w ∈W

1,p(x)
0 (Ω),

with εn ց 0. Putting w = un in (3.3) and using (3.2), we obtain

(3.4) −εn 6 −
∫

Ω

|∇un(x)|p(x)dx+ λ

∫

Ω

|un(x)|p(x)dx+

∫

Ω

v∗n(x)un(x)dx.

Now, let us consider two cases.

Case 1. Let λ 6 0.

Adding (3.1) and (3.4), we have

−M − εn 6

( 1

p−
− 1

)∫

Ω

|∇un(x)|p(x)dx+ |λ|
( 1

p−
− 1

)∫

Ω

|un(x)|p(x)dx

+

∫

Ω

v∗n(x)un(x)dx−
∫

Ω

j(x, un(x))dx.(3.5)

So we obtain that

|λ|
(
1 − 1

p−

)∫

Ω

|un(x)|p(x)dx 6

M + εn +

∫

Ω

v∗n(x)un(x)dx−
∫

Ω

j(x, un(x))dx.(3.6)

By virtue of hypotheses H(j)(iv), we know that there exist constant c > 2c1,

such that

lim sup
|t|→∞

v∗t− j(x, t)

|t|r(x)
6 −c,
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uniformly for almost all x ∈ Ω and all v∗ ∈ ∂j(x, t) with p+ < r− 6 r(x) < p̂∗ for all

x ∈ Ω. So in particularly, there exists L > 0 such that for almost all x ∈ Ω and all

|t| > L, we have

(3.7) v∗t− j(x, t) 6 −c
2
|t|r(x).

On the other hand, from the Lebourg mean value theorem (see Clarke [7]), for almost

all x ∈ Ω and all t ∈ R, we can find v(x) ∈ ∂j(x, ku(x)) with 0 < k < 1, such that

|j(x, t) − j(x, 0)| 6 |v||t|.

So from hypothesis H(j)(iii), for almost all x ∈ Ω, we have

|j(x, t)| 6 |j(x, 0)| + c1|t|r(x)
6 c1|t|r

+

.

Then for almost all x ∈ Ω and all t such that |t| < L, it follows that

(3.8) |j(x, t)| 6 c2,

for some c2 > 0. Therefore, from (3.7) and (3.8) it follows that for almost all x ∈ Ω

and all t ∈ R, we have

(3.9) v∗t− j(x, t) 6 −c
2
|t|r(x) + β,

for some β > 0 and p+ < r− 6 r(x) < p̂∗ for all x ∈ Ω.

We use (3.9) in (3.6) and obtain

|λ|
(
1 − 1

p−

)∫

Ω

|un(x)|p(x)dx 6 M + εn − c

2

∫

Ω

|un(x)|r(x)dx+

∫

Ω

βdx,

which leads to

|λ|
(
1 − 1

p−

)∫

Ω

|un(x)|p(x)dx 6 M1,

for some M1 > 0. We know that |λ|
(
1 − 1

p−

)
> 0, so

(3.10) the sequence {un}n>1 ⊆ Lp(x)(Ω) is bounded.

Now, consider again (3.5) to obtain
(
1 − 1

p−

)∫

Ω

|∇un(x)|p(x)dx 6 M + εn +

∫

Ω

v∗n(x)un(x)dx−
∫

Ω

j(x, un(x))dx.

In a similar way, by using (3.9) we have
(
1 − 1

p−

) ∫

Ω

|∇un(x)|p(x)dx 6 M + εn − c

2

∫

Ω

|un(x)|r(x)dx+

∫

Ω

βdx,

for all n > 1 with p+ < r− 6 r(x) < p̂∗ for all x ∈ Ω. Hence, we get
(
1 − 1

p−

)∫

Ω

|∇un(x)|p(x)dx 6 M2,

for some M2 > 0. So, we have that

(3.11) the sequence {∇un}n>1 ⊆ Lp(x)(Ω; RN) is bounded.
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From (3.10) and (3.11), we have that

the sequence {un}n>1 ⊆W
1,p(x)
0 (Ω) is bounded.

Case 2. Now, let λ > 0.

Again from (3.1) and (3.4), we have

−M − εn 6

( 1

p−
− 1

)∫

Ω

|∇un(x)|p(x)dx+ λ
(
1 − 1

p+

)∫

Ω

|un(x)|p(x)dx

+

∫

Ω

v∗n(x)un(x)dx−
∫

Ω

j(x, un(x))dx.(3.12)

Since
(

1
p−

− 1
)
< 0 and using (3.9), we have

−M − εn 6 λ
(
1 − 1

p+

) ∫

Ω

|un(x)|p(x)dx

−c
2

∫

Ω

|un(x)|r(x)dx+

∫

Ω

βdx.

for all n > 1 and p+ < r− 6 r(x) < p̂∗ for all x ∈ Ω. Hence, we have

c

2

∫

Ω

|un(x)|r(x)dx 6 λ
(
1 − 1

p+

)∫

Ω

|un(x)|p(x)dx+K,

for some K > 0. Since p(x) 6 p+ < r− 6 r(x) for all x ∈ Ω, we have

the sequence {un}n>1 ⊆ Lr(x)(Ω) is bounded.

For any n > 1 such that ‖un‖p(x) 6 1 we have

‖un‖p+

p(x) <

∫

Ω

|un(x)|p(x)dx <

∫

Ω

|un(x)|p
−

dx 6 K1,

for some K1 > 0 (see Lemma 2.2).

On the other hand, for any n > 1 such that ‖un‖p(x) > 1, we have

‖un‖p−

p(x) <

∫

Ω

|un(x)|p(x)dx <

∫

Ω

|un(x)|p
+

dx < ‖un‖r(x)
r(x) 6 K2,

with some K2 > 0. Thus

(3.13) the sequence {un}n>1 ⊆ Lp(x)(Ω) is bounded.

Now, again from (3.12), we have
(
1 − 1

p−

)∫

Ω

|∇un(x)|p(x)dx 6 M + εn + λ
(
1 − 1

p+

)∫

Ω

|un(x)|p(x)dx

+

∫

Ω

v∗n(x)un(x)dx−
∫

Ω

j(x, un(x))dx.(3.14)

Using (3.9) and (3.13) in (3.14), we obtain
(
1 − 1

p−

)∫

Ω

|∇un(x)|p(x)dx 6 M3,
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for some M3 > 0. Since
(
1 − 1

p−

)
> 0, we have that

(3.15) the sequence {∇un}n>1 ⊆ Lp(x)(Ω; RN) is bounded.

From (3.13) and (3.15), we have that

the sequence {un}n>1 ⊆W
1,p(x)
0 (Ω) is bounded.

From Cases 1 and 2, we have that

the sequence {un}n>1 ⊆W
1,p(x)
0 (Ω) is bounded.

Hence, by passing to a subsequence if necessary, we may assume that

(3.16)
un → u weakly in W

1,p(x)
0 (Ω),

un → u in Lp(x)(Ω),

for some u ∈W
1,p(x)
0 (Ω). Putting w = un − u in (3.3) and using (3.2), we obtain

∣∣∣〈Aun, un − u〉 − λ

∫

Ω

|un(x)|p(x)−2un(x)(un − u)(x)dx

−
∫

Ω

v∗n(x)(un − u)(x)dx
∣∣∣ 6 εn,(3.17)

with εn ց 0. Using Lemma 2.1(c), we see that

λ

∫

Ω

|un(x)|p(x)−2un(x)(un − u)(x)dx

6 λ
( 1

p−
+

1

p′−

)
‖ |un|p(x)−1‖p′(x)‖un − u‖p(x),

where 1
p(x)

+ 1
p′(x)

= 1. We know that the sequence {un}n>1 ⊆ Lp(x)(Ω) is bounded,

so using (3.16), we can conclude that

λ

∫

Ω

|un(x)|p(x)−2un(x)(un − u)(x)dx→ 0 as n→ ∞

and ∫

Ω

v∗n(x)(un − u)(x)dx→ 0 as n→ ∞.

If we pass to the limit as n→ ∞ in (3.17), we have

lim sup
n→∞

〈Aun, un − u〉 6 0.

So from Lemma 2.4, we have that un → u in W
1,p(x)
0 (Ω) as n→ ∞. Thus R satisfies

the C-condition.

For the first existence theorem, we will need an additional assumption

H(j)1 there exists ν > 0 such that

lim sup
|t|→0

j(x, t)

|t|h(x)
6 −ν,
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uniformly for almost all x ∈ Ω and for some h(x) ∈ C(Ω) with 1 < h(x) 6 h+ < p− <

p̂∗ for all x ∈ Ω.

Theorem 3.2. If hypotheses H(j) and H(j)1 hold then problem (1.1) has a nontrival

solution for all λ ∈ (−∞, νp−).

Proof. Claim 1. There exists ρ ∈ (0, 1) small enough such that, we have R(u) > L,

for all u ∈W
1,p(x)
0 (Ω) with ‖u‖ = ρ and some L > 0.

Indeed by using hypothesis H(j)1, we can find δ > 0, such that for almost all

x ∈ Ω and all t such that |t| 6 δ, we have

j(x, t) 6 −ν|t|h(x), where 1 < h(x) 6 h+ < p−.

On the other hand, from hypothesis H(j)(iii), we know that for almost all x ∈ Ω and

all t such that |t| > δ, we have

|j(x, t)| 6 c1|t|r(x),

where p+ < r(x) < p̂∗ for all x ∈ Ω. Thus for almost all x ∈ Ω and all t ∈ R we have

(3.18) j(x, t) 6 −ν|t|h(x) + d1|t|r(x),

with some d1 > 0, 1 < h(x) 6 h+ < p− 6 p(x) 6 p+ < r− 6 r(x) < p̂∗ for all x ∈ Ω.

Moreover, since W
1,p(x)
0 (Ω) is embedded continuously into Lp(x)(Ω), Lh(x)(Ω) and

Lr(x)(Ω) (see Lemma (2.1)), so for β(x) := p(x) (respectively h(x) or r(x)), we have

that

(3.19) ‖u‖β(x) 6 K3‖u‖,

for all u ∈W
1,p(x)
0 (Ω) and some K3 > 0.

If we fix ρ ∈ (0, 1) such that ρ < min{1, 1
K3

}, then for all u ∈ W
1,p(x)
0 (Ω), with

‖u‖ = ρ, from (3.19) we can deduce that

‖u‖β(x) 6 1 where β(x) := p(x) (respectively h(x) or r(x)).

Futhermore, using Lemma 2.2 and (3.19), we obtain

(3.20)

∫

Ω

|u(x)|β(x)dx 6 ‖u(x)‖β−

β(x) 6 K3‖u‖β−

,

for β(x) := p(x) (respectively h(x) or r(x)).

Moreover, since 1 < h(x) 6 h+ < p(x) 6 p+ < r− 6 r(x), then for all u ∈
W

1,p(x)
0 (Ω), with ‖u‖ = ρ, we have that

(3.21) ‖u‖r(x) 6 ‖u‖p(x) 6 ‖u‖h(x).

Let us consider two cases.

Case 1. Let λ 6 0.
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By using (3.18), (3.20) and Lemma 2.2, we obtain that

R(u) =

∫

Ω

1

p(x)
|∇u(x)|p(x)dx−

∫

Ω

λ

p(x)
|u(x)|p(x)dx−

∫

Ω

j(x, u(x))dx

>
1

p+

∫

Ω

|∇u(x)|p(x)dx+
|λ|
p+

∫

Ω

|u(x)|p(x)dx

+ν

∫

Ω

|u(x)|h(x)dx− d1

∫

Ω

|u(x)|r(x)dx

> c5‖u‖p+ − d1

∫

Ω

|u(x)|r(x)dx > c5‖u‖p+ − d1‖u‖r−,

where c5 = min{ 1
p+ ,

|λ|
p+} and ν > 0.

Since p+ < r− 6 r(x) for all x ∈ Ω, we have R(u) > L > 0, for all u ∈W
1,p(x)
0 (Ω),

with ‖u‖ = ρ.

Case 2. Let λ > 0.

Using (3.18) and (3.21), we obtain that

R(u) =

∫

Ω

1

p(x)
|∇u(x)|p(x)dx−

∫

Ω

λ

p(x)
|u(x)|p(x)dx−

∫

Ω

j(x, u(x))dx

>
1

p+

∫

Ω

|∇u(x)|p(x)dx− λ

p−

∫

Ω

|u(x)|p(x)dx

+ν

∫

Ω

|u(x)|h(x)dx− d1

∫

Ω

|u(x)|r(x)dx

>
1

p+

∫

Ω

|∇u(x)|p(x)dx+
(
ν − λ

p−

)∫

Ω

|u(x)|p(x)dx− d1

∫

Ω

|u(x)|r(x)dx.

From hypothesis, we know that ν − λ
p−
> 0 and by using (3.20), we have

R(u) > c6‖u‖p+ − d1‖u‖r−,

where c6 = min{ 1
p+ , ν − λ

p−
}.

So again, we have that R(u) > L > 0, for all u ∈W
1,p(x)
0 (Ω), with ‖u‖ = ρ.

Claim 2. R(u) is anticoercive, i.e. R(u) → −∞ as ‖u‖ → ∞. We assume that

‖u‖ > 1. Again using hypothesis H(j)(iv), for almost all x ∈ Ω and all t such that

t > M , we have

(3.22) j(x, t) > v∗t+
c

2
|t|r(x) − β,

for some β > 0 and p+ < r− 6 r(x) < p̂∗ for all x ∈ Ω (see (3.9)).

On the other hand, from H(j)(iii), we see that for almost all x ∈ Ω we have

|v∗t| 6 c1|t|r(x), where c1 > 0. So from (3.22) and this inequality, we obtain

(3.23) j(x, t) >
c

2
|t|r(x) − c1|t|r(x) − β = c3|t|r(x) − β,

where c3 > 0 (since c > 2c1) with p(x) 6 p+ < r(x) 6 r+ < p̂∗.
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Using (3.23) and Lemma 2.2, for any u ∈W
1,p(x)
0 (Ω)\{0} and s > 1, we have

R(su) =

∫

Ω

1

p(x)
|∇su(x)|p(x)dx−

∫

Ω

λ

p(x)
|su(x)|p(x)dx−

∫

Ω

j(x, su(x))dx

6 sp+
( 1

p−

∫

Ω

|∇u(x)|p(x)dx+
|λ|
p−

∫

Ω

|u(x)|p(x)dx
)
−

∫

Ω

j(x, su(x))dx

6 c · sp+( ∫

Ω

(|∇u(x)|p(x) + |u(x)|p(x))dx
)
− c3

∫

Ω

|su(x)|r(x)dx+

∫

Ω

βdx

6 c · sp+‖u‖p+ − c3 · sr−
∫

Ω

|u(x)|r(x)dx+

∫

Ω

βdx,

where c = max{ 1
p−
,
|λ|
p−
} and p+ < r+ 6 r(x) < p̂∗.

Because r− > p+, we get that R(su) → −∞ when s → ∞. This permits the

use of Theorem 2.5 which gives us u ∈ W
1,p(x)
0 (Ω) such that R(u) > 0 = R(0) and

0 ∈ ∂R(u).

From the last inclusion we obtain

0 = Au− λ|u|p(x)−2u− v∗,

where v∗ ∈ ∂ψ(u). Hence

Au = λ|u|p(x)−2u+ v∗,

so for all v ∈ C∞
0 (Ω), we have 〈Au, v〉 = λ〈|u|p(x)−2u, v〉 + 〈v∗, v〉.

So we have ∫

Ω

|∇u(x)|p(x)−2(∇u(x),∇v(x))RNdx

=

∫

Ω

λ|u(x)|p(x)−2u(x)v(x)dx+

∫

Ω

v∗(x)v(x)dx,

for all v ∈ C∞
0 (Ω).

From the definition of the distributional derivative we have{
−div

(
|∇u(x)|p(x)−2∇u(x)

)
= λ|u(x)|p(x)−2u(x) + v(x) in Ω,

u = 0 on ∂Ω,

so {
−∆p(x)u(x) − λ|u(x)|p(x)−2u(x) ∈ ∂j(x, u(x)) in Ω,

u = 0 on ∂Ω.

Therefore u ∈W
1,p(x)
0 (Ω) is a nontrivial solution of (1.1).

Remark 3.3. A nonsmooth potential satisfying hypotheses H(j) and H(j)1 is for

example the one given by the following function

j1(x, t) =

{
−ν|t|h(x) if |t| 6 1,

−|t|r+ − ν + 1 if |t| > 1,

with ν > 0 and continuous functions h, r : Ω → R which satisfy 1 < h(x) 6 h+ <

p− 6 p(x) 6 p+ < r− 6 r(x) 6 r+ < p̂∗.
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Instead of hypothesis H(j)1 we can take additional assumption about behaviour

in infinity and also obtain existence of a nontrival solution.

H(j)2 there exists µ > 2c1 such that

lim sup
|t|→∞

j(x, t)

|t|r(x)
6 −µ,

uniformly for almost all x ∈ Ω with 1 < p(x) 6 p+ < r− 6 r(x) < p̂∗ for all x ∈ Ω.

Theorem 3.4. If hypotheses H(j) and H(j)2 hold then problem (1.1) has a nontrival

solution for any λ ∈ R.

Proof. We claim that R(u) is bounded below. We assume that ‖u‖ > 1.

By virtue of hypotheses H(j)2, we know that there exist constants µ > 2c1 and

L > 0 such that for almost all x ∈ Ω and all |t| > L, we have

(3.24) j(x, t) 6 −µ
2
|t|r(x).

On the other hand, from the hypothesis H(j)(iii), for almost all x ∈ Ω and all

t < L, we have

(3.25) |j(x, t)| 6 c1|t|r(x),

with p+ < r− 6 r(x). Therefore, from (3.24) and (3.25) it follows that for almost all

x ∈ Ω and all t ∈ R, we have

j(x, t) 6 (c1 −
µ

2
)|t|r(x)

6 −k|t|r(x),

for some k > 0 (since µ > 2c1) and p+ < r− 6 r(x) < p̂∗ for all x ∈ Ω.

Hence, we have

R(u) =

∫

Ω

1

p(x)
|∇u(x)|p(x)dx−

∫

Ω

λ

p(x)
|u(x)|p(x)dx−

∫

Ω

j(x, u(x))dx

>
1

p+

∫

Ω

|∇u(x)|p(x)dx− λ+

p−

∫

Ω

|u(x)|p(x)dx+ k

∫

Ω

|u(x)|r(x)dx

> k

∫

Ω

|u(x)|r(x)dx− λ+

p−

∫

Ω

|u(x)|p(x)dx,

where λ+ := max{0, λ}. Since r− > p+, so R(u) > L > 0 for all u ∈ W
1,p(x)
0 (Ω) with

‖u‖ > 1.

We know that R satisfies C-condition. So we apply Theorem 2.6 and obtain

u0 ∈ W
1,p(x)
0 (Ω) such that R(u0) = inf{R(u) : u ∈ W

1,p(x)
0 (Ω)}. This implies that u0

is a critical point of R, and so it is a solution of (1.1).

Remark 3.5. The existence of a nontrival solution for problem (1.1) was also con-

sidered in the papers of Barnaś [2, 3, 4]. In contrast to the last papers, we have

no restriction on λ, it means λ ∈ R. Moreover, we make the hypothesis as simple
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as possibe. In hypothesis H(j)(iv), we assume a Tang-type condition which is more

general than Landesman-Lazer or Ambrosetti-Rabinowitz condition.
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[14] L. Gasiński, N. S. Papageorgiou, An existance theorem for nonlinear hemivariational inequalities

at resonance, Bull. Austr. Math. Soc, 63 (1) (2001), 1–14.
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