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1. INTRODUCTION

In this paper we discuss Mönch type maps [1, 6]. We begin in Theorem 2.2 and

present a new fixed point result for Mönch type self maps with weakly sequentially

closed graph. Next we define the notion of an essential map which is of Mönch type

and has weakly sequentially closed graph. We use this notion to present a homotopy

type result for this class of maps.

2. FIXED POINT THEORY

First we recall the following result [7].

Theorem 2.1. Let Q be a nonempty, convex, weakly compact subset of a metrizable

locally convex linear topological space E. Suppose F : Q → K(Q) has weakly se-

quentially closed graph; here K(Q) denotes the family of nonempty, convex, weakly

compact subsets of Q. Then F has a fixed point in Q.

We now prove a result which will be needed in Section 3.

Theorem 2.2. Let Q be a nonempty, closed, convex subset of a metrizable locally

convex linear topological space E and let x0 ∈ Q. Suppose F : Q → K(Q) has weakly

sequentially closed graph and F takes relatively weakly compact sets into relatively
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weakly compact sets. Also assume the following hold:

(2.1)

{

A ⊆ Q, A = co({x0} ∪ F (A)) with Aw = Cw

and C ⊆ A countable, implies Aw is weakly compact

(2.2)

{

for any relatively compact subset A of E there

exists a countable set B ⊆ A with Bw = Aw

and

(2.3)

{

if A is a weakly compact subset of E

then co(A) is weakly compact.

Then F has a fixed point in Q.

Remark 2.3. If E is a Banach space then (2.3) holds from the Krein-Šmulian theorem

[3, pg. 434, 5 pg. 82]. Note (2.3) holds if a Krein-Šmulian type theorem holds (for

example E could be a quasicomplete locally convex linear topological space); for

examples see [4 pp 553, 5 pp 82].

Remark 2.4. If K is a weakly compact subset of E and K with the relative weak

topology is metrizable (for example E could be a Banach space whose dual E∗ is

separable) then (2.2) holds (recall compact metric spaces are separable).

Proof. Let

D0 = {x0}, Dn = co ({x0} ∪ F (Dn−1)) for n = 1, 2, . . . and D =

∞
⋃

n=0

Dn.

Now for n = 0, 1, . . . notice Dn is convex and

D0 ⊆ D1 ⊆ · · · ⊆ Dn−1 ⊆ Dn · · · ⊆ Q.

Note D is convex and since (Dn) is increasing we have

(2.4) D =
∞
⋃

n=1

co ({x0} ∪ F (Dn−1)) = co({x0} ∪ F (D)).

We claim Dn is relatively weakly compact for n ∈ {0, 1, . . .}. Certainly it is true

if n = 0. Now suppose Dk is relatively weakly compact for some k ∈ {0, 1, . . .}.

Now since F takes relatively weakly compact sets into relatively weakly compact sets

then F (Dk) is relatively weakly compact. This together with (2.3) guarantees Dk+1

is relatively weakly compact.

Now (2.2) implies that for each n ∈ {0, 1, . . .} there exists Cn with Cn countable,

Cn ⊆ Dn, and Cn
w = Dn

w. Let C =
⋃

∞

n=0
Cn. Now since

∞
⋃

n=0

Dn ⊆
∞
⋃

n=0

Dn
w ⊆

∞
⋃

n=0

Dn

w
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we have

∞
⋃

n=0

Dn
w

w

=
∞
⋃

n=0

Dn

w

= Dw and
∞
⋃

n=0

Dn
w

w

=
∞
⋃

n=0

Cn
w

w

=
∞
⋃

n=0

Cn

w

= Cw.

Thus Cw = Dw so from (2.1) (see (2.4)) we have that Dw is weakly compact.

Consider the map F ⋆ : Dw → K(Dw) given by

F ⋆(x) = F (x) ∩ Dw.

We first show F ⋆(x) 6= ∅ for each x ∈ Dw. Note from (2.4) that F (D) ⊆ D ⊆ Dw

so D ⊆ F−1(Dw). Now let x ∈ Dw. Now since Dw is weakly compact the Eberlein-

Šmulian theorem [4 pg. 549] guarantees that there is a sequence (xn) in D with xn ⇀ x

(here ⇀ denotes weak convergence). Take any yn ∈ F (xn). Now since F (D) ⊆ D

we have yn ∈ D. Also since Dw is weakly compact the Eberlein-Šmulian theorem [4

pg. 549] guarantees that we may assume without loss of generality that yn ⇀ y for

some y ∈ Dw. Note yn ∈ F (xn), xn ⇀ x, yn ⇀ y implies y ∈ F (x) since F has

weakly sequentially closed graph. Thus y ∈ F (x) ∩ Dw so x ∈ F−1(Dw). As a result

Dw ⊆ F−1(Dw) i.e. F ⋆(x) 6= ∅ for each x ∈ Dw.

Note F ⋆ : Dw → K(Dw) has weakly sequentially closed graph. Now Theorem 2.1

guarantees a x ∈ Dw with x ∈ F ⋆(x) ⊆ F (x).

Remark 2.5. Theorem 2.2 improves [1, Theorem 3.3].

3. HOMOTOPY RESULTS

In this section let E be a metrizable locally convex linear topological space, C a

closed convex subset of E, and U a weakly open subset of C with 0 ∈ U .

Definition 3.1. F ∈ A(Uw, C) if F : Uw → K(C) has weakly sequentially closed

graph, F takes relatively weakly compact sets into relatively weakly compact sets,

and F satisfies the following condition: if D ⊆ Uw and D ⊆ co({0} ∪ F (D)) with

Dw = Cw and C ⊆ D countable, then Dw is weakly compact.

Definition 3.2. We say F ∈ A∂U (Uw, C) if F ∈ A(Uw, C) with x /∈ F (x) for x ∈ ∂U ;

here ∂U denotes the weak boundary of U in C.

Definition 3.3. A map F ∈ A∂U(Uw, C) is essential in A∂U (Uw, C) if for every

G ∈ A∂U(Uw, C) with G|∂U = F |∂U there exists x ∈ U with x ∈ G(x).

Theorem 3.4 (Homotopy Property). Let E be a metrizable locally convex linear

topological space, C a closed convex subset of E, U a weakly open subset of C with

0 ∈ U . Suppose F ∈ A(Uw, C) and assume the following conditions hold:

(3.1) the zero map is essential in A∂U (Uw, C)
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and

(3.2) x /∈ λ F x for every x ∈ ∂U and λ ∈ (0, 1].

Then F is essential in A∂U(Uw, C).

Proof. Let H ∈ A∂U(Uw, C) with H|∂U = F |∂U . We must show H has a fixed point

in U . Consider

B = {x ∈ Uw : x ∈ tH(x) for some t ∈ [0, 1]}.

Now B 6= ∅ since 0 ∈ U . Also B is weakly sequentially closed. To see this let (xn)

be sequence of B which converges weakly to some x ∈ Bw (in particular x ∈ Uw)

and let (λn) be a sequence of [0, 1] satisfying xn ∈ λnHxn. Then for each n there is a

zn ∈ Hxn with xn = λnzn. By passing to a subsequence if necessary, we may assume

that (λn) converges to some λ ∈ [0, 1] and without loss of generality assume λn 6= 0

for all n. This implies that the sequence (zn) converges weakly to some z ∈ Uw with

x = λz. Since F has weakly sequentially closed graph then z ∈ H(x). Hence x ∈ λHx

and therefore x ∈ B. Thus B is weakly sequentially closed.

Let {xn}
∞

n=1 be a sequence in B. Then there exists a sequence {tn}
∞

n=1 in [0, 1]

with xn ∈ tnHxn and we may assume without loss of generality that tn → t ∈ [0, 1].

Let C = {xn}
∞

n=1. Note C is countable and C ⊆ co(H(C)∪{0}). Since H ∈ A(Uw, C)

then Cw is weakly compact. The Eberlein-Šmulian theorem [4 pg. 549] guarantees

that there is a subsequence N of {1, 2, . . .} and a x ∈ Cw with xn ⇀ x as n → ∞

in N . Now since B is weakly sequentially closed we have x ∈ B. Consequently B

is weakly sequentially compact, so weakly compact by the Eberlein-Šmulian theorem

[3, pg. 430] .

Now B∩∂U = ∅ since (3.2) holds; note H|∂U = F |∂U and 0 ∈ U . Now E = (E, w),

the space E endowed with the weak topology, is completely regular. This there exists

a weakly continuous map µ : Uw → [0, 1] with µ(∂U) = 0 and µ(B) = 1. Define a

map Rµ : Uw → K(C) by Rµ(x) = µ(x)H(x). Note Rµ has weakly sequentially closed

graph (since H has weakly sequentially closed graph) and Rµ takes relatively weakly

compact sets into relatively weakly compact sets. [If A ⊆ Uw is weakly compact

and yn ∈ Rµ(A), then yn = µ(xn)zn where zn ∈ H(xn) and xn ∈ A. Without loss

of generality we may assume there exists x ∈ A and z ∈ H(A)w with xn ⇀ x and

zn ⇀ z (recall A and H(A)w are weakly compact; in fact from a standard result [7]

we note that H : A → K(C) has weakly closed graph and from another standard

result [1] we have that H(A) is weakly compact). Then z ∈ H(x) since H has weakly

sequentially closed graph. Let y = µ(x)z. Then yn ⇀ y and y ∈ Rµ(A). As a result

Rµ(A) is weakly compact.] Next suppose D ⊆ Uw with D ⊆ co ({0} ∪ Rµ(D)) and

with Dw = Cw and C ⊆ D countable. Then since Rµ(D) ⊆ co({0} ∪ H(D)) and
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{0} ∪ co({0} ∪ H(D)) = co({0} ∪ H(D)) we have

D ⊆ co ({0} ∪ Rµ(D)) ⊆ co (co ({0} ∪ H(D))) = co ({0} ∪ H(D)) .

Then Dw is weakly compact since H ∈ A(Uw, C). Thus Rµ ∈ A(Uw, C) with Rµ|∂U =

{0}. Now (3.1) guarantees that there exists x ∈ U with x ∈ Rµ(x). As a result x ∈ B,

so µ(x) = 1 i.e. x ∈ H(x).

Next we discuss (3.1).

Theorem 3.5. Let E be a metrizable locally convex linear topological space, C a

closed convex subset of E, U a weakly open subset of C with 0 ∈ U . Suppose (2.2)

and (2.3) hold. Then (3.1) holds.

Proof. Let θ ∈ A∂U(Uw, C) with θ|∂U = {0}. We must show θ has a fixed point in U .

Let

J(x) =

{

θ(x), x ∈ Uw

{0}, otherwise.

Note J : C → K(C) has weakly sequentially closed graph. Now suppose A ⊆ C,

A = co({0} ∪ J(A)) with Aw = Dw and D ⊆ A countable. Then

(3.3) A ⊆ co({0} ∪ θ(U ∩ A))

and so

(3.4) U ∩ A ⊆ co({0} ∪ θ(U ∩ A)).

Notice D ∩ U is countable, D ∩ U ⊆ A ∩ U and

(3.5) D ∩ Uw = A ∩ Uw

since

D ∩ U ⊆ A ∩ U ⊆ Aw ∩ U = Dw ∩ U ⊆ D ∩ Uw

(note for sets D0 and D1 of C with D0 weakly open in C, then D0∩D1
w ⊆ D0 ∩ D1

w).

Now (3.4) and (3.5) and θ ∈ A(Uw, C)) implies that A ∩ Uw is weakly compact. Also

since θ ∈ A(Uw, C) (θ takes relatively weakly compact sets into relatively weakly

compact sets) we have that θ(A ∩ U) is relatively weakly compact. Now (2.3) guar-

antees that co({0} ∪ θ(A ∩ U)w) is weakly compact. This together with (3.3) implies

that Aw is weakly compact.

Now Theorem 2.2 guarantees that there exists x ∈ C with x ∈ J(x). If x /∈ U

we have x ∈ J(x) = {0}, which is a contradiction since 0 ∈ U . Thus x ∈ U so

x ∈ J(x) = θ(x).

Combining Theorem 3.4 and Theorem 3.5 yields the following nonlinear alterna-

tive of Leray-Schauder type.
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Theorem 3.6. Let E be a metrizable locally convex linear topological space, C a

closed convex subset of E, and U a weakly open subset of C with 0 ∈ U . Suppose

(2.2) and (2.3) hold. Also suppose F ∈ A(Uw, C) satisfies (3.2). Then F is essential

in A∂U(Uw, C) (in particular F has a fixed point in U).
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