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ABSTRACT. Let a, σ, p, q, r, and m be constants with a > 0, σ > 0, p ≥ 0, q ≥ 0, r > 1,

and m > 0. This article studies the following degenerate semilinear parabolic initial-boundary value

problem,

ξquτ − uξξ = ξpur for 0 < ξ < a, 0 < τ < σ,

u(ξ, 0) = u0 (ξ) = m for 0 ≤ ξ ≤ a,

uξ(0, τ) = 0 = uξ(a, τ) for τ > 0.

We derive criteria for u to blow up in finite time, and estimate the blow-up rate. We show that the

blow-up is regional if q > p; the blow-up is complete if q = p; and the blow-up cannot be complete

if p > q.
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1. Introduction

Let a, σ, p, q, r, and m be constants with a > 0, σ > 0, p ≥ 0, q ≥ 0, r > 1, and

m > 0. We consider the following degenerate semilinear parabolic initial-boundary

value problem,

ξquτ − uξξ = ξpur for 0 < ξ < a, 0 < τ < σ,

u(ξ, 0) = u0 (ξ) = m for 0 ≤ ξ ≤ a,

uξ(0, τ) = 0 = uξ(a, τ) for 0 < τ < σ.

Let ξ = ax, τ = aq+2t, D = (0, 1), Ω = D × (0, T ), D̄ and Ω̄ be the closures of D

and Ω respectively, and Lu = xqut − uxx. The above problem is transformed into

(1.1)











Lu = ap+2xpur in Ω,

u(x, 0) = u0 (x) = m > 0 on D̄,

ux(0, t) = 0 = ux(1, t), 0 < t < T ,

where T = σ/aq+2 < ∞.
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A solution u of the problem (1.1) is said to blow up at the point (x̄, tb) if there

exists a sequence {(xn, tn)} such that u (xn, tn) → ∞ as (xn, tn) → (x̄, tb). The blow-

up of u is complete if u blows up at every point x ∈ D̄ at t = tb. The blow-up of u

is regional in the case q > p, if u blows up at every point x ∈ [0, b1] at t = tb, where

b1 < 1.

Chan and Dyakevich [1] investigated the blow-up set of the solution for the de-

generate semilinear parabolic equation Lu = a2f (u) subject to the mixed boundary

conditions u(0, t) = 0 = ux(1, t). Dyakevich [3] studied quenching of the solution for

the problem (1.1) with m = 0 and with ap+2xpur replaced by the function xpf(u)

satisfying limu→c− f (u) = ∞ for some positive constant c. It was shown that con-

stants p and q determine whether the solution quenches completely, or at one of the

boundary points x = 0 or x = 1. In this article, we investigate the influence of the

constants p and q on the blow-up set of the solution u of the problem (1.1).

In Section 2, we discuss existence of a unique classical solution. In Section 3, we

investigate the conditions for u to blow up in a finite time tb, and give an estimate

for the blow-up rate. In Section 4, we show that the blow-up is regional if q > p,

and complete if q = p. In Section 5, we show that the blow-up cannot be complete if

p > q.

2. Existence of a Unique Classical Solution

Let Dε = (ε, 1), D̄ε = [ε, 1], Ωε = Dε × (0, T ), where 0 ≤ ε < 1
2
. We notice that if

ε = 0, then Dε = D. The proof of the following comparison lemma is similar to the

proof of Lemma 2.1 in Dyakevich [3].

Lemma 2.1. For any fixed t̄ ∈ (0, T ), and any bounded and nontrivial function

B(x, t) on D̄ε × [0, t̄], if

(L − xpB)u ≥ 0 in Dε × (0, t̄],

u(x, 0) ≥ 0, x ∈ D̄ε,

ux(ε, t) ≤ 0, u(b, t) ≥ 0, t ∈ [0, t̄],











then u ≥ 0 on D̄ε × [0, t̄].

Following the idea in the proof of Lemma 1 in Chan and Kaper [2], we have the

following result.

Lemma 2.2. The problem (1.1) has at most one solution u. This solution has the

following properties: (i). u > m in D̄× (0, T ); (ii). u is a strictly increasing function

of t for all x ∈ D̄.

Proof. Let u1 and u2 be two distinct solutions of the problem (1.1) and let y = u1−u2.

Uniqueness of u follows directly from Lemma 2.1 of [3].
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(i). Let y = u − m. Because f (m) = mr > 0 and xpmr > 0 for any x ∈ D, we

have:

xqut − uxx − ap+2xpf (u) + ap+2xpf (m) = xqyt − yxx − ap+2xprηr−1y > 0 in Ω,

y (x, 0) = 0 on D̄,

yx (0, t) = 0 = yx (1, t) , 0 < t < T ,











for some η between u and m. By Lemma 2.1 of [3], y ≥ 0. By the strong maximum

principle [4, p. 39], if y = 0 at some point (x2, t2) ∈ (0, 1) × (0, T ), then y = 0 in

(0, 1) × (0, t2]. This contradicts to

0 = xqyt − yxx − ap+2xprηr−1y > 0 in (0, 1) × (0, t2].

Therefore, y > 0 at any point in (0, 1). Suppose y attains its minimum value zero at

x = 0 or x = 1. By the parabolic version of Hopf’s Lemma [4, p. 49], yx(0, t) > 0 and

yx(1, t) < 0. This contradiction shows that y > 0 on D̄.

(ii). The proof of this result is identical to the proof of Lemma 2.2 (ii) in Dyake-

vich [3, p. 894].

We modify the proof of Lemma 2.3 in Dyakevich [3, p.895] to prove the following

result.

Lemma 2.3. There exists some positive constant t0 (< T ) such that the problem (1.1)

has an upper solution µ(x, t) ∈ C2,1([0, 1] × [0, t0]).

Proof. We consider the problem,

(2.1)

Luε = ap+2xpur
ε in Dε × (0, t0] ,

uε(x, 0) = m on D̄ε,

uεx
(ε, t) = 0 = uεx

(1, t) for 0 < t ≤ t0.











Let m̂ > 1, 0 < γ < 1
2
, and K > m̂ be chosen such that

ap+2 (m̂ − 1) ≥ u0 (x) = m,

m̂r
(

ap+2
)r

< K,

m̂ − 1 < −(K/2)γ2 − γ + m̂ < m̂,

Kr
(

ap+2
)r

> 1.

Let us construct an upper solution µ(x, t) ∈ C2,1(D̄ × [0, t0]) for all uε, where ε < γ.

Let

θ(x) =



















−K
2
x2 − x + m̂, 0 ≤ x ≤ γ,

ĥ (x) , γ < x < 1 − γ,

−K
2

(1 − x)2 − (1 − x) + m̂, 1 − γ ≤ x ≤ 1,

where ĥ (x) is a positive C∞ function chosen such that θ (x) is in C2
(

D
)

and m̂ −
1 < ĥ (x) ≤ m̂. We note that θ′(x) < 0 for 0 ≤ x ≤ γ and θ′(0) = −1 < 0,
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θ′(γ) = −Kγ − 1 < 0 and θ′(1) = 1 > 0. Also, max
0≤x≤γ

θ(x) = m̂ and min
0≤x≤γ

θ(x) =

−(K/2)γ2 − γ + m̂ > m̂ − 1.

There exists some t1 such that the initial-value problem,

τ ′ (t) =

(

1 + max
γ≤x≤1

|θ′′|
)

ap+2Krτ r

γq

(

min
γ≤x≤1

θ

) , τ(0) = ap+2,

has a unique solution for 0 ≤ t ≤ t1. Let us choose some constant t0 in (0, t1] such

that

m̂rτ r (t0) ≤ K,

τ (t0) ≤ ap+2Kr (τ(0))r ≤ ap+2Krτ r.

Let µ(x, t) = θ(x)τ(t). For any x ∈ [0, γ] and t ∈ (0, t0], xqθτ ′ ≥ 0 and θ′′(x) =

−K < 0. Therefore,

Lµ − ap+2xpµr = xqθτ ′ − τθ′′ − ap+2xpθrτ r

≥ τ (0)K − ap+2θr (0) τ r (t0))

= ap+2 [K − m̂rτ r (t0))]

≥ 0.

We have for x ∈ (γ, 1],

Lµ − ap+2xpµr ≥ γq

(

min
γ≤x≤1

θ

)

τ ′ (t) − τ (t0)

(

max
γ≤x≤1

|θ′′|
)

− ap+2θrτ r

≥ γq

(

min
γ≤x≤1

θ

)

τ ′ (t) − ap+2Krτ r

(

max
γ≤x≤1

|θ′′|
)

− ap+2Krτ r

≥ γq

(

min
γ≤x≤1

θ

)









τ ′ (t) −

(

1 + max
γ≤x≤1

|θ′′|
)

ap+2Krτ r

γq

(

min
γ≤x≤1

θ

)









= 0.

We also have µ(x, 0) = ap+2θ(x) ≥ ap+2 (m̂ − 1) ≥ u0(x) = m, µx(0, t) = θx (0) τ (t) <

0, µx(1, t) = θx (1) τ (t) > 0 and µ(x, t) ∈ C2,1(D̄ × [0, t0]). The function y = µ − uε

satisfies
Ly − xprϑry ≥ 0 in Dε × (0, t0],

y(0) > 0, x ∈ D̄ε,

yx(ε, t) < 0, yx(1, t) > 0, t ∈ [0, t0],











where ϑ is between µ and uε for all ε < γ. By Lemma 2.1 in Dyakevich [3, p. 896–898],

y = µ − uε ≥ 0.

The proofs of the following two results can be found in Dyakevich [3, p. 896–898].
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Lemma 2.4. Let 0 < ε1 < ε2 < γ and suppose that uε1
and uε2

are solutions of the

problem (2.1) on (0, t0). If p < q, then uεx
< 0 and uε1

> uε2
in Ωε2

. If p > q, then

uεx
> 0 and uε1

< uε2
in Ωε2

.

Theorem 2.5. The problem (1.1) has a classical solution C
(

D̄
)

∩C2,1((0, 1]× [0, t0]).

We modify the proof of Theorem 2.6 in Dyakevich [3, p. 898] to obtain the

following continuation theorem.

Theorem 2.6. Let T be the supremum over t0 for which the problem (1.1) has a

unique solution u(x, t) ∈ C(D̄)∩C2,1((0, 1]× [0, t0]). Then, there is a unique solution

u(x, t) ∈ C(D̄ × [0, T )) ∩ C2,1((0, 1] × [0, T )). If T < ∞, then u is unbounded in Ω.

Proof. Let us suppose that u is bounded above by some positive constant M >

1/ (2ap+2) in Ω. We would like to show that u can be continued into a time in-

terval [0, T + t̃0] for some positive t̃0. Let a positive constant K∗ be such that

1 < (2Map+2)
r

< K∗ and a positive constant γ̃ is such that −K∗

2
γ̃2 − γ̃ + 2M > M .

Let

θ̃1(x) =



















−K∗

2
x2 − x + 2M, 0 ≤ x ≤ γ̃,

h̃ (x) , γ̃ < x < 1 − γ̃

−K∗

2
(1 − x)2 − (1 − x) + 2M, 1 − γ̃ ≤ x ≤ 1,

where h̃ (x) is a positive C∞ function chosen such that θ̃1(x) is in C2
(

D
)

and M <

h̃ (x) ≤ 2M . By construction, θ̃1 (x) > M ≥ u (x, t) ≥ u0 (x) = m for any t ≤ T .

Also, we notice that θ̃1x
(0) < 0 = ux (0, t), and θ̃′1 (1) > 0 = ux (1, t) for t > 0.

With θ̃1(x) as the initial function at T , we are to construct an upper solution

µ̃ (x, t) of u (x, t) on D̄ × [T, T + t̃0] for some positive t̃0. There exists some t2 such

that the initial-value problem,

τ̃ ′
1 (t − T ) =

ap+2 (2M)r

(

max
γ̃≤x≤1

∣

∣

∣
θ̃′′1

∣

∣

∣
+ 1

)

τ̃ r
1 (t − T )

γ̃q min
γ̃≤x≤1

θ̃1

, τ̃1(T − T ) = ap+2,

has a unique solution τ̃1(t − T ) for T ≤ t ≤ T + t̃2. Let µ̃(x, t) = θ̃1(x)τ̃1(t− T ), and

t̃0 be chosen such that 0 < t̃0 ≤ t̃2 and

(2M)r τ̃ r
1

(

t̃0
)

≤ K∗,

τ̃1

(

t̃0
)

≤ (2M)r ap+2τ̃ r
1 (t − T ) .

Since xq θ̃1τ̃
′
1 (t) ≥ 0, and θ̃′′1 (x) = −K∗, we obtain for any x ∈ (0, γ̃] and t ∈

[

T, T + t̃0
]

,

Lµ̃ − ap+2xpµ̃r ≥ K∗τ̃1 − ap+2θ̃r
1τ̃

r
1 ≥ ap+2

(

K∗ − (2M)r τ̃ r
1

(

t̃0
))

≥ 0.
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It follows from τ̃1 (t − T ) ≥ ap+2 for t ∈
[

T, T + t̃0
]

that for x ∈ (γ̃, 1] and t ∈
[

T, T + t̃0
]

,

Lµ̃ − ap+2xpµ̃r ≥ γ̃q

(

min
γ̃≤x≤1

θ̃1

)

τ̃ ′
1 (t − T ) − τ̃1 (t − T )

(

max
γ̃≤x≤1

∣

∣

∣
θ̃′′1

∣

∣

∣

)

− ap+2θ̃r
1τ̃

r
1 (t − T )

≥ γ̃q

(

min
γ̃≤x≤1

θ̃1

)

τ̃ ′
1 (t − T ) − ap+2 (2M)r τ̃ r

1 (t − T )

(

max
γ̃≤x≤1

∣

∣

∣
θ̃′′1

∣

∣

∣

)

− ap+2 (2M)r τ̃ r
1 (t − T )

≥ γ̃q min
γ̃≤x≤1

θ̃1









τ̃ ′
1 (t − T ) −

ap+2 (2M)r τ̃ r
1 (t − T )

(

max
γ̃≤x≤1

∣

∣

∣
θ̃′′1

∣

∣

∣
+ 1

)

γ̃q min
γ̃≤x≤1

θ̃1









= 0.

By Lemma 2.1 of [3], µ̃(x, t) is an upper solution of u on D̄ ×
[

T, T + t̃0
]

. As in

Lemma 2.4 and Theorem 2.5, we can show that the problem (1.1) has a unique

solution u(x, t) ∈ C(D̄ ×
[

0, T + t̃0
]

) ∩C2,1((0, 1]×
[

0, T + t̃0
]

). This contradicts the

definition of T .

3. Occurrence of Blow-up and Blow-up Rate Estimate

Theorem 3.1. Let q ≥ p and r > 1. Then there exists some

(3.1) tb ≤ 1/
(

mr−1ap+2 (r − 1)
)

< ∞

such that

lim
t→t−

b

max
x∈D̄

u(x, t) = ∞.

Proof. Let τ(t) satisfy

τ ′ (t) = ap+2τ r(t), τ(0) = m > 0.

Then

τ (t) =

[

1

m1−r − ap+2 (r − 1) t

]
1

r−1

for 0 ≤ t < t̂b,

where

t̂b =
1

mr−1ap+2 (r − 1)
.

We have for x ∈ (0, 1) and t ∈
(

0, t̂b
)

,

xqτ ′ − τxx − ap+2xpτ r ≤ xq
(

τ ′ − ap+2τ r
)

= 0.

Since τ does not depend on x, we have τx (0) = τx(1) = 0, τxx(t) = 0, and τ(0) =

m. Therefore, τ(t) is the lower solution that blows up at t̂b. We notice that if



ON OCCURRENCE OF COMPLETE BLOW-UP 89

q = p, then τ (t) is the unique solution of the problem (1.1) which blows up at

tb = 1/ (mr−1ap+2 (r − 1)) and the blow-up set is D̄.

Theorem 3.2. Let q < p and r > 1. If u0 (x) = m > 0 is sufficiently large, then

there exists some tb < ∞ such that

lim
t→t−

b

max
x∈D̄

u(x, t) = ∞.

Proof. Let us choose positive constants α, β, γ and ω as follows:

β > max {p − q, p + 2} ,

α > 2, ω > 0,

γ > max
{

2, p+2
2

}

.

Let positive constant K̃ satisfy the following:

K̃ >

[

1 + β (β − 1) ω + α (α − 1) γ2

ap+2 (r − 1)

]
1

r−1

.

Let

φ (x, t) =
K̃

D1/(r−1)
,

where

D (x, t) = xβ (ω − t) + (1 − xγ)α .

We have:

φt (x, t) =
K̃

(r − 1)
D−r/(r−1)xβ,

φx (x, t) = − K̃

(r − 1)
D−r/(r−1)

[

β (ω − t)xβ−1 − α (1 − xγ)α−1 γxγ−1
]

φxx (x, t) =
K̃r

(r − 1)2D(−2r+1)/(r−1)
[

(ω − t)βxβ−1 − αγ (1 − xγ)α−1 xγ−1
]2

− K̃

(r − 1)
D−r/(r−1)

{

(ω − t) β (β − 1) xβ−2

+α (α − 1) γ2 (1 − xγ)α−2 x2γ−2 − αγ (γ − 1) (1 − xγ)α−1 xγ−2
}

Therefore, for x ∈ (0, 1) and t ∈ (0, ω),

Lφ − ap+2xpφr

≤ xq K̃

(r − 1)
D−r/(r−1)xβ

+
K̃

(r − 1)
D−r/(r−1)

{

β (ω − t) (β − 1) xβ−2 + α (α − 1) γ2 (1 − xγ)α−2 x2γ−2
}

− ap+2xpK̃rD−r/(r−1)

≤ K̃

(r − 1)
D−r/(r−1)[xq+β + β (ω − t) (β − 1)xβ−2 + α (α − 1) γ2x2γ−2
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− ap+2xpK̃r−1 (r − 1)]

≤ K̃

(r − 1)
D−r/(r−1)xp

[

1 + β (β − 1)ω + α (α − 1) γ2 − ap+2K̃r−1 (r − 1)
]

≤ 0.

We notice that

φx (0, t) = 0,

φx (1, t) = − K̃β (ω − t)

(r − 1) ((ω − t))r/(r−1)

= − K̃β

(r − 1) (ω − t)1/(r−1)
< 0, 0 ≤ t < ω,

φ (x, 0) =
K̃

(xβω + (1 − xγ)α)
1/(r−1)

> 0, 0 ≤ x ≤ 1.

If u0 (x) = m ≥ φ (x, 0), then by Lemma 2.1 in [3, p. 893], φ (x, t) is a lower

solution for the problem (1.1), which blows up at t = ω. We notice that the blow-up

set of the function φ (x, t) consists of only one point x = 1.

Below we estimate the blow-up rate using similar method as in the proof of

Theorem 2.2 in Wang and Chen [5, p. 317].

Theorem 3.3. If the solution u (x, t) of the problem (1.1) blows up at t = tb, then

there exists positive constant Ǩ such that

u(x, t) ≤ Ǩ (tb − t)−
1

r−1 , in D × (0, tb).

Proof. Let

J(x, t) = ut(x, t) − k̂ap+2ur(x, t),

where the positive constant k̂ will be determined later. We have:

Jt (x, t) = utt − k̂ap+2rur−1ut,

Jx (x, t) = utx − k̂ap+2rur−1ux,

Jxx (x, t) = utxx − k̂ap+2r (r − 1)ur−2 (ux)
2 − k̂ap+2rur−1uxx.

If we differentiate both sides of (1.1) with respect to t, then we get:

xqutt − uxxt = ap+2xprur−1ut.

Therefore,

xqJt − Jxx

= xqutt − k̂ap+2xqrur−1ut − utxx

+ k̂ap+2r (r − 1)ur−2 (ux)
2 + k̂ap+2rur−1uxx
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= ap+2xprur−1ut − k̂ap+2xqrur−1ut

+ k̂ap+2r (r − 1)ur−2 (ux)
2 + k̂ap+2rur−1uxx

= ap+2xprur−1ut − k̂ap+2rur−1 (xqut − uxx)

+ k̂ap+2r (r − 1)ur−2 (ux)
2

= ap+2xprur−1ut − k̂ap+2rur−1ap+2xpur

+ k̂ap+2r (r − 1)ur−2 (ux)
2

= ap+2xprur−1
(

ut − k̂ap+2ur
)

+ k̂ap+2r (r − 1)ur−2 (ux)
2

= ap+2xprur−1J (x, t) + k̂ap+2r (r − 1)ur−2 (ux)
2 .

The function J satisfies the following:

xqJt − Jxx − ap+2xprur−1J = k̂ap+2r (r − 1)ur−2 (ux)
2 > 0 in D × (0, tb) ,

Jx(0, t) = utx(0, t) − k̂ap+2
(

rur−1
)

ux(0, t) = 0, for 0 < t < tb,

Jx(1, t) = utx(1, t) − k̂ap+2
(

rur−1
)

ux(1, t) = 0, for 0 < t < tb.

We know from Lemma 2.2 that ut > 0 on D̄× [0, tb). Therefore, there exists a positive

constant k1 such that ut(x, 0) ≥ k1 > 0 for x ∈ [0, 1]. Let k̂ be a positive constant

such that k̂ ≤ min {k1/ (ap+2mr) , 1} and

J(x, 0) = ut(x, 0) − k̂ap+2ur(x, 0) ≥ k1 − k̂ap+2mr ≥ 0.

Therefore, by Lemma 2.1 of [3], J(x, t) = ut(x, t) − k̂ap+2ur(x, t) ≥ 0 on D̄ × [0, tb).

Integrating u−r(x, t)ut(x, t) ≥ k̂ap+2 from t (≥ 0) to tb, we obtain:

(3.2) u(x, t) ≤
[

1

k̂ (r − 1) ap+2 (tb − t)

]
1

r−1

≤ Ǩ (tb − t)−
1

r−1 ,

where Ǩ ≥
[

k̂ (r − 1) ap+2
]−

1

r−1

.

4. Regional/Complete Blow-up when q ≥ p

In this section we assume that the solution u of the problem (1.1) blows up and

that the blow-up time tb is a fixed given number corresponding to the given initial

function u0 (x) = m > 0. We would like to investigate the blow-up set. We proved in

Theorem 3.1 that if q = p, then the blow-up set is D̄. Let 0 < δ < 1 be an arbitrary

constant. We choose

ε̂ > 1 − (1 − δ)√
2q + 3

and observe that δ < ε̂ < 1. Also, let κ be a positive constants such that

(4.1) κ <
1

ε̂q−p
− 1.
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We define

(4.2) f (x) = (4q + 6)x2 − 2 (4q + 6)x − 2δ2 + 4δ + 4q + 4,

(4.3) 0 < B ≤ min

{

κ

(q + 2) 2qf(δ)
,

1

(q + 2) (ε̂ − δ)q (1 − δ)q |f(ε̂)|

}

,

and

0 < R

= max
{

δq−p, (1 + κ) ε̂q−p, 1 − B (q + 2) (ε̂ − δ)q (1 − δ)q |f(ε̂)|
}

(4.4)

< 1.

Theorem 4.1. Let p < q and r > 1. If

(4.5) mr−1tb ≥
R

ap+2 (r − 1)
,

then the blow-up set for the solution of (1.1) is [0, δ].

Proof. Let

θ(x) =

{

B (x − δ)q+2 (2 − δ − x)q+2 , for δ ≤ x ≤ 1,

0, for 0 ≤ x ≤ δ,

where the positive constant B is defined in (4.3). From

θ′(x) = B (q + 2) (x − δ)q+1 (2 − δ − x)q+2 − B (x − δ)q+2 (q + 2) (2 − δ − x)q+1

= 2B (q + 2) (x − δ)q+1 (2 − δ − x)q+1 [1 − x] ,

we conclude that θ′(x) > 0 for δ < x < 1. Also,

θ′′(x) = B (q + 2) (q + 1) (x − δ)q (2 − δ − x)q+2

− 2B (q + 2) (x − δ)q+1 (q + 2) (2 − δ − x)q+1

+ B (q + 2) (q + 1) (x − δ)q+2 (2 − δ − x)q

= B (q + 2) (x − δ)q (2 − δ − x)q f(x),

where

f(x) = (q + 1) (2 − δ − x)2 − 2 (q + 2) (x − δ) (2 − δ − x) + (q + 1) (x − δ)2

= (4q + 6)x2 − 2 (4q + 6)x − 2δ2 + 4δ + 4q + 4.

This quadratic function f(x) has one zero on the interval δ ≤ x ≤ 1 at

z = 1 − (1 − δ)√
2q + 3

.

Also, f(x) has its vertex at the point
(

1,−2 (1 − δ)2). The following is true about

θ′′(x) on the interval 0 ≤ x ≤ 1:

θ′′(x) = 0 for 0 ≤ x ≤ δ, and at x = z,
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θ′′(x) > 0 for δ < x < z,

θ′′(x) < 0 for z < x < 1.

From (4.1), (4.2) and (4.3) we have on the interval [δ, ε̂]:

θ′′(x)

xq
≤ B (q + 2) (x − δ)q (2 − δ − x)q f(δ)

xq
(4.6)

≤ B (q + 2) 2qf(δ)

≤ κ.

Using (4.5), we choose a positive constant E such that

(4.7)
R

ap+2 (r − 1)
≤ Er−1 ≤ mr−1tb,

with R defined in (4.4). Let τ(x, t) be a C2,1 ([0, 1] × [0, tb)) function as follows:

τ(x, t) =
E

((tb − t) + θ(x))
1

r−1

= ED− 1

r−1 ,

where D (x, t) = (tb − t) + θ(x). From (4.5) and (3.1), the blow-up time satisfies the

following:

(4.8)
R

mr−1ap+2 (r − 1)
≤ tb ≤

1

mr−1ap+2 (r − 1)
.

We have:

τt(x, t) =
ED− r

r−1

(r − 1)
,

τx(x, t) = −ED− r
r−1 θ′(x)

(r − 1)
,

τxx(x, t) =
rE (θ′(x))2 D

−2r+1

r−1

(r − 1)2
− ED− r

r−1 θ′′(x)

(r − 1)
.

Therefore, using (4.7) and θ′′(x) = 0 for 0 ≤ x ≤ δ, we have for 0 ≤ x ≤ δ:

xqτt(x, t) − τxx(x, t) − ap+2xpτ r(x, t)

=
xqED− r

r−1

(r − 1)
− rE (θ′(x))2 D

−2r+1

r−1

(r − 1)2
+

ED− r
r−1 θ′′(x)

(r − 1)
− ap+2xpErD−

r
r−1

=
xqED− r

r−1

(r − 1)

[

1 − r (θ′(x))2

(r − 1) xqD
+

θ′′(x)

xq
− ap+2 (r − 1)Er−1

xq−p

]

≤ xqED− r
r−1

(r − 1)

[

1 − ap+2 (r − 1) Er−1

δq−p

]

≤ 0.

Using (4.6) and (4.7), we have for δ ≤ x ≤ ε̂:

xqτt(x, t) − τxx(x, t) − ap+2xpτ r(x, t)
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=
xqED− r

r−1

(r − 1)

[

1 − r (θ′(x))2

(r − 1)xqD
+

θ′′(x)

xq
− ap+2 (r − 1) Er−1

xq−p

]

≤ xqED−
r

r−1

(r − 1)

[

1 + κ − ap+2 (r − 1) Er−1

ε̂q−p

]

≤ 0.

Using (4.3), (4.7) and θ′′(x) < 0 for ε̂ ≤ x ≤ 1, we have for ε̂ ≤ x ≤ 1:

xqτt(x, t) − τxx(x, t) − ap+2xpτ r(x, t)

=
xqED− r

r−1

(r − 1)

[

1 − r (θ′(x))2

(r − 1)xqD
+

θ′′(x)

xq
− ap+2 (r − 1)Er−1

xq−p

]

≤ xqED− r
r−1

(r − 1)

[

1 − min
ε̂≤x≤1

|θ′′(x)| − ap+2 (r − 1) Er−1

]

≤ xqED− r
r−1

(r − 1)

[

1 − B (q + 2) (ε̂ − δ)q (1 − δ)q |f(ε̂)| − ap+2 (r − 1)Er−1
]

≤ 0.

From (4.7) we have:

τ(x, 0) =
E

(tb + θ(x))
1

r−1

≤ E

(tb)
1

r−1

≤ m,

and

τx(0, t) = −ED− r
r−1 θ′(0)

(r − 1)
= 0,

τx(1, t) = −ED− r
r−1 θ′(1)

(r − 1)
= 0.

We conclude that τ(x, t) is a lower solution that blows up at t = tb on the interval

[0, δ]. Therefore, u (x, t) also blows up on [0, δ] at t = tb. If R = 1 in (4.5) and (4.8),

that is,

tb =
1

mr−1ap+2 (r − 1)
,

then the blow-up is complete. This is exactly what happened in the case p = q in

Theorem 3.1.

5. No Complete Blow-up when q < p

Below we assume that the solution u of the problem (1.1) blows up under the

hypotheses of Theorem 3.2 and that the blow-up time tb is a fixed given number

corresponding to the given initial function u0 (x) = m > 0. Let

k3 =

[

1

ap+2k̂ (r − 1)
+

1

ap+2k̂ (r − 1) tb

]
1

r−1

,
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where the positive constant k̂ is defined in Theorem 3.3. Let us choose positive

constants β and k4 < 1 such that the following two conditions are satisfied:

(5.1)

{

β > q + 2,

1 −
(

4r
(r−1)

+ 2(β−1)
β

)

k2β−q−2
4 − ap+2kr−1

3 (r − 1) kp−q
4 ≥ 0.

We modify the proof of Lemma 4.2 in Chan and Dyakevich [1, p. 614] to prove the

following result.

Lemma 5.1. If p > q, then the following estimate holds for the solution of the problem

(1.1):

u (x, tb) ≤
k3

[

1
β

(

kβ
4 − xβ

)]
2

r−1

< ∞ for x ∈ [0, k4).

Proof. Let

Φ (x, t) =
k3

D1/(r−1)
,

where

D (x, t) =
1

β2

(

kβ
4 − xβ

)2

+ (tb − t) .

We have:

Φt (x, t) =
k3

(r − 1)
D−r/(r−1),

Φx (x, t) =
k3

(r − 1)
D−r/(r−1) 2

β

(

kβ
4 − xβ

)

xβ−1,

Φxx (x, t) = − k3r

(r − 1)2D(−2r+1)/(r−1) 2

β

(

kβ
8 − xβ

)

xβ−1 2

β2

(

kβ
8 − xβ

)

(−β) xβ−1

+
2k3

(r − 1)β
D−r/(r−1)

[

−βxβ−1xβ−1
]

+
2k3

(r − 1)β
D−r/(r−1)

(

kβ
4 − xβ

)

(β − 1) xβ−2

=
k3r

(r − 1)2D(−2r+1)/(r−1)

[

2

β

(

kβ
4 − xβ

)

xβ−1

]2

− 2k3

(r − 1)
D−r/(r−1)x2β−2 +

2k3 (β − 1)

(r − 1) β
D−r/(r−1)

(

kβ
4 − xβ

)

xβ−2.

Using (5.1), we obtain for any x ∈ (0, k4) and 0 < t < tb,

LΦ − ap+2xpΦr

=
k3

(r − 1) D
r

r−1

[

xq − r

(r − 1) D

[

2

β

(

kβ
4 − xβ

)

xβ−1

]2

+2x2β−2 − 2 (β − 1)

β

(

kβ
4 − xβ

)

xβ−2 − ap+2xpkr−1
3 (r − 1)

]
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≥ k3x
q

(r − 1)D
r

r−1

[

1 − 4r

(r − 1)
k2β−q−2

4 − 2 (β − 1)

β
k2β−q−2

4 − ap+2kp−q
4 kr−1

3 (r − 1)

]

≥ 0.

It follows from (3.2), β > 1 and 0 < k4 < 1 that

Φ (x, 0) =
k3

{

tb + 1
β2

(

kβ
4 − xβ

)2
}

1

r−1

≥

[

1

ap+2k̂(r−1)
+ 1

ap+2k̂(r−1)tb

]
1

r−1

(tb + 1)
1

r−1

=

[

1

k̂ap+2 (r − 1) tb

]
1

r−1

≥ u (x, 0) on [0, k4].

Since

Φx(0, t) = 0, Φ(k4, t) =
k3

(tb − t)
1

r−1

,

it follows from Lemma 2.1, that Φ (x, t) is an upper solution of the problem (1.1) for

0 ≤ x ≤ k4. Since Φ (x, t) is bounded at t = tb for all 0 ≤ x < k4, we can conclude

that the blow-up cannot be complete in the case p > q.
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