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1. INTRODUCTION

This paper presents a number of coincidence point results for multivalued maps
defined between Fréchet spaces. To establish these results we use recent results in
Banach spaces (see [1, 6]) and we view the Fréchet space E as a projective limit
of a sequence of Banach spaces {E, },en (see [2, 4, 5] and the references therein);
here N = {1,2,...}. Our approach relies on constructing maps F,, and ®,, defined
on subsets of E, whose coincidence points “converge” to a coincidence point of the
original operators F' and .

Now we recall some coincidence results [6] which will be needed in Section 2. Let

E be a normed space and U an open subset of F.

We will consider classes A and B of maps.

Definition 1.1. We say F € A(U,E)if F € A(U,E) and F : U — K(E) is an
upper semicontinuous map; here U denotes the closure of U in E and K (E) denotes

the family of nonempty compact subsets of F.

Definition 1.2. We say F € B(U,E) if F € B(U,E) and F : U — K(E) is an

upper semicontinuous map.

In this section we fix a ® € B(U, E).

Definition 1.3. We say F € Agy(U,E) if F € A(U, E) with F(z) N ®(x) = 0 for
x € OU; here OU denotes the boundary of U in E.
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Definition 1.4. Let F,G € Ay (U, E). We say F = G in Agy (U, E) if there exists
an upper semicontinuous map ¥ : U x [0,1] — K(E) with ¥(-,n(-)) € A(U, E) for
any continuous function n : U — [0,1] with n(0U) = 0, ¥;(z) N ®(x) = @ for any
x€dU and t € [0,1], ¥; = F and Vg = G (here V;(z) = U(x,1)).

Definition 1.5. Let F' € Agy(U,E). We say F : U — K(E) is ®-essential in
Aoy (U, E) if for every map J € Agy (U, E) with J|gy = F|ay there exists € U with
J(x) N ®(z) # 0.

In [6] we established the following result.

Theorem 1.6. Let E be a normed space, U an open subset of E and G, F €
Aoy (U, E). Suppose G is ®-essential in Agy/(U, E) and G = F in Ay (U, E). Then
there exists a v € U with ®(x) N F(z) # 0.

Remark 1.7. In fact the result in Theorem 1.6 is true if we change Definition 1.5 as
follows: Let F € Agy(U,E). Wesay F : U — K(E) is ®-essential in Agy (U, E) if
for every map J € Apy (U, E) with J|sy = Floy and J = F in Agy (U, E) there exists
x € U with J(x) N ®(x) # 0.

Remark 1.8. In this paper we could replace the ®-essential maps by the ®-epi maps

[6] and obtain similar results as in Section 2 (we leave this to the interested reader).

The following concepts will be needed in Section 2. Let (X, d) be a metric space
and S a nonempty subset of X. Forz € X let d(z,S) = inf cgd(x,y). Also diam S =
sup{d(z,y) : z,y € S}. We let B(x,r) denote the open ball in X centered at x of
radius r and by B(S,r) we denote U,esB(x,r). For two nonempty subsets S; and Sy
of X we define the generalized Hausdorff distance H to be

H(Sl,SQ) = in{E >0: Sl - B(SQ,E),SQ - B(Sl,e)}.

Now suppose G : S — 2% and ® : S — 2X. Then G is said to be ®-hemicompact if
each sequence {x, }nen in S has a convergent subsequence whenever G(x,)N®(z,,) # ()
(here N ={1,2,...}).

Now let I be a directed set with order < and let {E,}.ecs be a family of locally
convex spaces. For each a € I, € [ for which a < 3 let m,3 : £ — E, be a

continuous map. Then the set

{x: (za) € HEa:xa:Waﬁ(xﬁ) Va,ﬁe],agﬁ}

ael

is a closed subset of [] .; £ and is called the projective limit of {Eq}qer and is

denoted by lim._ E,, (or lim. {E,, 7, 3} or the generalized intersection [3] NaerEay-)
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2. COINCIDENCE THEORY IN FRECHET SPACES

We now present an approach to establishing coincidence points based on projec-
tive limits (see [3]). Let £ = (E,{| - |n}nen) be a Fréchet space with the topology
generated by a family of seminorms {| - |, : » € N}; here N = {1,2,...}. We assume

that the family of seminorms satisfies
(2.1) 2]y <|z|]p <z|s <---  forevery x € E.

A subset X of E is bounded if for every n € N there exists r, > 0 such that |z|, < r,
for all x € X. For r > 0 and x € E we denote B(z,r) ={y € E:|v —y|, <rVne€
N}. To E we associate a sequence of Banach spaces {(E,, |-|,)} described as follows.

For every n € N we consider the equivalence relation ~,, defined by
(2.2) x ~y, y iff |z —yl, = 0.

We denote by E" = (E/~,,|-|,) the quotient space, and by (E,, |- |,) the completion
of E™ with respect to |- |, (the norm on E™ induced by |-|,, and its extension to E,, are
still denoted by |-|,,). This construction defines a continuous map u,, : £ — E,,. Now
since (2.1) is satisfied the seminorm | - |,, induces a seminorm on E,, for every m > n
(again this seminorm is denoted by | - |,). Also (2.2) defines an equivalence relation
on E,, from which we obtain a continuous map pi, m : E,, — E,, since E,,/~,, can be
regarded as a subset of E,. Now iy mitm i = tink if 1 <m < k and p, = fin mpm if

n < m. We now assume the following condition holds:

(2.3) { for each n € N, there exists a Banach space (E,, |- |,)

and an isomorphism (between normed spaces) j, : E, — E,.

Remark 2.1. (i). For convenience the norm on E, is denoted by | - |,.
(ii). In many applications E,, = E" for each n € N.

(iii). Note if z € E,, (or E") then x € E. However if x € E,, then z is not necessaily
in £ and in fact E, is easier to use in applications (even though FE,, is isomorphic
to E,). For example if £ = C|0, 00), then E™ consists of the class of functions in £

which coincide on the interval [0,n| and E,, = C[0,n].
Finally we assume

(2.4) { Ey D Ey D -+ and for each n € N,

Unﬂn,n+1j7:-|l-1x‘n < ‘x|n+1vx € Byt

(here we use the notation from [3] i.e. decreasing in the generalized sense). Let
lim_ E, (or N{°E,, where N{° is the generalized intersection [3]) denote the projective

limit of {E, }nen (note mpm = Jnttnmim: : Em — En for m > n) and note lim._ E,, &

E, so for convenience we write £ = lim_ F,,.
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For each X C E and each n € N we set X,, = juun(X), and we let X,,, intX,
and 0X,, denote respectively the closure, the interior and the boundary of X, with
respect to | - |, in E,. Also the pseudo-interior of X is defined by

pseudo-int (X) = {z € X : jou,(x) € X,\0X, for every n € N}.

The set X is pseudo-open if X = pseudo-int(X). For r > 0 and = € E, we denote
Bu(x,r)={y € E, : |z —yl|, <r}.

Remark 2.2. If X is pseudo-open then for every n € N we claim that X, is an open
subset of E,. Fix n € N. We show X,, = int X,,. To see this note X,, C X,,\0X,,
since if y € X, then there exists x € X with y = j,u,(x) and this together with
X = pseudo-int X yields j,pun(z) € X,,\0X, ie. y € X,,\0X,,. In addition notice

X, \0X, = (int X, UdX,)\0X, = int X,\0X, = int X,
since int X,, N 9X,, = (. Consequently

X, C X,\0X,, =int X, so X,, = int X,,.

Let M C E and consider the map F : M — 2¥. Assume for each n € N and
x € M that j,u,F(x) is closed. Let n € N and M, = j,u,(M). Since we first
consider Volterra type operators we assume (note this assumption is only needed in
Theorems 2.3)

(2.5) if 2,y € E with |z — y|, = 0 then H,(Fz, Fy) = 0;

here H, denotes the appropriate generalized Hausdorff distance (alternatively we
could assume Vn € N,Va,y € M if j,pu,x = jupny then j,pu,Fx = j,u,Fy and of
course here we do not need to assume that j,u,F(z) is closed for each n € N and
x € M). Now (2.5) guarantees that we can define (a well defined) F,, on M, as

follows:

For y € M, there exists a x € M with y = j,u,(x) and we let
F.y = japnFx

(we could of course call it F'y since it is clear in the situation we use it); note F, :
M, — C(E,) and note if there exists a z € M with y = j,u,(2) then j,u,Fr =
JntinFz from (2.5) (here C(FE,) denotes the family of nonempty closed subsets of
E,). In our next result we assume F,, will be defined on M,, i.e. we assume the F),
described above admits an extension (again we call it F},) F}, : M, — 2% (we will

assume certain properties on the extension).

Now we present some results in Fréchet spaces. Our first result is motivated by

Volterra type operators.
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Theorem 2.3. Let E and FE, be as described above, U a pseudo-open subset of E
and F: U — 28, G :U — 2% and ® : U — 2F. Also assume for each n € N and
x € U that jopnF (), japnG(z) and jopu,®(x) are closed and in addition for each
n € N that F, : U, — 28 G, : U, — 2% and ®,, : U, — 25 are as described above.

Suppose the following conditions are satisfied:

(2.6) for eachn € N,G,, € Agy, (U, E,),®, € B(U,, E,)
' and G,, is ®,-essential in Agy, (U,, Ey)

(2.7) for eachn € N, F,, € Apy, (Uy, E,) is ®,,-hemicompact

(2.8) for eachn € N,G, = F, in Agy, (U, E,)

and

for eachn € {2,3, ...

}ify € U, is such

(2.9) that F,(y) N ®,(y) # 0 in E, then
Jebkndn (y) € Uy for k€ {1,...,n—1}.

Then there exists x € E with F(x) N ®(x) # 0 in E; here x = (zx) where z, € Uy for

each k € N.

Proof. For each n € N, from Theorem 1.6 there exists y,, € U,, with F},(y,)N®,(y,) #
() in E,. Lets look at {y, }nen. Notice y; € Uy and jl,ul,kjk_l(yk) e U, for k € N\{1}

from (2.9). Fix n € N. There exists a v € E with y,, = jnpun(z) so

(2.10) It F(2) N jppn®(x) # 0 on E,,.

We now claim

(2.11) Fy(Gapandy tyn) O @1 (G1andy, tyn) # 0 on Ej.

To see this note on F; that

Fy (i  ym) N D1 piani  m)

D)

D

* D

Fl (jllul,n.]rjl.]n,uncl‘,))

i

(10 dy Gnbin(2))
Fy(jipnpin())

D1 (J1 11,k ()

Fi(jipa () N @1 (jrpa(2))
JiE (@) N jip ()
J1kndv, JnbinF ()
Jnn Jnbn® ()

0



226 H. H. ALSULAMI AND D. O'REGAN

from (2.10). We can do this for each n € N so (2.11) holds for each n € N. Now (2.7)
guarantees that there is a subsequence Ny of N and a z; € U, with j; 1 nTn Yyn) — 21
in By as n — oo in Ny. Let w, € Fi(jipt1.n], ' Yn) and w, € P1(j1p11.07, ' Yn). Now
since F} is upper semicontinuous then [7] there exists a w; € Fi(2;) and a subsequence
(wp,) of (w,) with w,, — w;. The upper semicontinuity of the map ®; together with
Wy, — wy and wy, € Py (j1p41,mim Ym) implies wy € ®@(z1). Thus Fi(z1) N Py(z1) # 0
on E;. Also note z; € U; since Fy € Ay, (Uy, Ey).

Let Ny = N\{1}. Now japanj,  (yn) € Uy for n € N;. Note also (argument
similar to the above) for n € N that

Ey(jopandn Yn) N P2(opionin Yn) # 0 on Es.

Now (2.7) guarantees that there is a subsequence Nj of N; and a 2z, € U, with
Jotanin H(yn) — 22 in Fy as n — oo in Nj. Similar reasoning as above yields Fy(22) N
®y(22) # 0 on Ey. Also note zo € Uy since Fy € Agy, (U, Es). Note from (2.4) and the
uniqueness of limits that j1p172j2_122 = 21 in F; since N3 C Ny (note jipng,  (Yn) =
Gii1.275  attandn (yn) for n € Ny). Let Ny = N3\{2}. Proceed inductively to obtain
subsequences of integers

N DN D N Clkk+1,...}

and 2z, € Uy with jipgnjn H(yn) — 21 in By as n — oo in Nj. Also note Fy(z) N
(I)k(zk) # (Z) on Ek, ZL € Uk since Fk € ABUk (m, Ek), and jkuhkﬂjk_ilzkﬂ = Zr in Ek
for k € {1,2,...}. Also let N, = N}\{k}.

Fix k € N. Now Fy(zx) N Pr(z) # 0 in Ej. Note as well that

. —1 . =1 - —1
Rk = JkMkk+1Jk41°7k+1 = JeMkk+1) 41T k+1HE+1,k+2] 42 Rk+2

. —1 . —1
= JkMkk+2)g427k+2 = 0 = JkMkmIm #m = Tkm<m

for every m > k. We can do this for each k € N. As aresult y = (z) € lim_ E,, = E
and also note z; € Uy, for each k € N. Now for each k € N, jrur(y) = 2z in Ej, and
in E. O

Our next result is motivated by Urysohn type operators. In this case the maps
F,, &, will be related to F', ® by the closure property (2.16). For the convenience of
the reader we write the hemicompact condition in an easy verifiable form (see (2.15)
and Remark 2.5).

Theorem 2.4. Let E and E, be as described above, U a pseudo-open subset of E
and F:Y - 28, G:Y -2 and ® : Y — 28 withU CY and U, C Y, for each
n € N. Also for eachn € N assume there exist F,, : U, — 28, G, : U, — 25" and
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®, : U, — 2P and suppose the following conditions hold:

(2.12) for eachm € N, F,,, G, € Ay, (U,, E,),®, € B(U,, E,)
' and G, is ®,-essential in Agy, (U,, E,)

(2.13) for eachn € N,G, = F, in Agy, (Un, E,)

for eachn € {2,3,...} if y € U, is such
(2.14) that F,(y) N ®,(y) # 0 in E, then
Jetkndn (y) € U for k€ {1,...,n—1}.

( for any sequence {yn Ynen with y, € U,
and F,(yn) N, (yn) # 0 in E, forn € N and

for every k € N there exists a subsequence

(2.15)
ng{k—Fl,k—i‘Q,},ngNk_l fOT
ke{l,2,...},Ng= N, and a z, € Uy with
L Jkttkendn (Yn) — 2k in Ex as n — oo in Ny,
and

( if there exists a w € Y and a sequence {y, nen

with y, € U, and F,(y,) 0 D, (yn) # 0 in E, such that
(2.16) for every k € N there exists a subsequence S C
{k+1,k+2,...} of N with jeptgndn  (Yn) — Jrir(w)
| i By asn — oo in S, then F(w) N ®(w) # 0 in E.

Then there exists * € E with F(z) N ®(z) # 0 in E; here x = () where 2, € Uy, for
each k € N.

Remark 2.5. Notice to check (2.15) we need to show that for each k € N,
{kttendn X (Yn) Inen,_, C Uy is sequentially compact.

Remark 2.6. If we replace (2.15) with

( for any sequence {y, }nen with g, € U,

and F,(y,) N ®,(y,) # 0 in E, for n € N and
for every k € N there exists a subsequence
Ny C{k+1,k+2,...}, Ny C Ny, for
ke{l,2,...},Ng= N, and a z;, € Uy with

L Jkttkendn  (yn) — 2k in Ej as n — oo in Ny,

then Y is the statement of Theorem 2.4 can be replaced by U.

Proof. For each n € N there exists y, € U, with F,(y,) N ®,(y,) # 0 in E,. Lets
look at {y,}nen. Notice yy € Uy and jipuypjy *(yx) € Uy for k € {2,3,...}. Now
(2.15) with k = 1 guarantees that there exists a subsequence Ny C {2,3,...} and a
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z1 € Uy with jipgnjn H(yn) — 21 in By as n — oo in Ny. Look at {y,}nen,. Now
Jobtondn  (yn) € Uy for k € Ny. Now (2.15) with k = 2 guarantees that there exists a
subsequence Ny C {3,4,...} of Ny and a 2o € Uy with jopin i (yn) — 22 in Ey as
n — 00 in Ny. Note from (2.4) and the uniqueness of limits that jip1 275 122 = 2 in
B, since Ny € Ny (note jipinnfn (yn) = J11.205 “Jottondn (yn) for n € Ny). Proceed

inductively to obtain subsequences of integers
N DNy D+ Ny CHk+1,k+2,...}

and 2z € Uy with jppignint(Yn) — 2x in Ej, as n — oo in Ni. Note jkuk7k+1jk__&12k+1 =
zr in Ey, for k € {1,2,}

Fix k € N. Note

- . 1 . 1 - -1
Rk = JkMkk+1Jg417k+1 = JeMk k+1) 41T k+1 Hk+1,k+2] 2 Rk+2
. -1 . |
= JkMkk+2)k0Rk+2 = 00 = JkMkmm Fm = TkmZm

for every m > k. We can do this for each k € N. Asaresult y = (z;) € lim_ E, = F
and also note z, € Uy for each k € N. Also since Fy,(y,) N ®,(y,) # 0 in E, for
n € Ny and jrpiknjy  (Yn) — 2 =y in B as n — oo in Ny we have from (2.16) that
FlyyNn®(y) #0 in E. O

Remark 2.7. From the proof we see that condition (2.14) can be removed from
the statement of Theorem 2.2. We include it only to explain condition (2.15) (see
Remark 2.5).
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