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1. INTRODUCTION

The 0-epi maps were introduced by Furi, Martelli and Vignoli [1] and essential

maps were introduced by Granas [3]. The notion of Φ-epi maps is presented in Section

2 and the notion of Φ-essential maps is presented in Section 3. Both approaches allow

us to study coincidence points (i.e. F (x)∩Φ(x) 6= ∅) of the maps F and Φ. This new

theory presents a unified theory for establishing coincidence points for general classes

of maps. Our results are more general than those in the literature (see [1–8] and the

references therein).

2. Φ-EPI MAPS

Let E be a Hausdorff topological space and U an open subset of E.

We will consider classes A and B of maps.

Definition 2.1. We say F ∈ A(U, E) if F ∈ A(U, E) and F : U → K(E) is an

upper semicontinuous map; here U denotes the closure of U in E and K(E) denotes

the family of nonempty compact subsets of E.

Definition 2.2. We say F ∈ B(U, E) if F ∈ B(U, E) and F : U → K(E) is an

upper semicontinuous map.

In this section we fix a Φ ∈ B(U, E) in the first three results.
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Definition 2.3. We say F ∈ A∂U(U, E) if F ∈ A(U, E) with F (x) ∩ Φ(x) = ∅ for

x ∈ ∂U ; here ∂U denotes the boundary of U in E.

Definition 2.4. We say F ∈ BΦ(U, E) if F ∈ B(U, E) and F (x) ⊆ Φ(x) for x ∈ ∂U .

Definition 2.5. A map F ∈ A∂U (U, E) is Φ-epi if for every map G ∈ BΦ(U, E) there

exists x ∈ U with F (x) ∩ G(x) 6= ∅.

Remark 2.6. Suppose F ∈ A∂U(U, E) is Φ-epi. Then there exists x ∈ U with

F (x) ∩ Φ(x) 6= ∅ (take G = Φ in Definition 2.5).

Our next result can be called the “homotopy property” for Φ-epi maps. In our

result E will be a topological vector space so automatically a completely regular

space. For convenience we state the result if E is a normal space and we remark on

the general case after the theorem.

Theorem 2.7. Let E be a normal topological vector space and U an open subset

of E. Suppose F ∈ A∂U(U, E) is Φ-epi and H : U × [0, 1] → K(E) is an upper

semicontinuous map with H(x, 0) = {0} for x ∈ ∂U . In addition assume the following

conditions hold:

(2.1)

{

if F1 ∈ B(U, E) then F1(·) + H(·, µ(·)) ∈ B(U, E)

for any continuous map µ : U → [0, 1] with µ(∂U) = 0

and

(2.2)

{

{x ∈ U : F (x) ∩ [Φ(x) + H(x, t)] 6= ∅ for some t ∈ [0, 1]}

does not intersect ∂U.

Then F (·) − H(·, 1) : U → K(E) is Φ-epi.

Proof. Let G ∈ BΦ(U, E). We must show that there exists x ∈ U with [F (x) −

H(x, 1)] ∩ G(x) 6= ∅. Let

D =
{

x ∈ U : F (x) ∩ [G(x) + H(x, t)] 6= ∅ for some t ∈ [0, 1]
}

.

When t = 0 we have G(·)+H(·, 0) ∈ BΦ(U, E) since from (2.1) we have G(·)+H(·, 0) ∈

B(U, E) and for x ∈ ∂U we have G(x) + H(x, 0) = G(x) ⊆ Φ(x) and this together

with the fact that F is Φ-epi yields D 6= ∅. Next we show D is closed. To see this

let (xα) be a net in D (i.e. F (xα) ∩ [G(xα) + H(xα, tα)] 6= ∅ for some tα ∈ [0, 1])

with xα → x0 ∈ U . Without loss of generality assume tα → t0 ∈ [0, 1]. Suppose

yα ∈ F (xα) with yα ∈ G(xα) + H(xα, tα). Since F is upper semicontinuous then [9]

implies that there exists y0 ∈ F (x0) and a subnet (yβ) of (yα) with yβ → y0. The upper

semicontinuity of the maps G and H together with yβ → y0 and yβ ∈ G(xβ)+H(xβ, tβ)

implies y0 ∈ G(x0) + H(x0, t0). Thus F (x0) ∩ [G(x0) + H(x0, t0)] 6= ∅ i.e. x0 ∈ D, so

D is closed.
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Next we note (2.2) guarantees that D ∩ ∂U = ∅ (note if x ∈ ∂U then F (x) ∩

[G(x) + H(x, t)] ⊆ F (x) ∩ [Φ(x) + H(x, t)]). Now Urysohn’s lemma guarantees that

there exists a continuous map µ : U → [0, 1] with µ(∂U) = 0 and µ(D) = 1.

Define a map J : U → K(E) by

J(x) = G(x) + H(x, µ(x)).

Note J ∈ B(U, E) from (2.1) and for x ∈ ∂U we have J(x) = G(x) + H(x, µ(x)) =

G(x) + H(x, 0) = G(x) ⊆ Φ(x). Thus J ∈ BΦ(U, E). Now since F is Φ-epi there

exists x ∈ U with F (x) ∩ J(x) 6= ∅ i.e. F (x) ∩ [G(x) + H(x, µ(x))] 6= ∅. Thus

x ∈ D and as a result µ(x) = 1. Consequently F (x) ∩ [G(x) + H(x, 1)] 6= ∅ so

[F (x) − H(x, 1)] ∩ G(x) 6= ∅.

Remark 2.8. We can remove the assumption that E is normal in the statement

of Theorem 2.7 provided we put conditions on the maps so that D is compact (the

existence of the map µ in the proof above is then guaranteed since topological vector

spaces are completely regular).

Our next result can be called the “coincidence property” for Φ-epi maps.

Theorem 2.9. Let E be a normal topological vector space and U an open subset of E.

Suppose F ∈ A∂U(U, E) is Φ-epi, G ∈ B(U, E) and assume the following conditions

hold:

(2.3)

{

µ(·)G(·) + (1 − µ(cdot))Φ(·) ∈ B(U, E) for any

continuous map µ : U → [0, 1] with µ(∂U) = 0

and

(2.4)

{

{x ∈ U : F (x) ∩ [tG(x) + (1 − t)Φ(x)] 6= ∅ for some t ∈ [0, 1]}

does not intersect ∂U.

Then there exists x ∈ U with F (x) ∩ G(x) 6= ∅.

Proof. Let

D =
{

x ∈ U : F (x) ∩ [tG(x) + (1 − t)Φ(x)] 6= ∅ for some t ∈ [0, 1]
}

.

When t = 0 note F (x) ∩ Φ(x) 6= ∅ for some x ∈ U since F ∈ A∂U(U, E) is Φ-epi,

so D 6= ∅. The same reasoning as in Theorem 2.7 guarantees that D is closed. Also

D ∩ ∂U = ∅ from (2.4). Thus there exists a continuous map µ : U → [0, 1] with

µ(∂U) = 0 and µ(D) = 1.

Define a map J : U → K(E) by

J(x) = µ(x)G(x) + (1 − µ(x))Φ(x).
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Now (2.3) guarantees that J ∈ B(U, E) and for x ∈ ∂U we have J(x) = 0 + Φ(x) =

Φ(x), so J ∈ BΦ(U, E). Now since F is Φ-epi there exists x ∈ U with F (x)∩J(x) 6= ∅.

Thus x ∈ D and as a result µ(x) = 1. Consequently F (x) ∩ G(x) 6= ∅.

Remark 2.10. We also have an analogue of Remark 2.8 in this case also.

Finally we restate Theorem 2.9 as a result of Leray-Schauder type.

Theorem 2.11. Let E be a normal topological vector space and U an open subset

of E. Suppose F ∈ A∂U (U, E) is Φ-epi and G ∈ B(U, E). In addition assume (2.3)

holds. Then either

(A1). there exists x ∈ U with F (x) ∩ G(x) 6= ∅,

or

(A2). there exists x ∈ ∂U and λ ∈ (0, 1) with F (x) ∩ [λ G(x) + (1 − λ)Φ(x)] 6= ∅,

holds.

Proof. Suppose (A2) does not hold and F (x)∩G(x) = ∅ for x ∈ ∂U (since otherwise

(A1) holds). Also note F (x) ∩ Φ(x) = ∅ for x ∈ ∂U since F ∈ A∂U(U, E). Thus

there exists x ∈ ∂U and λ ∈ [0, 1] with F (x) ∩ [λ G(x) + (1 − λ)Φ(x)] 6= ∅

cannot occur, so (2.4) holds. Now Theorem 2.9 guarantees that there exists x ∈ U

with F (x) ∩ G(x) 6= ∅.

We now show that the ideas in this section can be applied to other natural

situations. Let E be a Hausdorff topological vector space, Y a topological vector

space, and U an open subset of E. Also let L : dom L ⊆ E → Y be a linear (not

necessarily continuous) single valued map; here dom L is a vector subspace of E.

Finally T : E → Y will be a linear, continuous single valued map with L + T :

dom L → Y an isomorphism (i.e. a linear homeomorphism); for convenience we say

T ∈ HL(E, Y ).

Definition 2.12. We say F ∈ A(U, Y ; L, T ) if F : U → 2Y with (L + T )−1(F + T ) ∈

A(U, E).

Definition 2.13. We say F ∈ B(U, Y ; L, T ) if F : U → 2Y with (L+T )−1(F +T ) ∈

B(U, E).

In our next two results we fix a Φ ∈ B(U, Y ; L, T ).

Definition 2.14. We say F ∈ A∂U(U, Y ; L, T ) if F ∈ A(U, Y ; L, T ) with (L +

T )−1(F + T )(x) ∩ (L + T )−1(Φ + T )(x) = ∅ for x ∈ ∂U .

Definition 2.15. We say F ∈ BΦ(U, Y ; L, T ) if F ∈ B(U, Y ; L, T ) and (L+T )−1(F +

T )(x) ⊆ (L + T )−1(Φ + T )(x) for x ∈ ∂U .
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Definition 2.16. A map F ∈ A∂U(U, Y ; L, T ) is (L, T )Φ-epi if for every map G ∈

BΦ(U, Y ; L, T ) there exists x ∈ U with (L+T )−1(F +T )(x)∩(L+T )−1(G+T )(x) 6= ∅.

Remark 2.17. Suppose F ∈ A∂U(U, Y ; L, T ) is (L, T )Φ-epi. Then there exists x ∈ U

with (L+T )−1(F +T )(x)∩ (L+T )−1(Φ+T )(x) 6= ∅ (take G = Φ in Definition 2.16).

Theorem 2.18. Let E be a normal topological vector space, Y a topological vector

space, U an open subset of E, L : dom L ⊆ E → Y a linear single valued map and

T ∈ HL(E, Y ). Suppose F ∈ A∂U(U, Y ; L, T ) is (L, T )Φ-epi and H : U × [0, 1] → 2Y

with (L + T )−1H : U × [0, 1] → K(E) an upper semicontinuous map and (L +

T )−1H(x, 0) = {0} for x ∈ ∂U . In addition assume the following conditions hold:

(2.5)











if F1 ∈ B(U, Y ; L, T ) then F1(·) + H(

cdot, µ(·)) ∈ B(U, Y ; L, T )

for any continuous map µ : U → [0, 1] with µ(∂U) = 0

and

(2.6)

{

{x ∈ U : (L + T )−1(F + T )(x) ∩ (L + T )−1[Φ(x) + H(x, t) + T (x)] 6= ∅

for some t ∈ [0, 1]} does not intersect ∂U.

Then F (·) − H(·, 1) is (L, T )Φ-epi.

Proof. Let G ∈ BΦ(U, Y ; L, T ) and

D = {x ∈ U : (L + T )−1(F + T )(x) ∩ (L + T )−1[G(x) + H(x, t) + T (x)] 6= ∅

for some t ∈ [0, 1]}.

When t = 0 we have G(·) + H(·, 0) ∈ B(U, Y ; L, T ) and for x ∈ ∂U we have (L +

T )−1[G(x) + H(x, 0) + T (x)] = (L + T )−1(G + T )(x) ⊆ (L + T )−1(Φ + T )(x) so

G(·) + H(·, 0) ∈ BΦ(U, Y ; L, T ) and this together with the fact that F is (L, T )Φ-epi

yields D 6= ∅. Similar reasoning as in Theorem 2.7 guarantees that D is closed. Also

(2.6) guarantees that D ∩ ∂U = ∅ so there exists a continuous map µ : U → [0, 1]

with µ(∂U) = 0 and µ(D) = 1. Define a map J : U → 2Y by

J(x) = G(x) + H(x, µ(x)).

Now J ∈ B(U, Y ; L, T ) and for x ∈ ∂U we have (L + T )−1(J + T )(x) = (L +

T )−1[G(x) + H(x, 0) + T (x)] = (L + T )−1(G + T )(x) ⊆ (L + T )−1(Φ + T )(x). Thus

J ∈ BΦ(U, Y ; L, T ) so since F is (L, T )Φ-epi there exists x ∈ U with (L + T )−1(F +

T )(x) ∩ (L + T )−1(J + T )(x) 6= ∅. Thus x ∈ D so µ(x) = 1 and we are finished.

Remark 2.19. We also have an analogue of Remark 2.8 in this case also.

Remark 2.20. If we change Definition 2.12 (respectively Definition 2.13) to F ∈

A(U, Y ; L, T ) (respectively F ∈ B(U, Y ; L, T )) if F : U → 2Y with (L + T )−1F ∈

A(U, E) (respectively (L+T )−1F ∈ B(U, E)), Definition 2.14 to F ∈ A∂U(U, Y ; L, T )



148 D. O’REGAN

if F ∈ A(U, Y ; L, T ) with (L + T )−1F (x)∩ (L + T )−1Φ(x) = ∅ for x ∈ ∂U , Definition

2.15 to F ∈ BΦ(U, Y ; L, T ) if F ∈ B(U, Y ; L, T ) and (L+T )−1F (x) ⊆ (L+T )−1Φ(x)

for x ∈ ∂U , Definition 2.16 to F ∈ A∂U(U, Y ; L, T ) is (L, T )Φ-epi if for every map

G ∈ BΦ(U, Y ; L, T ) there exists x ∈ U with (L + T )−1F (x) ∩ (L + T )−1G(x) 6= ∅,

then we have an analogue of Theorem 2.18 if (2.6) is replaced by

{

{x ∈ U : (L + T )−1F (x) ∩ (L + T )−1[Φ(x) + H(x, t)] 6= ∅ for some t ∈ [0, 1]}

does not intersect ∂U.

(L, T )Φ-epi maps of this type when Φ = 0 were discussed in [5].

Theorem 2.21. Let E be a normal topological vector space, Y a topological vector

space, U an open subset of E, L : dom L ⊆ E → Y a linear single valued map and

T ∈ HL(E, Y ). Suppose F ∈ A∂U(U, Y ; L, T ) is (L, T )Φ-epi, G ∈ B(U, Y ; L, T ) and

assume the following conditions hold:

(2.7)

{

µ(·) G(·) + (1 − µ(·))Φ(·) ∈ B(U, Y ; L, T ) for any

continuous map µ : U → [0, 1] with µ(∂U) = 0

and

(2.8)
{

{x ∈ U : (L + T )−1(F + T )(x) ∩ (L + T )−1[tG(x) + (1 − t)Φ(x) + T (x)] 6= ∅

for some t ∈ [0, 1]} does not intersect ∂U.

Then there exists x ∈ U with (L + T )−1(F + T )(x) ∩ (L + T )−1(G + T )(x) 6= ∅.

Proof. Let

D = {x ∈ U : (L + T )−1(F + T )(x) ∩ (L + T )−1[tG(x) + (1 − t)Φ(x) + T (x)] 6= ∅

for some t ∈ [0, 1]}.

Now D 6= ∅ is closed and D ∩ ∂U = ∅. Thus there exists a continuous map µ : U →

[0, 1] with µ(∂U) = 0 and µ(D) = 1. Define a map J : U → 2Y by

J(x) = µ(x)G(x) + (1 − µ(x))Φ(x).

Now J ∈ B(U, Y ; L, T ) and for x ∈ ∂U we have (L+T )−1(J +T )(x) = (L+T )−1[0+

(Φ + T )(x)], so J ∈ BΦ(U, Y ; L, T ). Now since F is (L, T )Φ-epi there exists x ∈ U

with (L + T )−1(F + T )(x) ∩ (L + T )−1(J + T )(x) 6= ∅. Thus x ∈ D and as a result

µ(x) = 1, so we are finished.

Remark 2.22. We also have an analogue of Remark 2.8 in this case also.
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3. Φ-ESSENTIAL MAPS

Let E be a completely regular topological space and U an open subset of E.

As in Section 2 we will consider classes A and B of maps.

Definition 3.1. We say F ∈ A(U, E) (respectively F ∈ B(U, E)) if F ∈ A(U, E)

(respectively F ∈ B(U, E)) and F : U → K(E) is an upper semicontinuous map.

In this section we fix a Φ ∈ B(U, E) in the first two results.

Definition 3.2. We say F ∈ A∂U(U, E) if F ∈ A(U, E) with F (x) ∩ Φ(x) = ∅ for

x ∈ ∂U .

Definition 3.3. Let F, G ∈ A∂U(U, E). We say F ∼= G in A∂U(U, E) if there exists

an upper semicontinuous map Ψ : U × [0, 1] → K(E) with Ψ(·, η(·)) ∈ A(U, E) for

any continuous function η : U → [0, 1] with η(∂U) = 0, Ψt(x) ∩ Φ(x) = ∅ for any

x ∈ ∂U and t ∈ [0, 1], Ψ1 = F , Ψ0 = G and
{

x ∈ U : Φ(x) ∩ Ψ(x, t) 6= ∅ for some

t ∈ [0, 1]
}

is relatively compact (here Ψt(x) = Ψ(x, t)).

Remark 3.4. We note if H : U × [0, 1] → K(E) is an upper semicontinuous map

then (similar reasoning as in Section 2) M =
{

x ∈ U : Φ(x) ∩ H(x, t) 6= ∅ for some

t ∈ [0, 1]
}

is closed so that if M is relatively compact then M is compact.

The following condition will be assumed in our next two results:

(3.1) ∼= is an equivalence relation in A∂U(U, E).

Definition 3.5. Let F ∈ A∂U(U, E). We say F : U → K(E) is Φ-essential in

A∂U(U, E) if for every map J ∈ A∂U (U, E) with J |∂U = F |∂U and J ∼= F in A∂U(U, E)

there exists x ∈ U with J(x) ∩ Φ(x) 6= ∅. Otherwise F is Φ-inessential in A∂U(U, E)

i.e. there exists a map J ∈ A∂U(U, E) with J |∂U = F |∂U and J ∼= F in A∂U(U, E)

with J(x) ∩ Φ(x) = ∅ for all x ∈ U .

Theorem 3.6. Let E be a completely regular topological space, U an open subset of E

and assume (3.1) holds. Suppose F ∈ A∂U (U, E). Then the following are equivalent:

(i). F is Φ-inessential in A∂U(U, E);

(ii). there exists a map G ∈ A∂U(U, E) with G ∼= F in A∂U(U, E) and G(x)∩Φ(x) = ∅

for all x ∈ U .

Proof. (i) implies (ii) is immediate. Next we prove (ii) implies (i). Suppose there exists

a map G ∈ A∂U(U, E) with G ∼= F in A∂U(U, E) and G(x) ∩ Φ(x) = ∅ for all x ∈ U .

Let H : U × [0, 1] → K(E) be a upper semicontinuous map with H(·, η(·)) ∈ A(U, E)

for any continuous function η : U → [0, 1] with η(∂U) = 0, Ht(x) ∩ Φ(x) = ∅
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for any x ∈ ∂U and t ∈ [0, 1], H0 = F , H1 = G (here Ht(x) = H(x, t)) and
{

x ∈ U : Φ(x) ∩ H(x, t) 6= ∅ for some t ∈ [0, 1]
}

is relatively compact. Consider

D =
{

x ∈ U : Φ(x) ∩ H(x, t) 6= ∅ for some t ∈ [0, 1]
}

.

If D = ∅ then in particular ∅ = Φ(x) ∩ H(x, 0) = Φ(x) ∩ F (x) for x ∈ U so F is

Φ-inessential in A∂U(U, E) (take J = F in Definition 3.5). Next suppose D 6= ∅.

Essentially the same reasoning as in Theorem 2.7 guarantees that D is closed in E

so D is compact from Remark 3.4. Also D ∩ ∂U = ∅. Thus (note E is a completely

regular topological space) there exists a continuous map µ : U → [0, 1] with µ(∂U) = 0

and µ(D) = 1. Define J : U → K(E) by J(x) = H(x, µ(x)). Note J ∈ A(U, E) and

J |∂U = H0|∂U = F |∂U . Also note if there exists a x ∈ U with J(x) ∩ Φ(x) 6= ∅ then

x ∈ D so µ(x) = 1 i.e. G(x) ∩ Φ(x) 6= ∅, a contradiction. Thus J ∈ A∂U(U, E) and

J |∂U = F |∂U and J(x) ∩ Φ(x) = ∅ for x ∈ U . We now claim

(3.2) J ∼= F in A∂U(U, E).

If (3.2) is true then F is Φ-inessential in A∂U(U, E).

It remains to show (3.2). Let Q : U × [0, 1] → K(E) be given by Q(x, t) =

H(x, tµ(x)). Note Q : U×[0, 1] → K(E) is an upper semicontinuous map, Q(·, η(·)) ∈

A(U, E) for any continuous function η : U → [0, 1] with η(∂U) = 0 and

{

x ∈ U : ∅ 6= Φ(x) ∩ Q(x, t) = Φ(x) ∩ H(x, tµ(x)) for some t ∈ [0, 1]
}

is closed and compact. Note Q0 = F and Q1 = J . Finally if there exists a t ∈ [0, 1]

and x ∈ ∂U with Φ(x) ∩ Qt(x) 6= ∅ than Φ(x) ∩ Htµ(x)(x) 6= ∅ so x ∈ D and so

µ(x) = 1 i.e. Φ(x) ∩ Ht(x) 6= ∅, a contradiction. Thus (3.2) holds.

Theorem 3.7. Let E be a completely regular topological space, U an open subset of

E and assume (3.1) holds. Suppose F and G are two maps in A∂U(U, E) with F ∼= G

in A∂U(U, E). Then F is Φ-essential in A∂U (U, E) if and only if G is Φ-essential in

A∂U(U, E).

Proof. F is Φ-inessential in A∂U (U, E) iff there exists a map Ψ ∈ A∂U (U, E) with

F ∼= Ψ in A∂U(U, E) and Φ(x)∩Ψ(x) = ∅ for x ∈ U iff (since (3.1) holds) there exists

a map Ψ ∈ A∂U(U, E) with G ∼= Ψ in A∂U (U, E) and Φ(x) ∩ Ψ(x) = ∅ for x ∈ U iff

G is Φ-inessential in A∂U(U, E).

Remark 3.8. If E is a normal topological space then the assumption that

{

x ∈ U : Φ(x) ∩ Ψ(x, t) 6= ∅ for some t ∈ [0, 1]
}

is relatively compact can be removed in Definition 3.3 and we still obtain Theorem 3.6

and Theorem 3.7.



COINCIDENCE POINTS 151

Remark 3.9. A result of Theorem 3.7 type was established in [4, Theorem 2.8] but

however an assumption was omitted. In [4, Theorem 2.8] the result will work for

subclasses of the admissible maps in [4] where ∼= is an equivalence relation in that

class (for example the Kakutani and acyclic maps [6, 8]).

We next present a result where (3.1) is not needed.

Theorem 3.10. Let E be a completely regular topological space, U an open subset

of E and let F ∈ A∂U (U, E) be Φ-essential in A∂U(U, E). Suppose there exists an

upper semicontinuous map H : U × [0, 1] → K(E) with H(·, η(·)) ∈ A(U, E) for

any continuous function η : U → [0, 1] with η(∂U) = 0, Φ(x) ∩ Ht(x) = ∅ for any

x ∈ ∂U and t ∈ (0, 1], H0 = F and
{

x ∈ U : Φ(x) ∩ H(x, t) 6= ∅ for some t ∈ [0, 1]
}

is relatively compact. Then there exists x ∈ U with Φ(x) ∩ H1(x) 6= ∅.

Proof. Let

D =
{

x ∈ U : Φ(x) ∩ H(x, t) 6= ∅ for some t ∈ [0, 1]
}

.

Note D 6= ∅ since F is Φ-essential in A∂U(U, E) (note F ∼= F in A∂U (U, E)). Es-

sentially the same reasoning as in Theorem 2.7 guarantees that D is closed in E so

D is compact from Remark 3.4. Also D ∩ ∂U = ∅ (note H0 = F so for t = 0 we

have Φ(x) ∩ H0(x) = ∅ for x ∈ ∂U since F ∈ A∂U(U, E)). Thus there exists a con-

tinuous map µ : U → [0, 1] with µ(∂U) = 0 and µ(D) = 1. Define J : U → K(E)

by J(x) = H(x, µ(x)). Note J ∈ A∂U(U, E) with J |∂U = F |∂U (note if x ∈ U

then J(x) = H0(x) = F (x) and J(x) ∩ Φ(x) = F (x) ∩ Φ(x) = ∅). Also as in The-

orem 3.6, J ∼= F in A∂U(U, E) (take as before Q : U × [0, 1] → K(E) given by

Q(x, t) = H(x, tµ(x))). Now since F is Φ-essential in A∂U (U, E) then there exists a

x ∈ U with J(x) ∩ Φ(x) 6= ∅ (i.e. Hµ(x)(x) ∩ Φ(x) 6= ∅), and thus x ∈ D so µ(x) = 1

and as a result H1(x) ∩ Φ(x) 6= ∅.

Remark 3.11. If E is a normal topological space then the assumption that
{

x ∈ U : Φ(x) ∩ H(x, t) 6= ∅ for some t ∈ [0, 1]
}

is relatively compact can be removed in the statement of Theorem 3.10 and we still

obtain Theorem 3.10.

Remark 3.12. The result in Theorem 3.10 also holds (proof is easier also) if we

change Definition 3.5 as follows: Let F ∈ A∂U(U, E). We say F : U → K(E) is

Φ-essential in A∂U(U, E) if for every map J ∈ A∂U(U, E) with J |∂U = F |∂U there

exists x ∈ U with J(x) ∩ Φ(x) 6= ∅.

Let E be a Hausdorff topological vector space, Y a topological vector space, and

U an open subset of E. Also let L : dom L ⊆ E → Y be a linear (not necessarily

continuous) single valued map; here dom L is a vector subspace of E. Finally T :
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E → Y will be a linear, continuous single valued map with L + T : dom L → Y an

isomorphism (i.e. a linear homeomorphism); for convenience we say T ∈ HL(E, Y ).

Definition 3.13. We say F ∈ A(U, Y ; L, T ) (respectively F ∈ B(U, Y ; L, T )) if

(L + T )−1(F + T ) ∈ A(U, E) (respectively L + T )−1(F + T ) ∈ B(U, E)).

We now fix a Φ ∈ B(U, Y ; L, T ).

Definition 3.14. We say F ∈ A∂U(U, Y ; L, T ) if F ∈ A(U, Y ; L, T ) with (L +

T )−1(F + T )(x) ∩ (L + T )−1(Φ + T )(x) = ∅ for x ∈ ∂U .

Definition 3.15. Let F, G ∈ A∂U(U, Y ; L, T ). We say F ∼= G in A∂U(U, Y ; L, T ) if

there exists a map Ψ : U × [0, 1] → 2Y with (L + T )−1(Ψ + T ) : U × [0, 1] → K(E)

a upper semi continuous map, (L + T )−1(Ψ(·, η(·)) + T (·)) ∈ A(U, E) for any con-

tinuous function η : U → [0, 1] with η(∂U) = 0, (L + T )−1(Ψt + T )(x) ∩ (L +

T )−1(Φ + T )(x) = ∅ for any x ∈ ∂U and t ∈ [0, 1], Ψ1 = F , Ψ0 = G and
{

x ∈ U : (L + T )−1(Φ + T )(x) ∩ (L + T )−1(Ψt + T )(x) 6= ∅ for some t ∈ [0, 1]
}

is rel-

atively compact (here Ψt(x) = Ψ(x, t)).

The following condition will be assumed in our next two results:

(3.3) ∼= is an equivalence relation in A∂U(U, Y ; L, T ).

Definition 3.16. Let F ∈ A∂U(U, Y ; L, T ). We say F is (L, T )Φ-essential in A∂U (U, Y ; L, T )

if for every map J ∈ A∂U(U, Y ; L, T ) with J |∂U = F |∂U and J ∼= F in A∂U(U, Y ; L, T )

there exists x ∈ U with (L+T )−1(J +T )(x)∩ (L+T )−1(Φ+T )(x) 6= ∅. Otherwise F

is (L, T )Φ-inessential in A∂U(U, E) i.e. there exists a map J ∈ A∂U(U, Y ; L, T ) with

J |∂U = F |∂U and J ∼= F in A∂U(U, Y ; L, T ) with (L+T )−1(J +T )(x)∩(L+T )−1(Φ+

T )(x) = ∅ for all x ∈ U .

Theorem 3.17. Let E be a completely regular topological vector space, Y a topological

vector space, U an open subset of E, L : dom L ⊆ E → Y a linear single valued map,

T ∈ HL(E, Y ), and assume (3.3) holds. Suppose F ∈ A∂U(U, Y ; L, T ). Then the

following are equivalent:

(i). F is (L, T )Φ-inessential in A∂U(U, Y ; L, T );

(ii). there exists a map G ∈ A∂U(U, Y ; L, T ) with G ∼= F in A∂U (U, Y ; L, T ) and

(L + T )−1(G + T )(x) ∩ (L + T )−1(Φ + T )(x) = ∅ for all x ∈ U .

Proof. (i) implies (ii) is immediate. Next we prove (ii) implies (i). Suppose there exists

a map G ∈ A∂U(U, Y ; L, T ) with G ∼= F in A∂U(U, Y ; L, T ) and (L+T )−1(G+T )(x)∩

(L+T )−1(Φ+T )(x) = ∅ for all x ∈ U . Let H : U×[0, 1] → 2Y with (L+T )−1(H+T ) :

U × [0, 1] → K(E) an upper semi continuous map, (L + T )−1(H(·, η(·)) + T (·)) ∈

A(U, E) for any continuous function η : U → [0, 1] with η(∂U) = 0, (L + T )−1(Ht +
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T )(x) ∩ (L + T )−1(Φ + T )(x) = ∅ for any x ∈ ∂U and t ∈ [0, 1], H1 = F , H0 = G

(here Ht(x) = H(x, t)) and

{

x ∈ U : (L + T )−1(Φ + T )(x) ∩ (L + T )−1(Ht + T )(x) 6= ∅ for some t ∈ [0, 1]
}

is relatively compact. Let

D =
{

x ∈ U : (L + T )−1(Φ + T )(x) ∩ (L + T )−1(Ht + T )(x) 6= ∅ for some t ∈ [0, 1]
}

.

If D = ∅ we are finished. If D 6= ∅ then note D is compact, D ∩ ∂U = ∅ so there

exists a continuous map µ : U → [0, 1] with µ(∂U) = 0 and µ(D) = 1. Define

J : U → 2Y by J(x) = H(x, µ(x)). It is easy to check (a slight modification of

the argument in Theorem 3.6) that J ∈ A∂U(U, Y ; L, T ), J |∂U = H0|∂U = F |∂U ,

(L+T )−1(Φ+T )(x)∩(L+T )−1(J+T )(x) = ∅ for x ∈ U and J ∼= F in A∂U(U, Y ; L, T ).

Thus F is (L, T )Φ-inessential in A∂U(U, Y ; L, T ).

Theorem 3.18. Let E be a completely regular topological vector space, Y a topological

vector space, U an open subset of E, L : dom L ⊆ E → Y a linear single valued

map, T ∈ HL(E, Y ), and assume (3.3) holds. Suppose F and G are two maps in

A∂U(U, Y ; L, T ) with F ∼= G in A∂U(U, Y ; L, T ). Then F is (L, T )Φ-essential in

A∂U(U, Y ; L, T ) if and only if G is (L, T )Φ-essential in A∂U (U, Y ; L, T ).

Remark 3.19. If E is a normal topological space then the assumption that

{

x ∈ U : (L + T )−1(Φ + T )(x) ∩ (L + T )−1(Ψt + T )(x) 6= ∅ for some t ∈ [0, 1]
}

is relatively compact can be removed in Definition 3.15 and we still obtain Theo-

rem 3.17 and Theorem 3.18.

Theorem 3.20. Let E be a completely regular topological vector space, Y a topological

vector space, U an open subset of E, L : dom L ⊆ E → Y a linear single valued map

and T ∈ HL(E, Y ). Let F ∈ A∂U(U, Y ; L, T ) be (L, T )Φ-essential in A∂U(U, Y ; L, T ).

Suppose there exists a map H : U × [0, 1] → 2Y with (L + T )−1(H + T ) : U × [0, 1] →

K(E) an upper semi continuous map, (L+T )−1(H(·, η(·))+T (·)) ∈ A(U, E) for any

continuous function η : U → [0, 1] with η(∂U) = 0, (L + T )−1(Ht + T )(x) ∩ (L +

T )−1(Φ + T )(x) = ∅ for any x ∈ ∂U and t ∈ (0, 1], H0 = F (here Ht(x) = H(x, t))

and

{

x ∈ U : (L + T )−1(Φ + T )(x) ∩ (L + T )−1(Ht + T )(x) 6= ∅ for some t ∈ [0, 1]
}

is relatively compact. Then there exists x ∈ U with (L + T )−1(H1 + T )(x) ∩ (L +

T )−1(Φ + T )(x) 6= ∅.

Proof. Let

D =
{

x ∈ U : (L + T )−1(Φ + T )(x) ∩ (L + T )−1(Ht + T )(x) 6= ∅ for some t ∈ [0, 1]
}

.
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Note D 6= ∅ and D is compact, D∩∂U = ∅ so there exists a continuous map µ : U →

[0, 1] with µ(∂U) = 0 and µ(D) = 1. Define J : U → 2Y by J(x) = H(x, µ(x)). Note

J ∈ A∂U(U, Y ; L, T ), J |∂U = F |∂U and J ∼= F in A∂U(U, Y ; L, T ). Now since F is

(L, T )Φ-essential in A∂U(U, Y ; L, T ) there exists x ∈ U with (L + T )−1(J + T )(x) ∩

(L + T )−1(Φ + T )(x) 6= ∅ (i.e. (L + T )−1(Hµ(x) + T )(x) ∩ (L + T )−1(Φ + T )(x) 6= ∅),

and thus x ∈ D so µ(x) = 1 and we are finished.

Remark 3.21. If E is a normal topological space then the assumption that
{

x ∈ U : (L + T )−1(Φ + T )(x) ∩ (L + T )−1(Ht + T )(x) 6= ∅ for some t ∈ [0, 1]
}

is relatively compact can be removed in the statement of Theorem 3.20 and we still

obtain Theorem 3.20.
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