ON OCCURRENCE OF COMPLETE BLOW-UP OF THE SOLUTION FOR A DEGENERATE SEMILINEAR PARABOLIC PROBLEM WITH INSULATED BOUNDARY CONDITIONS

NADEJDA E. DYAKEVICH

Department of Mathematics, California State University San Bernardino, 5500 University Parkway, San Bernardino, CA, 92407-2397, USA

ABSTRACT. Let a, σ, p, q, r , and m be constants with $a > 0, \sigma > 0, p \ge 0, q \ge 0, r > 1$, and m > 0. This article studies the following degenerate semilinear parabolic initial-boundary value problem,

$$\begin{aligned} \xi^{q} u_{\tau} - u_{\xi\xi} &= \xi^{p} u^{r} \text{ for } 0 < \xi < a, \ 0 < \tau < \sigma, \\ u(\xi, 0) &= u_{0}\left(\xi\right) = m \text{ for } 0 \le \xi \le a, \\ u_{\xi}(0, \tau) &= 0 = u_{\xi}(a, \tau) \text{ for } \tau > 0. \end{aligned}$$

We derive criteria for u to blow up in finite time, and estimate the blow-up rate. We show that the blow-up is regional if q > p; the blow-up is complete if q = p; and the blow-up cannot be complete if p > q.

AMS (MOS) Subject Classification. 35K57, 35K60, 35K65.

1. Introduction

Let a, σ, p, q, r , and m be constants with $a > 0, \sigma > 0, p \ge 0, q \ge 0, r > 1$, and m > 0. We consider the following degenerate semilinear parabolic initial-boundary value problem,

$$\xi^{q} u_{\tau} - u_{\xi\xi} = \xi^{p} u^{r} \text{ for } 0 < \xi < a, \ 0 < \tau < \sigma,$$

$$u(\xi, 0) = u_{0}(\xi) = m \text{ for } 0 \le \xi \le a,$$

$$u_{\xi}(0, \tau) = 0 = u_{\xi}(a, \tau) \text{ for } 0 < \tau < \sigma.$$

Let $\xi = ax$, $\tau = a^{q+2}t$, D = (0, 1), $\Omega = D \times (0, T)$, \overline{D} and $\overline{\Omega}$ be the closures of Dand Ω respectively, and $Lu = x^q u_t - u_{xx}$. The above problem is transformed into

(1.1)
$$\begin{cases} Lu = a^{p+2}x^{p}u^{r} \text{ in } \Omega, \\ u(x,0) = u_{0}(x) = m > 0 \text{ on } \bar{D}, \\ u_{x}(0,t) = 0 = u_{x}(1,t), \ 0 < t < T, \end{cases}$$

where $T = \sigma/a^{q+2} < \infty$.

Received February 14, 2014

The author is grateful to the College of Natural Sciences of California State University San Bernardino for its support of this project.

A solution u of the problem (1.1) is said to blow up at the point (\bar{x}, t_b) if there exists a sequence $\{(x_n, t_n)\}$ such that $u(x_n, t_n) \to \infty$ as $(x_n, t_n) \to (\bar{x}, t_b)$. The blowup of u is complete if u blows up at every point $x \in \bar{D}$ at $t = t_b$. The blow-up of uis regional in the case q > p, if u blows up at every point $x \in [0, b_1]$ at $t = t_b$, where $b_1 < 1$.

Chan and Dyakevich [1] investigated the blow-up set of the solution for the degenerate semilinear parabolic equation $Lu = a^2 f(u)$ subject to the mixed boundary conditions $u(0,t) = 0 = u_x(1,t)$. Dyakevich [3] studied quenching of the solution for the problem (1.1) with m = 0 and with $a^{p+2}x^pu^r$ replaced by the function $x^p f(u)$ satisfying $\lim_{u\to c^-} f(u) = \infty$ for some positive constant c. It was shown that constants p and q determine whether the solution quenches completely, or at one of the boundary points x = 0 or x = 1. In this article, we investigate the influence of the constants p and q on the blow-up set of the solution u of the problem (1.1).

In Section 2, we discuss existence of a unique classical solution. In Section 3, we investigate the conditions for u to blow up in a finite time t_b , and give an estimate for the blow-up rate. In Section 4, we show that the blow-up is regional if q > p, and complete if q = p. In Section 5, we show that the blow-up cannot be complete if p > q.

2. Existence of a Unique Classical Solution

Let $D_{\varepsilon} = (\varepsilon, 1), \ \bar{D}_{\varepsilon} = [\varepsilon, 1], \ \Omega_{\varepsilon} = D_{\varepsilon} \times (0, T)$, where $0 \le \varepsilon < \frac{1}{2}$. We notice that if $\varepsilon = 0$, then $D_{\varepsilon} = D$. The proof of the following comparison lemma is similar to the proof of Lemma 2.1 in Dyakevich [3].

Lemma 2.1. For any fixed $\bar{t} \in (0,T)$, and any bounded and nontrivial function B(x,t) on $\bar{D}_{\varepsilon} \times [0,\bar{t}]$, if

$$\left. \begin{array}{l} \left(L - x^{p}B \right) u \geq 0 \ in \ D_{\varepsilon} \times (0, \overline{t}], \\ u(x, 0) \geq 0, \ x \in \overline{D}_{\varepsilon}, \\ u_{x}(\varepsilon, t) \leq 0, \ u(b, t) \geq 0, \ t \in [0, \overline{t}], \end{array} \right\}$$

then $u \geq 0$ on $\overline{D}_{\varepsilon} \times [0, \overline{t}]$.

Following the idea in the proof of Lemma 1 in Chan and Kaper [2], we have the following result.

Lemma 2.2. The problem (1.1) has at most one solution u. This solution has the following properties: (i). u > m in $\overline{D} \times (0,T)$; (ii). u is a strictly increasing function of t for all $x \in \overline{D}$.

Proof. Let u_1 and u_2 be two distinct solutions of the problem (1.1) and let $y = u_1 - u_2$. Uniqueness of u follows directly from Lemma 2.1 of [3]. (i). Let y = u - m. Because $f(m) = m^r > 0$ and $x^p m^r > 0$ for any $x \in D$, we have:

$$\left. \begin{array}{l} x^{q}u_{t} - u_{xx} - a^{p+2}x^{p}f\left(u\right) + a^{p+2}x^{p}f\left(m\right) = x^{q}y_{t} - y_{xx} - a^{p+2}x^{p}r\eta^{r-1}y > 0 \text{ in } \Omega, \\ y\left(x,0\right) = 0 \text{ on } \bar{D}, \\ y_{x}\left(0,t\right) = 0 = y_{x}\left(1,t\right), \ 0 < t < T, \end{array} \right\}$$

for some η between u and m. By Lemma 2.1 of [3], $y \ge 0$. By the strong maximum principle [4, p. 39], if y = 0 at some point $(x_2, t_2) \in (0, 1) \times (0, T)$, then y = 0 in $(0, 1) \times (0, t_2]$. This contradicts to

$$0 = x^{q} y_{t} - y_{xx} - a^{p+2} x^{p} r \eta^{r-1} y > 0 \text{ in } (0,1) \times (0,t_{2}].$$

Therefore, y > 0 at any point in (0, 1). Suppose y attains its minimum value zero at x = 0 or x = 1. By the parabolic version of Hopf's Lemma [4, p. 49], $y_x(0,t) > 0$ and $y_x(1,t) < 0$. This contradiction shows that y > 0 on \overline{D} .

(ii). The proof of this result is identical to the proof of Lemma 2.2 (ii) in Dyakevich [3, p. 894]. $\hfill \Box$

We modify the proof of Lemma 2.3 in Dyakevich [3, p.895] to prove the following result.

Lemma 2.3. There exists some positive constant t_0 (< T) such that the problem (1.1) has an upper solution $\mu(x,t) \in C^{2,1}([0,1] \times [0,t_0])$.

Proof. We consider the problem,

(2.1)
$$Lu_{\varepsilon} = a^{p+2}x^{p}u_{\varepsilon}^{r} \text{ in } D_{\varepsilon} \times (0, t_{0}], \\ u_{\varepsilon}(x, 0) = m \text{ on } \bar{D}_{\varepsilon}, \\ u_{\varepsilon_{x}}(\varepsilon, t) = 0 = u_{\varepsilon_{x}}(1, t) \text{ for } 0 < t \leq t_{0}.$$

Let $\hat{m} > 1$, $0 < \gamma < \frac{1}{2}$, and $K > \hat{m}$ be chosen such that

$$a^{p+2} (\hat{m} - 1) \ge u_0 (x) = m,$$

$$\hat{m}^r (a^{p+2})^r < K,$$

$$\hat{m} - 1 < -(K/2)\gamma^2 - \gamma + \hat{m} < \hat{m},$$

$$K^r (a^{p+2})^r > 1.$$

Let us construct an upper solution $\mu(x,t) \in C^{2,1}(\overline{D} \times [0,t_0])$ for all u_{ε} , where $\varepsilon < \gamma$. Let

$$\theta(x) = \begin{cases} -\frac{K}{2}x^2 - x + \hat{m}, & 0 \le x \le \gamma, \\ \hat{h}(x), & \gamma < x < 1 - \gamma, \\ -\frac{K}{2}(1-x)^2 - (1-x) + \hat{m}, & 1 - \gamma \le x \le 1, \end{cases}$$

where $\hat{h}(x)$ is a positive C^{∞} function chosen such that $\theta(x)$ is in $C^2(\bar{D})$ and $\hat{m} - 1 < \hat{h}(x) \le \hat{m}$. We note that $\theta'(x) < 0$ for $0 \le x \le \gamma$ and $\theta'(0) = -1 < 0$,

 $\theta'(\gamma) = -K\gamma - 1 < 0$ and $\theta'(1) = 1 > 0$. Also, $\max_{0 \le x \le \gamma} \theta(x) = \hat{m}$ and $\min_{0 \le x \le \gamma} \theta(x) = -(K/2)\gamma^2 - \gamma + \hat{m} > \hat{m} - 1$.

There exists some t_1 such that the initial-value problem,

$$\tau'(t) = \frac{\left(1 + \max_{\gamma \le x \le 1} |\theta''|\right) a^{p+2} K^r \tau^r}{\gamma^q \left(\min_{\gamma \le x \le 1} \theta\right)}, \ \tau(0) = a^{p+2},$$

has a unique solution for $0 \le t \le t_1$. Let us choose some constant t_0 in $(0, t_1]$ such that

$$\hat{m}^{r}\tau^{r}(t_{0}) \leq K,$$

$$\tau(t_{0}) \leq a^{p+2}K^{r}(\tau(0))^{r} \leq a^{p+2}K^{r}\tau^{r}.$$

Let $\mu(x,t) = \theta(x)\tau(t)$. For any $x \in [0,\gamma]$ and $t \in (0,t_0]$, $x^q \theta \tau' \ge 0$ and $\theta''(x) = -K < 0$. Therefore,

$$L\mu - a^{p+2}x^{p}\mu^{r} = x^{q}\theta\tau' - \tau\theta'' - a^{p+2}x^{p}\theta^{r}\tau^{r}$$

$$\geq \tau (0) K - a^{p+2}\theta^{r} (0) \tau^{r} (t_{0}))$$

$$= a^{p+2} [K - \hat{m}^{r}\tau^{r} (t_{0}))]$$

$$\geq 0.$$

We have for $x \in (\gamma, 1]$,

$$L\mu - a^{p+2}x^{p}\mu^{r} \ge \gamma^{q} \left(\min_{\gamma \le x \le 1}\theta\right)\tau'(t) - \tau(t_{0}) \left(\max_{\gamma \le x \le 1}|\theta''|\right) - a^{p+2}\theta^{r}\tau^{r}$$
$$\ge \gamma^{q} \left(\min_{\gamma \le x \le 1}\theta\right)\tau'(t) - a^{p+2}K^{r}\tau^{r} \left(\max_{\gamma \le x \le 1}|\theta''|\right) - a^{p+2}K^{r}\tau^{r}$$
$$\ge \gamma^{q} \left(\min_{\gamma \le x \le 1}\theta\right) \left(\tau'(t) - \frac{\left(1 + \max_{\gamma \le x \le 1}|\theta''|\right)a^{p+2}K^{r}\tau^{r}}{\gamma^{q} \left(\min_{\gamma \le x \le 1}\theta\right)}\right)$$
$$= 0$$

We also have $\mu(x,0) = a^{p+2}\theta(x) \ge a^{p+2}(\hat{m}-1) \ge u_0(x) = m$, $\mu_x(0,t) = \theta_x(0) \tau(t) < 0$, $\mu_x(1,t) = \theta_x(1) \tau(t) > 0$ and $\mu(x,t) \in C^{2,1}(\bar{D} \times [0,t_0])$. The function $y = \mu - u_{\varepsilon}$ satisfies

$$Ly - x^p r \vartheta^r y \ge 0 \text{ in } D_{\varepsilon} \times (0, t_0],$$

$$y(0) > 0, \ x \in \overline{D}_{\varepsilon},$$

$$y_x(\varepsilon, t) < 0, \ y_x(1, t) > 0, \ t \in [0, t_0],$$

where ϑ is between μ and u_{ε} for all $\varepsilon < \gamma$. By Lemma 2.1 in Dyakevich [3, p. 896–898], $y = \mu - u_{\varepsilon} \ge 0$.

The proofs of the following two results can be found in Dyakevich [3, p. 896–898].

Lemma 2.4. Let $0 < \varepsilon_1 < \varepsilon_2 < \gamma$ and suppose that u_{ε_1} and u_{ε_2} are solutions of the problem (2.1) on $(0, t_0)$. If p < q, then $u_{\varepsilon_x} < 0$ and $u_{\varepsilon_1} > u_{\varepsilon_2}$ in Ω_{ε_2} . If p > q, then $u_{\varepsilon_x} > 0$ and $u_{\varepsilon_1} < u_{\varepsilon_2}$ in Ω_{ε_2} .

Theorem 2.5. The problem (1.1) has a classical solution $C(\overline{D}) \cap C^{2,1}((0,1] \times [0,t_0])$.

We modify the proof of Theorem 2.6 in Dyakevich [3, p. 898] to obtain the following continuation theorem.

Theorem 2.6. Let T be the supremum over t_0 for which the problem (1.1) has a unique solution $u(x,t) \in C(\bar{D}) \cap C^{2,1}((0,1] \times [0,t_0])$. Then, there is a unique solution $u(x,t) \in C(\bar{D} \times [0,T)) \cap C^{2,1}((0,1] \times [0,T))$. If $T < \infty$, then u is unbounded in Ω .

Proof. Let us suppose that u is bounded above by some positive constant $M > 1/(2a^{p+2})$ in Ω . We would like to show that u can be continued into a time interval $[0, T + \tilde{t}_0]$ for some positive \tilde{t}_0 . Let a positive constant K^* be such that $1 < (2Ma^{p+2})^r < K^*$ and a positive constant $\tilde{\gamma}$ is such that $-\frac{K^*}{2}\tilde{\gamma}^2 - \tilde{\gamma} + 2M > M$. Let

$$\tilde{\theta}_{1}(x) = \begin{cases} -\frac{K^{*}}{2}x^{2} - x + 2M, & 0 \le x \le \tilde{\gamma}, \\ \tilde{h}(x), \tilde{\gamma} < x < 1 - \tilde{\gamma} \\ -\frac{K^{*}}{2}(1 - x)^{2} - (1 - x) + 2M, & 1 - \tilde{\gamma} \le x \le 1 \end{cases}$$

where $\tilde{h}(x)$ is a positive C^{∞} function chosen such that $\tilde{\theta}_1(x)$ is in $C^2\left(\bar{D}\right)$ and $M < \tilde{h}(x) \leq 2M$. By construction, $\tilde{\theta}_1(x) > M \geq u(x,t) \geq u_0(x) = m$ for any $t \leq T$. Also, we notice that $\tilde{\theta}_{1_x}(0) < 0 = u_x(0,t)$, and $\tilde{\theta}'_1(1) > 0 = u_x(1,t)$ for t > 0.

With $\tilde{\theta}_1(x)$ as the initial function at T, we are to construct an upper solution $\tilde{\mu}(x,t)$ of u(x,t) on $\bar{D} \times [T,T+\tilde{t}_0]$ for some positive \tilde{t}_0 . There exists some t_2 such that the initial-value problem,

$$\tilde{\tau}_1'(t-T) = \frac{a^{p+2} \left(2M\right)^r \left(\max_{\tilde{\gamma} \le x \le 1} \left|\tilde{\theta}_1''\right| + 1\right) \tilde{\tau}_1^r(t-T)}{\tilde{\gamma}_{1\leq x \le 1}^q \min_{\tilde{\gamma} \le x \le 1} \tilde{\theta}_1}, \ \tilde{\tau}_1(T-T) = a^{p+2},$$

has a unique solution $\tilde{\tau}_1(t-T)$ for $T \leq t \leq T + \tilde{t}_2$. Let $\tilde{\mu}(x,t) = \tilde{\theta}_1(x)\tilde{\tau}_1(t-T)$, and \tilde{t}_0 be chosen such that $0 < \tilde{t}_0 \leq \tilde{t}_2$ and

$$(2M)^r \tilde{\tau}_1^r (\tilde{t}_0) \le K^*,$$

$$\tilde{\tau}_1 (\tilde{t}_0) \le (2M)^r a^{p+2} \tilde{\tau}_1^r (t-T).$$

Since $x^{q}\tilde{\theta}_{1}\tilde{\tau}'_{1}(t) \geq 0$, and $\tilde{\theta}''_{1}(x) = -K^{*}$, we obtain for any $x \in (0, \tilde{\gamma}]$ and $t \in [T, T + \tilde{t}_{0}]$,

$$L\tilde{\mu} - a^{p+2}x^{p}\tilde{\mu}^{r} \ge K^{*}\tilde{\tau}_{1} - a^{p+2}\tilde{\theta}_{1}^{r}\tilde{\tau}_{1}^{r} \ge a^{p+2}\left(K^{*} - (2M)^{r}\tilde{\tau}_{1}^{r}\left(\tilde{t}_{0}\right)\right) \ge 0$$

It follows from $\tilde{\tau}_1(t-T) \ge a^{p+2}$ for $t \in [T, T+\tilde{t}_0]$ that for $x \in (\tilde{\gamma}, 1]$ and $t \in [T, T+\tilde{t}_0]$,

$$\begin{split} L\tilde{\mu} - a^{p+2}x^{p}\tilde{\mu}^{r} &\geq \tilde{\gamma}^{q}\left(\min_{\tilde{\gamma} \leq x \leq 1}\tilde{\theta}_{1}\right)\tilde{\tau}_{1}'\left(t-T\right) - \tilde{\tau}_{1}\left(t-T\right)\left(\max_{\tilde{\gamma} \leq x \leq 1}\left|\tilde{\theta}_{1}''\right|\right) \\ &\quad - a^{p+2}\tilde{\theta}_{1}^{r}\tilde{\tau}_{1}^{r}\left(t-T\right) \\ &\geq \tilde{\gamma}^{q}\left(\min_{\tilde{\gamma} \leq x \leq 1}\tilde{\theta}_{1}\right)\tilde{\tau}_{1}'\left(t-T\right) - a^{p+2}\left(2M\right)^{r}\tilde{\tau}_{1}^{r}\left(t-T\right)\left(\max_{\tilde{\gamma} \leq x \leq 1}\left|\tilde{\theta}_{1}''\right|\right) \\ &\quad - a^{p+2}\left(2M\right)^{r}\tilde{\tau}_{1}^{r}\left(t-T\right) \\ &\geq \tilde{\gamma}^{q}\min_{\tilde{\gamma} \leq x \leq 1}\tilde{\theta}_{1}\left(\tilde{\tau}_{1}'\left(t-T\right) - \frac{a^{p+2}\left(2M\right)^{r}\tilde{\tau}_{1}^{r}\left(t-T\right)\left(\max_{\tilde{\gamma} \leq x \leq 1}\left|\tilde{\theta}_{1}''\right| + 1\right)}{\tilde{\gamma}^{q}\min_{\tilde{\gamma} \leq x \leq 1}\tilde{\theta}_{1}}\right) \\ &= 0. \end{split}$$

By Lemma 2.1 of [3], $\tilde{\mu}(x,t)$ is an upper solution of u on $\bar{D} \times [T, T + \tilde{t}_0]$. As in Lemma 2.4 and Theorem 2.5, we can show that the problem (1.1) has a unique solution $u(x,t) \in C(\bar{D} \times [0, T + \tilde{t}_0]) \cap C^{2,1}((0,1] \times [0, T + \tilde{t}_0])$. This contradicts the definition of T.

3. Occurrence of Blow-up and Blow-up Rate Estimate

Theorem 3.1. Let $q \ge p$ and r > 1. Then there exists some

(3.1)
$$t_b \le 1/\left(m^{r-1}a^{p+2}\left(r-1\right)\right) < \infty$$

such that

$$\lim_{t\to t_b^-}\max_{x\in\bar{D}}u(x,t)=\infty$$

Proof. Let $\tau(t)$ satisfy

$$\tau'(t) = a^{p+2}\tau^r(t), \quad \tau(0) = m > 0.$$

Then

$$\tau(t) = \left[\frac{1}{m^{1-r} - a^{p+2}(r-1)t}\right]^{\frac{1}{r-1}} \text{ for } 0 \le t < \hat{t}_b,$$

where

$$\hat{t}_b = \frac{1}{m^{r-1}a^{p+2}(r-1)}.$$

We have for $x \in (0, 1)$ and $t \in (0, \hat{t}_b)$,

$$x^{q}\tau' - \tau_{xx} - a^{p+2}x^{p}\tau^{r} \le x^{q} \left(\tau' - a^{p+2}\tau^{r}\right) = 0.$$

Since τ does not depend on x, we have $\tau_x(0) = \tau_x(1) = 0$, $\tau_{xx}(t) = 0$, and $\tau(0) = m$. Therefore, $\tau(t)$ is the lower solution that blows up at \hat{t}_b . We notice that if

q = p, then $\tau(t)$ is the unique solution of the problem (1.1) which blows up at $t_b = 1/(m^{r-1}a^{p+2}(r-1))$ and the blow-up set is \overline{D} .

Theorem 3.2. Let q < p and r > 1. If $u_0(x) = m > 0$ is sufficiently large, then there exists some $t_b < \infty$ such that

$$\lim_{t \to t_b^-} \max_{x \in \bar{D}} u(x, t) = \infty.$$

Proof. Let us choose positive constants α , β , γ and ω as follows:

$$\begin{split} \beta &> \max\left\{p-q,\,p+2\right\},\\ \alpha &> 2,\,\omega > 0,\\ \gamma &> \max\left\{2,\frac{p+2}{2}\right\}. \end{split}$$

Let positive constant \tilde{K} satisfy the following:

$$\tilde{K} > \left[\frac{1+\beta\left(\beta-1\right)\omega+\alpha\left(\alpha-1\right)\gamma^2}{a^{p+2}\left(r-1\right)}\right]^{\frac{1}{r-1}}.$$

Let

$$\phi\left(x,t\right) = \frac{\tilde{K}}{D^{1/(r-1)}},$$

where

$$D(x,t) = x^{\beta} (\omega - t) + (1 - x^{\gamma})^{\alpha}.$$

We have:

$$\begin{split} \phi_t \left(x, t \right) &= \frac{\tilde{K}}{(r-1)} D^{-r/(r-1)} x^{\beta}, \\ \phi_x \left(x, t \right) &= -\frac{\tilde{K}}{(r-1)} D^{-r/(r-1)} \left[\beta \left(\omega - t \right) x^{\beta - 1} - \alpha \left(1 - x^{\gamma} \right)^{\alpha - 1} \gamma x^{\gamma - 1} \right] \\ \phi_{xx} \left(x, t \right) &= \frac{\tilde{K}r}{(r-1)^2} D^{(-2r+1)/(r-1)} \left[\left(\omega - t \right) \beta x^{\beta - 1} - \alpha \gamma \left(1 - x^{\gamma} \right)^{\alpha - 1} x^{\gamma - 1} \right]^2 \\ &- \frac{\tilde{K}}{(r-1)} D^{-r/(r-1)} \left\{ \left(\omega - t \right) \beta \left(\beta - 1 \right) x^{\beta - 2} \right. \\ &+ \alpha \left(\alpha - 1 \right) \gamma^2 \left(1 - x^{\gamma} \right)^{\alpha - 2} x^{2\gamma - 2} - \alpha \gamma \left(\gamma - 1 \right) \left(1 - x^{\gamma} \right)^{\alpha - 1} x^{\gamma - 2} \right\} \end{split}$$

Therefore, for $x \in (0, 1)$ and $t \in (0, \omega)$,

$$\begin{split} L\phi &-a^{p+2}x^{p}\phi^{r} \\ \leq x^{q}\frac{\tilde{K}}{(r-1)}D^{-r/(r-1)}x^{\beta} \\ &+\frac{\tilde{K}}{(r-1)}D^{-r/(r-1)}\left\{\beta\left(\omega-t\right)\left(\beta-1\right)x^{\beta-2}+\alpha\left(\alpha-1\right)\gamma^{2}\left(1-x^{\gamma}\right)^{\alpha-2}x^{2\gamma-2}\right\} \\ &-a^{p+2}x^{p}\tilde{K}^{r}D^{-r/(r-1)} \\ \leq \frac{\tilde{K}}{(r-1)}D^{-r/(r-1)}[x^{q+\beta}+\beta\left(\omega-t\right)\left(\beta-1\right)x^{\beta-2}+\alpha\left(\alpha-1\right)\gamma^{2}x^{2\gamma-2} \end{split}$$

$$-a^{p+2}x^{p}\tilde{K}^{r-1}(r-1)] \le \frac{\tilde{K}}{(r-1)}D^{-r/(r-1)}x^{p}\left[1+\beta\left(\beta-1\right)\omega+\alpha\left(\alpha-1\right)\gamma^{2}-a^{p+2}\tilde{K}^{r-1}(r-1)\right] \le 0.$$

We notice that

$$\begin{split} \phi_x (0,t) &= 0, \\ \phi_x (1,t) &= -\frac{\tilde{K}\beta (\omega - t)}{(r-1) ((\omega - t))^{r/(r-1)}} \\ &= -\frac{\tilde{K}\beta}{(r-1) (\omega - t)^{1/(r-1)}} < 0, \ 0 \le t < \omega, \\ \phi (x,0) &= \frac{\tilde{K}}{(x^\beta \omega + (1 - x^\gamma)^\alpha)^{1/(r-1)}} > 0, \ 0 \le x \le 1 \end{split}$$

If $u_0(x) = m \ge \phi(x, 0)$, then by Lemma 2.1 in [3, p. 893], $\phi(x, t)$ is a lower solution for the problem (1.1), which blows up at $t = \omega$. We notice that the blow-up set of the function $\phi(x, t)$ consists of only one point x = 1.

Below we estimate the blow-up rate using similar method as in the proof of Theorem 2.2 in Wang and Chen [5, p. 317].

Theorem 3.3. If the solution u(x,t) of the problem (1.1) blows up at $t = t_b$, then there exists positive constant \check{K} such that

$$u(x,t) \leq \check{K}(t_b - t)^{-\frac{1}{r-1}}$$
, in $D \times (0, t_b)$.

Proof. Let

$$J(x,t) = u_t(x,t) - \hat{k}a^{p+2}u^r(x,t),$$

where the positive constant \hat{k} will be determined later. We have:

$$J_t(x,t) = u_{tt} - \hat{k}a^{p+2}ru^{r-1}u_t,$$

$$J_x(x,t) = u_{tx} - \hat{k}a^{p+2}ru^{r-1}u_x,$$

$$J_{xx}(x,t) = u_{txx} - \hat{k}a^{p+2}r(r-1)u^{r-2}(u_x)^2 - \hat{k}a^{p+2}ru^{r-1}u_{xx}$$

If we differentiate both sides of (1.1) with respect to t, then we get:

$$x^q u_{tt} - u_{xxt} = a^{p+2} x^p r u^{r-1} u_t$$

Therefore,

$$x^{q}J_{t} - J_{xx}$$

$$= x^{q}u_{tt} - \hat{k}a^{p+2}x^{q}ru^{r-1}u_{t} - u_{txx}$$

$$+ \hat{k}a^{p+2}r(r-1)u^{r-2}(u_{x})^{2} + \hat{k}a^{p+2}ru^{r-1}u_{xx}$$

$$\begin{split} &= a^{p+2} x^p r u^{r-1} u_t - \hat{k} a^{p+2} x^q r u^{r-1} u_t \\ &+ \hat{k} a^{p+2} r \left(r-1\right) u^{r-2} \left(u_x\right)^2 + \hat{k} a^{p+2} r u^{r-1} u_{xx} \\ &= a^{p+2} x^p r u^{r-1} u_t - \hat{k} a^{p+2} r u^{r-1} \left(x^q u_t - u_{xx}\right) \\ &+ \hat{k} a^{p+2} r \left(r-1\right) u^{r-2} \left(u_x\right)^2 \\ &= a^{p+2} x^p r u^{r-1} u_t - \hat{k} a^{p+2} r u^{r-1} a^{p+2} x^p u^r \\ &+ \hat{k} a^{p+2} r \left(r-1\right) u^{r-2} \left(u_x\right)^2 \\ &= a^{p+2} x^p r u^{r-1} \left(u_t - \hat{k} a^{p+2} u^r\right) + \hat{k} a^{p+2} r \left(r-1\right) u^{r-2} \left(u_x\right)^2 \\ &= a^{p+2} x^p r u^{r-1} J \left(x, t\right) + \hat{k} a^{p+2} r \left(r-1\right) u^{r-2} \left(u_x\right)^2. \end{split}$$

The function J satisfies the following:

$$\begin{aligned} x^{q}J_{t} - J_{xx} - a^{p+2}x^{p}ru^{r-1}J &= \hat{k}a^{p+2}r\left(r-1\right)u^{r-2}\left(u_{x}\right)^{2} > 0 \text{ in } D \times \left(0, t_{b}\right), \\ J_{x}(0, t) &= u_{tx}(0, t) - \hat{k}a^{p+2}\left(ru^{r-1}\right)u_{x}(0, t) = 0, \text{ for } 0 < t < t_{b}, \\ J_{x}(1, t) &= u_{tx}(1, t) - \hat{k}a^{p+2}\left(ru^{r-1}\right)u_{x}(1, t) = 0, \text{ for } 0 < t < t_{b}. \end{aligned}$$

We know from Lemma 2.2 that $u_t > 0$ on $\overline{D} \times [0, t_b)$. Therefore, there exists a positive constant k_1 such that $u_t(x, 0) \ge k_1 > 0$ for $x \in [0, 1]$. Let \hat{k} be a positive constant such that $\hat{k} \le \min \{k_1/(a^{p+2}m^r), 1\}$ and

$$J(x,0) = u_t(x,0) - \hat{k}a^{p+2}u^r(x,0) \ge k_1 - \hat{k}a^{p+2}m^r \ge 0.$$

Therefore, by Lemma 2.1 of [3], $J(x,t) = u_t(x,t) - \hat{k}a^{p+2}u^r(x,t) \ge 0$ on $\bar{D} \times [0,t_b)$. Integrating $u^{-r}(x,t)u_t(x,t) \ge \hat{k}a^{p+2}$ from $t (\ge 0)$ to t_b , we obtain:

(3.2)
$$u(x,t) \le \left[\frac{1}{\hat{k}(r-1)a^{p+2}(t_b-t)}\right]^{\frac{1}{r-1}} \le \check{K}(t_b-t)^{-\frac{1}{r-1}},$$

where $\check{K} \ge \left[\hat{k}(r-1)a^{p+2}\right]^{-\frac{1}{r-1}}$.

4. Regional/Complete Blow-up when $q \ge p$

In this section we assume that the solution u of the problem (1.1) blows up and that the blow-up time t_b is a fixed given number corresponding to the given initial function $u_0(x) = m > 0$. We would like to investigate the blow-up set. We proved in Theorem 3.1 that if q = p, then the blow-up set is \overline{D} . Let $0 < \delta < 1$ be an arbitrary constant. We choose

$$\hat{\varepsilon} > 1 - \frac{(1-\delta)}{\sqrt{2q+3}}$$

and observe that $\delta < \hat{\varepsilon} < 1$. Also, let \varkappa be a positive constants such that

(4.1)
$$\varkappa < \frac{1}{\hat{\varepsilon}^{q-p}} - 1.$$

We define

(4.2)
$$f(x) = (4q+6)x^2 - 2(4q+6)x - 2\delta^2 + 4\delta + 4q + 4,$$

(4.3)
$$0 < B \le \min\left\{\frac{\varkappa}{(q+2)\,2^q f(\delta)}, \frac{1}{(q+2)\,(\hat{\varepsilon}-\delta)^q\,(1-\delta)^q\,|f(\hat{\varepsilon})|}\right\},$$

and

(4.4)
$$0 < R = \max \left\{ \delta^{q-p}, (1+\varkappa) \hat{\varepsilon}^{q-p}, 1 - B (q+2) (\hat{\varepsilon} - \delta)^q (1-\delta)^q |f(\hat{\varepsilon})| \right\} < 1.$$

Theorem 4.1. Let p < q and r > 1. If

(4.5)
$$m^{r-1}t_b \ge \frac{R}{a^{p+2}(r-1)},$$

then the blow-up set for the solution of (1.1) is $[0, \delta]$.

Proof. Let

$$\theta(x) = \begin{cases} B(x-\delta)^{q+2} (2-\delta-x)^{q+2}, & \text{for } \delta \le x \le 1, \\ 0, & \text{for } 0 \le x \le \delta, \end{cases}$$

where the positive constant B is defined in (4.3). From

$$\theta'(x) = B (q+2) (x-\delta)^{q+1} (2-\delta-x)^{q+2} - B (x-\delta)^{q+2} (q+2) (2-\delta-x)^{q+1}$$

= 2B (q+2) (x-\delta)^{q+1} (2-\delta-x)^{q+1} [1-x],

we conclude that $\theta'(x) > 0$ for $\delta < x < 1$. Also,

$$\theta''(x) = B (q+2) (q+1) (x-\delta)^q (2-\delta-x)^{q+2}$$

- 2B (q+2) (x-\delta)^{q+1} (q+2) (2-\delta-x)^{q+1}
+ B (q+2) (q+1) (x-\delta)^{q+2} (2-\delta-x)^q
= B (q+2) (x-\delta)^q (2-\delta-x)^q f(x),

where

$$f(x) = (q+1) (2 - \delta - x)^2 - 2 (q+2) (x - \delta) (2 - \delta - x) + (q+1) (x - \delta)^2$$

= (4q+6) x² - 2 (4q+6) x - 2\delta^2 + 4\delta + 4q + 4.

This quadratic function f(x) has one zero on the interval $\delta \le x \le 1$ at

$$z = 1 - \frac{(1-\delta)}{\sqrt{2q+3}}.$$

Also, f(x) has its vertex at the point $(1, -2(1-\delta)^2)$. The following is true about $\theta''(x)$ on the interval $0 \le x \le 1$:

$$\theta''(x) = 0$$
 for $0 \le x \le \delta$, and at $x = z$,

$$\theta''(x) > 0 \text{ for } \delta < x < z,$$

 $\theta''(x) < 0 \text{ for } z < x < 1.$

From (4.1), (4.2) and (4.3) we have on the interval $[\delta, \hat{\varepsilon}]$:

(4.6)
$$\frac{\theta''(x)}{x^q} \le \frac{B(q+2)(x-\delta)^q(2-\delta-x)^q f(\delta)}{x^q} \le B(q+2)2^q f(\delta) \le \varkappa.$$

Using (4.5), we choose a positive constant E such that

(4.7)
$$\frac{R}{a^{p+2}(r-1)} \le E^{r-1} \le m^{r-1} t_b,$$

with R defined in (4.4). Let $\tau(x,t)$ be a $C^{2,1}([0,1]\times[0,t_b))$ function as follows:

$$\tau(x,t) = \frac{E}{((t_b - t) + \theta(x))^{\frac{1}{r-1}}} = ED^{-\frac{1}{r-1}},$$

where $D(x,t) = (t_b - t) + \theta(x)$. From (4.5) and (3.1), the blow-up time satisfies the following:

(4.8)
$$\frac{R}{m^{r-1}a^{p+2}(r-1)} \le t_b \le \frac{1}{m^{r-1}a^{p+2}(r-1)}.$$

We have:

$$\tau_t(x,t) = \frac{ED^{-\frac{r}{r-1}}}{(r-1)},$$

$$\tau_x(x,t) = -\frac{ED^{-\frac{r}{r-1}}\theta'(x)}{(r-1)},$$

$$\tau_{xx}(x,t) = \frac{rE(\theta'(x))^2 D^{\frac{-2r+1}{r-1}}}{(r-1)^2} - \frac{ED^{-\frac{r}{r-1}}\theta''(x)}{(r-1)}.$$

Therefore, using (4.7) and $\theta''(x) = 0$ for $0 \le x \le \delta$, we have for $0 \le x \le \delta$:

$$\begin{split} & x^{q}\tau_{t}(x,t) - \tau_{xx}(x,t) - a^{p+2}x^{p}\tau^{r}(x,t) \\ &= \frac{x^{q}ED^{-\frac{r}{r-1}}}{(r-1)} - \frac{rE\left(\theta'(x)\right)^{2}D^{\frac{-2r+1}{r-1}}}{(r-1)^{2}} + \frac{ED^{-\frac{r}{r-1}}\theta''(x)}{(r-1)} - a^{p+2}x^{p}E^{r}D^{-\frac{r}{r-1}} \\ &= \frac{x^{q}ED^{-\frac{r}{r-1}}}{(r-1)} \left[1 - \frac{r\left(\theta'(x)\right)^{2}}{(r-1)x^{q}D} + \frac{\theta''(x)}{x^{q}} - \frac{a^{p+2}\left(r-1\right)E^{r-1}}{x^{q-p}} \right] \\ &\leq \frac{x^{q}ED^{-\frac{r}{r-1}}}{(r-1)} \left[1 - \frac{a^{p+2}\left(r-1\right)E^{r-1}}{\delta^{q-p}} \right] \leq 0. \end{split}$$

Using (4.6) and (4.7), we have for $\delta \leq x \leq \hat{\varepsilon}$:

$$x^q \tau_t(x,t) - \tau_{xx}(x,t) - a^{p+2} x^p \tau^r(x,t)$$

$$= \frac{x^{q} E D^{-\frac{r}{r-1}}}{(r-1)} \left[1 - \frac{r \left(\theta'(x)\right)^{2}}{(r-1) x^{q} D} + \frac{\theta''(x)}{x^{q}} - \frac{a^{p+2} \left(r-1\right) E^{r-1}}{x^{q-p}} \right]$$
$$\leq \frac{x^{q} E D^{-\frac{r}{r-1}}}{(r-1)} \left[1 + \varkappa - \frac{a^{p+2} \left(r-1\right) E^{r-1}}{\hat{\varepsilon}^{q-p}} \right] \leq 0.$$

Using (4.3), (4.7) and $\theta''(x) < 0$ for $\hat{\varepsilon} \le x \le 1$, we have for $\hat{\varepsilon} \le x \le 1$:

$$\begin{aligned} x^{q}\tau_{t}(x,t) &- \tau_{xx}(x,t) - a^{p+2}x^{p}\tau^{r}(x,t) \\ &= \frac{x^{q}ED^{-\frac{r}{r-1}}}{(r-1)} \left[1 - \frac{r\left(\theta'(x)\right)^{2}}{(r-1)x^{q}D} + \frac{\theta''(x)}{x^{q}} - \frac{a^{p+2}\left(r-1\right)E^{r-1}}{x^{q-p}} \right] \\ &\leq \frac{x^{q}ED^{-\frac{r}{r-1}}}{(r-1)} \left[1 - \min_{\hat{\varepsilon} \leq x \leq 1} |\theta''(x)| - a^{p+2}\left(r-1\right)E^{r-1} \right] \\ &\leq \frac{x^{q}ED^{-\frac{r}{r-1}}}{(r-1)} \left[1 - B\left(q+2\right)\left(\hat{\varepsilon} - \delta\right)^{q}\left(1-\delta\right)^{q}|f(\hat{\varepsilon})| - a^{p+2}\left(r-1\right)E^{r-1} \right] \leq 0 \end{aligned}$$

From (4.7) we have:

$$\tau(x,0) = \frac{E}{(t_b + \theta(x))^{\frac{1}{r-1}}} \le \frac{E}{(t_b)^{\frac{1}{r-1}}} \le m,$$

and

$$\tau_x(0,t) = -\frac{ED^{-\frac{r}{r-1}}\theta'(0)}{(r-1)} = 0,$$

$$\tau_x(1,t) = -\frac{ED^{-\frac{r}{r-1}}\theta'(1)}{(r-1)} = 0.$$

We conclude that $\tau(x,t)$ is a lower solution that blows up at $t = t_b$ on the interval $[0, \delta]$. Therefore, u(x, t) also blows up on $[0, \delta]$ at $t = t_b$. If R = 1 in (4.5) and (4.8), that is,

$$t_b = \frac{1}{m^{r-1}a^{p+2} \left(r-1\right)},$$

then the blow-up is complete. This is exactly what happened in the case p = q in Theorem 3.1.

5. No Complete Blow-up when q < p

Below we assume that the solution u of the problem (1.1) blows up under the hypotheses of Theorem 3.2 and that the blow-up time t_b is a fixed given number corresponding to the given initial function $u_0(x) = m > 0$. Let

$$k_{3} = \left[\frac{1}{a^{p+2}\hat{k}(r-1)} + \frac{1}{a^{p+2}\hat{k}(r-1)t_{b}}\right]^{\frac{1}{r-1}},$$

(5.1)
$$\begin{cases} \beta > q+2, \\ 1 - \left(\frac{4r}{(r-1)} + \frac{2(\beta-1)}{\beta}\right) k_4^{2\beta-q-2} - a^{p+2} k_3^{r-1} (r-1) k_4^{p-q} \ge 0. \end{cases}$$

We modify the proof of Lemma 4.2 in Chan and Dyakevich [1, p. 614] to prove the following result.

Lemma 5.1. If p > q, then the following estimate holds for the solution of the problem (1.1):

$$u(x,t_b) \leq \frac{k_3}{\left[\frac{1}{\beta} \left(k_4^\beta - x^\beta\right)\right]^{\frac{2}{r-1}}} < \infty \text{ for } x \in [0,k_4).$$

Proof. Let

$$\Phi\left(x,t\right) = \frac{k_3}{D^{1/(r-1)}},$$

where

$$D(x,t) = \frac{1}{\beta^2} \left(k_4^{\beta} - x^{\beta} \right)^2 + (t_b - t) \,.$$

We have:

$$\begin{split} \Phi_t \left(x, t \right) &= \frac{k_3}{(r-1)} D^{-r/(r-1)}, \\ \Phi_x \left(x, t \right) &= \frac{k_3}{(r-1)} D^{-r/(r-1)} \frac{2}{\beta} \left(k_4^\beta - x^\beta \right) x^{\beta - 1}, \\ \Phi_{xx} \left(x, t \right) &= -\frac{k_3 r}{(r-1)^2} D^{(-2r+1)/(r-1)} \frac{2}{\beta} \left(k_8^\beta - x^\beta \right) x^{\beta - 1} \frac{2}{\beta^2} \left(k_8^\beta - x^\beta \right) (-\beta) x^{\beta - 1} \\ &+ \frac{2k_3}{(r-1)\beta} D^{-r/(r-1)} \left[-\beta x^{\beta - 1} x^{\beta - 1} \right] \\ &+ \frac{2k_3}{(r-1)\beta} D^{-r/(r-1)} \left(k_4^\beta - x^\beta \right) (\beta - 1) x^{\beta - 2} \\ &= \frac{k_3 r}{(r-1)^2} D^{(-2r+1)/(r-1)} \left[\frac{2}{\beta} \left(k_4^\beta - x^\beta \right) x^{\beta - 1} \right]^2 \\ &- \frac{2k_3}{(r-1)} D^{-r/(r-1)} x^{2\beta - 2} + \frac{2k_3 (\beta - 1)}{(r-1)\beta} D^{-r/(r-1)} \left(k_4^\beta - x^\beta \right) x^{\beta - 2}. \end{split}$$

Using (5.1), we obtain for any $x \in (0, k_4)$ and $0 < t < t_b$,

$$\begin{split} L\Phi &- a^{p+2} x^{p} \Phi^{r} \\ &= \frac{k_{3}}{(r-1) D^{\frac{r}{r-1}}} \left[x^{q} - \frac{r}{(r-1) D} \left[\frac{2}{\beta} \left(k_{4}^{\beta} - x^{\beta} \right) x^{\beta-1} \right]^{2} \\ &+ 2x^{2\beta-2} - \frac{2 \left(\beta - 1\right)}{\beta} \left(k_{4}^{\beta} - x^{\beta} \right) x^{\beta-2} - a^{p+2} x^{p} k_{3}^{r-1} \left(r - 1 \right) \right] \end{split}$$

$$\geq \frac{k_3 x^q}{(r-1) D^{\frac{r}{r-1}}} \left[1 - \frac{4r}{(r-1)} k_4^{2\beta-q-2} - \frac{2(\beta-1)}{\beta} k_4^{2\beta-q-2} - a^{p+2} k_4^{p-q} k_3^{r-1} (r-1) \right]$$

$$\geq 0.$$

It follows from (3.2), $\beta > 1$ and $0 < k_4 < 1$ that

$$\Phi(x,0) = \frac{k_3}{\left\{t_b + \frac{1}{\beta^2} \left(k_4^\beta - x^\beta\right)^2\right\}^{\frac{1}{r-1}}}$$

$$\geq \frac{\left[\frac{1}{a^{p+2}\hat{k}(r-1)} + \frac{1}{a^{p+2}\hat{k}(r-1)t_b}\right]^{\frac{1}{r-1}}}{(t_b+1)^{\frac{1}{r-1}}}$$

$$= \left[\frac{1}{\hat{k}a^{p+2}(r-1)t_b}\right]^{\frac{1}{r-1}}$$

$$\geq u(x,0) \text{ on } [0,k_4].$$

Since

$$\Phi_x(0,t) = 0, \quad \Phi(k_4,t) = \frac{k_3}{(t_b - t)^{\frac{1}{r-1}}},$$

it follows from Lemma 2.1, that $\Phi(x,t)$ is an upper solution of the problem (1.1) for $0 \le x \le k_4$. Since $\Phi(x,t)$ is bounded at $t = t_b$ for all $0 \le x < k_4$, we can conclude that the blow-up cannot be complete in the case p > q.

REFERENCES

- C. Y. Chan and N. E. Dyakevich, Complete and single-point blow-up of the solution for a degenerate semilinear parabolic problem with mixed boundary conditions, *Dynamic Systems* and Applications, 15:603–616, 2006.
- [2] C. Y. Chan and H. G. Kaper, Quenching for semilinear singular parabolic problems, SIAM J. Math. Anal., 20:558–566, 1989.
- [3] N. E. Dyakevich, Existence, uniqueness, and quenching properties of solutions for degenerate semilinear parabolic problems with second boundary conditions, J. Math. Anal. Appl., 338:892– 901, 2008.
- [4] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, NJ, 1964.
- [5] L. Wang and Q. Chen, The asymptotic behavior of blowup solution of localized nonlinear equation, J. Math. Anal. Appl., 200:315–321, 1996.