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1. INTRODUCTION

Throughout this paper, we introduce the following notations:
Ei(z,y)(t) = filt,z(t),2(a(t)), y(@), y(a(t))), =12,
Gi(z,y) = gi(2(0),2(T),y(0),y(T)), i=12
Motivated by [7] and [1], in this paper, we investigate the following system:
2t) = F(x,y)(t), teJ=[0,T], T >0,
(11) y/(t) = F2(y>$)(t)> te J7
0 = Gl(fﬁ,y), O:G2(y7x)7

where a € C(J,J), fi € C(J x RLR), g; € C(RLR), i =1,2.

An interesting and fruitful technique for proving existence results for nonlinear
differential problems is the monotone iterative method based on lower and upper so-
lutions, for details, see for example [6]. There exists a vast literature devoted to the
applications of this method to differential equations with initial or boundary condi-
tions, we indicate only a few, see for example [2]-[6]. We do not know any application

of the monotone iterative method to system of advanced differential equations with

boundary conditions.
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Using the monotone iterative method, we establish general sufficient conditions
when problem (1.1) has extremal solutions in a corresponding region (see Theo-
rem 3.1). Problem (1.1) is discussed under the assumption that o« € C(J,J) and
t < a(t) < T on J. The one-sided Lipschitz condition on fi, fo and g¢;, g2 with
corresponding functions Kj;, L; and constants M;, My respectively, is assumed. The
assumption that K; and L; are functions of ¢ has the advantage, because K; and L;
appear in condition (2.5) to guarantee the existence of solutions of problem (1.1). An

example will be given to illustrate the results.

2. SOME AUXILIARY RESULTS
Consider the following problem:
(2.1) 2(t) = g(t,z(t), z(a(t)), teJ x(T)=kyeR.
Theorem 2.1 (see [4]). Suppose that

A1 ge C(JXRXxRR),acC(J,J), t<a(t)<T on J,

Ag @ there exist nonnegative constants Cy,Cy such that
lg(t, 1, 29) — g(t, 71, T2)| < Chlar — Z1| + Co|zy — Ty
forte J, x1,x9,T1,7T2 € R.
Then problem (2.1) has a unique solution v € C*(J,R).

Lemma 2.2. Assume that: a(t) € C(J,J), t < a(t) < T, K1, Ky, hy,hs € C(J,R),
Ll, Lo are integmble on J, Ml,MQ € R and M; — M, % 0, My + My % 0.

Then the system

y'(t) = Ki@y(t) + Li(t)y(a(t)) + Ka(t)z(t) + La(t)z(a(t)) + ha(t),

(2 2) k‘l = —Mly(T) + MQZ(T), k‘l - ]R,
| Z(t) = Ki(t)z(t) + Li(t)z(a(t) + K@)y (t) + La(t)y(alt)) + ha(t),

\ ]{32 = —Mlz( )+ ng( ), ]{32 eR

has a unique solution (y,z) € C*(J,R) x C'(J,R).

Proof. Put P =y + z, Q =y — z. Then, in view of (2.2), we have

(23 Pl(t) = [Ki(t) + K2(8)|P(t) + [L1(t) + La(B)] P(e(t)) + ha(t) + ha(t)
‘ k= —(My—My)P(T), k=ki+ky,
(2.0 Q'(t) = [Ki(t) — Ky(t)]Q(t) 4 [La(t) — La(t)]Q(ax(t)) + ha(t) — ha(2),

Eoo= —(M+M)QT), &=k — k.
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Note that problem (2.3) has a unique solution P € C'(J,R), by Theorem 2.1. Simi-
larly, problem (2.4) has also a unique solution Q € C'(J,R).

Note that: y+2=P,y—2z=(Q, so

_P+Q _P-0Q
YT T T
is the unique solution of system (2.2). This ends the proof. O

Remark 2.3. If Ly(t) = Lo(t) = 0 on J, then
P(t) = —exp (— /tT[Kl(s) + Kg(s)]ds) {%
v f “lin(s) + ho(s)] exp (/ ) + a(rlar ) ds},

Q) = —ew (= [ 106)— Katias) {2t
[ o) =t e ([ 190) — Fatrjar ) s

Lemma 2.4 (see [4]). Let a € C(J,J), t < a(t) < T on J. Suppose that K €
C(J,R), pe CY(J,R) and

K(t)p(t) + L(t)p(a(t)), teJ,
< 0,

——
B
==

\%

where nonnegative function L is integrable on J.

In addition assume that

[t ( [ WS) i<t

Then p(t) <0 on J.

Lemma 2.5. Let « € C(J,J), t < «a(t) < T on J. Suppose that Ki, Ky € C(J,R),
Kg(t) > 0, Ml,MQ € R, M, < 0, My + My > 0, My — My > 0, p,q € Cl(J,R), and

p'(t) = Ki(t)p(t) + La(t)p(a(t)) — Ka(t)q(t) — La(t)g(a(t)),
Myq(T) + Myp(T) <0,

q'(t) > Ki(t)q(t) + Li(t)g(a(t)) — Ka(t)p(t) — La(t)p(a(t)),
Mip(T) + Myq(T) <0,

where nonnegative functions Ly, Ly is integrable on J and Li(t) + La(t) > 0, Ly(t) >
Ly(t), t € J.



190 T. JANKOWSKI AND R. JANKOWSKI
In addition, we assume that

T a(t)
/ L1(£) + Lo(t)] exp ( / K (s) + K2(5>]ds> it <1,
(2.5) ’ t

/ [La(t) — La(t)] exp ( / “li(s) - K2<s>]ds) at<1,
Then p(t) < 0, q(t) <0 on J.
Proof. Put P = p+ ¢. Then

P(t) > (K () — K] P(E) + [L(t) — La(®)] Pla(t)),

{ (M, + My)P(T) <0.
Hence, p(t) + q(t) < 0 on J, by Lemma 2.4. Now,
Pt > K(p) + LOp(a()
—K(®)lalt) + p(t) — p(t)] — La(la(alt)) + p(a(t)) — pla(®))

> [Ki(t) + Ka(t)]p(t) + [La(t) + La(t)]p(a(t)),
q(t) = [Ki(t)+ Ka(t)]q(t) + [La(t) + La(t)]g(a(t)),
and
0 = Mg(T)+ p(T) — p(T)] + Map(T) = (M — My)p(T),
0 > (My— M)p(T).
By Lemma 2.4, p(t) <0, ¢(t) < 0 on J. This ends the proof. O

3. MAIN RESULTS

Let us introduce the following assumptions:
Hi: fi,fo€ C(JXxRYR), g1,90 € C(RL,R), a € C(J,J), t <aft) <T,
Hy @ yo, 20 € CY(J,R) satisfy the system:
{ Uo(t) < Filyo, 20)(D), 2h(t) > Falz0,90)(¢) € J.
G1(y,20) <0,  Ga(20,50) 2 0.
Now, we formulate sufficient conditions under which problem (1.1) has extremal

solutions.

Theorem 3.1. Let assumptions Hy, Hy hold and z(t) < yo(t), t € J. In addition,

we assume that

Hj : there exist functions K1, Ko € C(J,R) and functions Ly, Ly integrable on J, such
that:

fi(t,ur, ug, v1,v9) — filt, Uy, Us, U1, Va)

> —Ki(t)[ur — w] = Ly (8) [tz — ug] — Ka(8)[0r — vi] — La(8)[02 —vo], i=1,2,
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and

fat, ur, ug, v1,v9) — f1(t, Uy, Ug, U1, Va)

> —Ki(t)[ur — ui] — Li(t) [tz — ug] — Ka(t)[01 — v1] — La(t)[v2 — o,
if 20(t) < up < < yolt), zo(a(t)) < up < g < yolalt)), 20(t) <0 < v <
Yo(t), 20(a(t)) <02 < vy <yo(alt))

s Ko(t) >0, Lo(t) >0, Li(t) + Lo(t) > 0, Li(t) — La(t) > 0 and condition (2.5)

holds,

both g1 and gs are non-decreasing in the first variable and non-increasing in
the third variable; moreover there exist constants My, My such that M; < 0,
M1+M2>0, My — My >0 and

Gi(u, Uz, v, U2) — gi(u, g, v, v2) < My(tg — ug) + Ma(Uy — v2), 1 =1,2,
and
g2(u, ug, v, V) — g1(u, Uz, v, v2) < —Mj(uy — Ug) — Ma(ve — Ug)

if 20(0) < u < yo(0), 20(0) < v < yo(0), 20(T) < wgp <tz < yo(T), 20(T) <wp <
1_)2 S yo(T>

Then problem (1.1) has extremal solutions in the sector

[20, 0] = {w € CY(J,R) : 2p(t) < w(t) < yol(t), t € J}.

Proof. For,n=0,1,..., let

{ y;@—l—l(t) = Fl (yru zn)(t) + f(ynu Yn+1y Zn; zn—l—l)(t)’

0 = Gi(Yn, 2n) = Mi[yn1(T) = yn(T)] + Ma[2n41(T) — 2a(T)],
{ Z?”L-l—l(t) = F2(va yn)(t) + f(zm Zn415 Yn, yn—i-l)(t)v
0 = Gazn,yn) = Milzps1(T) = 20 (T)] 4+ Ma[yn1(T) — yu(T)],
where

Fla,z,y,9)t) = Ki(@)[z(t) — ()] + Li(®)[z(a(t) — 2(a(t))]
+ Kao()[5(t) —y(t)] + La(t)[g(a(t)) — y(a(t))].

In view of Lemma 2.2, functions yy, z; are well defined. First, we show that

(3.1) 20(t) < z1(t) < wit) <wolt), te

Put p = 29 — 21, ¢ = y1 — yo. This and Assumptions Hs, Hs yield

v

F5(20,90)(t) — F2(20, y0)(t) — F (20, 21, Y0, 1) (¢)
Ky ()p(t) + Li(t)p(a(t) — Ka(t)q(t) — La(t)q(a(?)),

q(t) = Fi(yo, 20)(t) = Fi(yo, 20)(t) + F (Yo, y1, 20, 21) (%)
Ky (t)q(t) + Li(t)q(alt)) — Ka(t)p(t) — La(t)p(a(?)),

p'(t)
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and

o
IA

0 >

Ga(20,Y0) — Gal20,y0) + Mi[21(T) — 20(T)] — Ma[y:(T) — yo(T)]
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—Myq(T) — Map(T),

G1(Y0, 20) — G1(Yo, 20) + Mi[y2(T) — yo(T')] — Ma[21(T) — 20(T)]

Mip(T) + Maq(T).

By Lemma 2.5, we have zy < z1, y1 < o.

Now, we put p = z; — y;. Then

pt) =

o
v

IN +

by Assumptions Hz and Hy. Hence, z; < y;, by Lemma 2.4, so condition (3.1) holds.

Fy(20,y0) (t) + F (20, 21, Y0, Y1) (t) — F1(yo, 20)(t) — F (Yo, Y1, 20, 21) ()

(K (t) = Ko ()]p(t) + [La(t) — La(t)]p(a(?)),

Ga(20,90) = Mi[21(T) = 20(T)] + Ma[yy(T') = yo(T)] = G1(yo, 20)

Mi[y1(T) = yo(T)] = Ma[21(T) — 2(T)]
— (M + Ma)p(T),

Next, let us assume that

(3.2)

Zh—1 < 2k < Y < Yk—1

for some integer k > 1. Put p = zx — zx41, ¢ = Yrr1 — Y- Then

and

IA

vV

Go(2k—1,yr—1) — Mi[2(T) — 21-1(T)] + Ma[yx(T) — yx—1(T)]

Fy(zi—1, yr—1(t) + F (-1, 20, Y—1, Yi) ()

F3(zi, yi) (£) = F (2k5 2415 Ui Y1) ()

Ky()p(t) + La(t)p(a(t)) — Ka(t)q(t) — La(t)q((t)),
F1(Yns 26) () + F (Y Y1, 2 21) ()

(-1, 26-1) () = F(Yr—1, Yk, Zr—1, 26) (1)

Ki(t)q(t) + Li(t)q(alt)) — Ka(t)p(t) — La(t)p(a(t)),

Ga(zi, y) + Mi[ze1(T) = 2(T)] — Malyrr1(T) — yi(T)]
—Myp(T) — Maq(T),
Gk, 2k) — Maifyer (T) — ye(T)] + Mz (T) — 2(T)]
G1(Yk-1, 26-1) + Mi[yp(T) — yr—1(T)] = Ma[zi — 2p-1(T)]
—Myq(T) — Mop(T),

by Assumptions Hs and Hs.

Hence, zp < zpi1, Yer1 < Yk, by Lemma 2.5.
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Put p = zx41 — yga1- Then

P'(t) = Fazi, y) (t) + F (2k, 21, Yr, Y1) (2)
— F1(yk, 26) (1) = F (Yn, Yrt1, 2k, 2541) (F)
> [Ka(t) = Kz(8)]p(t) + [La(t) — La(t)]p(a(t)),
0 = Ga2(zk, yr) — Mi[ze1(T) — 2(T)] + Mo[yea(T) — yu(T)] — G1(yr, 2)
+ Mi[yr1(T) — ye(T)] — Ma[241(T) — 21.(T)]
— (M, + My)p(T).
Hence, zx11 < yri1, by Lemma 2.4, so zi < 2k < Ypr1 < Yr-

Hence, using the mathematical induction, we have

20(t) < 21(t) <+ < z(t) < zpga(t) < Y () S walt) < - S w(t) < wo(t)

fort € Jand n = 1,2,.... Employing standard arguments we see that the se-
quences {y,, z,} converge to their limit functions y, z, respectively. Indeed, y and z
are solutions of problem (1.1) and 2o(¢) < z(t) < y(t) < yo(t) on J.

To show that z,y are the minimum and maximum solutions of (1.1) we have to
prove that if (u,v) € [20,¥0]s X [20, Yo« is any solution of (1.1), then z(¢) < u(t) <
y(t), z(t) < v(t) < y(t) on J. To do this, we assume that z,(t) < u(t) < yn(t),
2m(t) < v(t) < ym(t), t € J for some integer m. Let p = 201 — U, ¢ = U — Yo,
P=u—19yni1, Q= zn1 —v. Then, in view of Assumptions Hs and Hs, we have

Cllp,(t) = F2(Zma ym)(t) + f(zma Zm41y Ym ym-l-l)(t) - Fl (u 'U)(t)
> Ky (t)p(t) + La(t)p(a(t)) — Ka(t)q(t) — La(t)g(alt)),
q,(t) = F2(U> u)(t) - Fl(?/ma Zm)(t) F(yrm Ym+1, Zm Zm-i—l)(t)
> Ki(t)q(t) + Li(t)q(a(t)) — Ka(t)p(t) — La(t)p(alt)),
0 = Ga(2m, Ym) = Mi[zm11(T) = 2m(T)] + Ma[ym+1(T) = ym(T)] = Ga(u, v)
< —Mip(T) — Maq(T),
0 = Ga(v,u) = G1(Ym 2m) + Mi[yms1 (T) = ym(T)] — Ma[zms1 (T) — 2 (T)]
< —Mq(T) — Mop(T),

and

P'(t) = Fi(u,v)(t) = F1(Ym, 2m) () = F (Yms Yms1, 2ms Zm1) (2)
> K1) P(t) + Ly (1) Pa(t)) — Ka(t)Q(t) — La(t)Q(a(t)),

Q'(t) = F2(zm, ym)(t) + F (2m, Zmr1, Y, Ymr1) () — Fa(v, u)(2)
> K1 (1)Q(1) + La(t)Q(a(t)) — Ka(t) P(t) — Lo(t) P(a(t)),
0 = Ga(u,v) = G1(Ym: 2m) + Mi[ym1(T) = ym(T)] = Ma[2m 41 (T') = 2 (T)]
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< =M P(T) — MxQ(T),
0= G2(2m, Ym) = Mi[zm41(T) = 20 (T)] + Ma[ys1(T) — ym(T)] — Ga(v, u)
< =M Q(T) — MaP(T).

This and Lemma 2.5 give 2,,41(t) < u(t) < Ymi1(t), 2mi1(t) < v(t) < Ymya(t)
on J. This proves by induction that z,(t) < u(t) < y,(t), z.(t) < v(t) < y,(t) on
J for all n. Taking the limit as n — oo, we conclude the assertion. The proof is

complete. O

Example 3.2. Consider the problem

26) = t|oVD) + 5uVD)]| = Bl te =[]

2
0 = z(D)+y() =Gi(z,y), 0=y)+2(1) = G(y,x).
Put yo = 1, 2o = —1. Then Assumption Hs holds. Indeed, K;(t) = K»(t) = 0,
Li(t) = ¢, Ly(t) = 3t, t € J and M; = 1, My = 2. Moreover, condition (2.5)
holds too. In view of Theorem 3.1, problem (3.3) has extremal solutions in the sector

[Zm yo]*-

(33 V) = ¢ |yB)+ VD) = R, te
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