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1. INTRODUCTION

This paper presents a number of coincidence point results for multivalued maps

defined between Fréchet spaces. To establish these results we use recent results in

Banach spaces (see [1, 6]) and we view the Fréchet space E as a projective limit

of a sequence of Banach spaces {En}n∈N (see [2, 4, 5] and the references therein);

here N = {1, 2, . . .}. Our approach relies on constructing maps Fn and Φn defined

on subsets of En whose coincidence points “converge” to a coincidence point of the

original operators F and Φ.

Now we recall some coincidence results [6] which will be needed in Section 2. Let

E be a normed space and U an open subset of E.

We will consider classes A and B of maps.

Definition 1.1. We say F ∈ A(U, E) if F ∈ A(U, E) and F : U → K(E) is an

upper semicontinuous map; here U denotes the closure of U in E and K(E) denotes

the family of nonempty compact subsets of E.

Definition 1.2. We say F ∈ B(U, E) if F ∈ B(U, E) and F : U → K(E) is an

upper semicontinuous map.

In this section we fix a Φ ∈ B(U, E).

Definition 1.3. We say F ∈ A∂U(U, E) if F ∈ A(U, E) with F (x) ∩ Φ(x) = ∅ for

x ∈ ∂U ; here ∂U denotes the boundary of U in E.
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Definition 1.4. Let F, G ∈ A∂U(U, E). We say F ∼= G in A∂U(U, E) if there exists

an upper semicontinuous map Ψ : U × [0, 1] → K(E) with Ψ(·, η(·)) ∈ A(U, E) for

any continuous function η : U → [0, 1] with η(∂U) = 0, Ψt(x) ∩ Φ(x) = ∅ for any

x ∈ ∂U and t ∈ [0, 1], Ψ1 = F and Ψ0 = G (here Ψt(x) = Ψ(x, t)).

Definition 1.5. Let F ∈ A∂U(U, E). We say F : U → K(E) is Φ-essential in

A∂U(U, E) if for every map J ∈ A∂U (U, E) with J |∂U = F |∂U there exists x ∈ U with

J(x) ∩ Φ(x) 6= ∅.

In [6] we established the following result.

Theorem 1.6. Let E be a normed space, U an open subset of E and G, F ∈

A∂U(U, E). Suppose G is Φ-essential in A∂U(U, E) and G ∼= F in A∂U(U, E). Then

there exists a x ∈ U with Φ(x) ∩ F (x) 6= ∅.

Remark 1.7. In fact the result in Theorem 1.6 is true if we change Definition 1.5 as

follows: Let F ∈ A∂U(U, E). We say F : U → K(E) is Φ-essential in A∂U(U, E) if

for every map J ∈ A∂U(U, E) with J |∂U = F |∂U and J ∼= F in A∂U(U, E) there exists

x ∈ U with J(x) ∩ Φ(x) 6= ∅.

Remark 1.8. In this paper we could replace the Φ-essential maps by the Φ-epi maps

[6] and obtain similar results as in Section 2 (we leave this to the interested reader).

The following concepts will be needed in Section 2. Let (X, d) be a metric space

and S a nonempty subset of X. For x ∈ X let d(x, S) = infy∈S d(x, y). Also diam S =

sup{d(x, y) : x, y ∈ S}. We let B(x, r) denote the open ball in X centered at x of

radius r and by B(S, r) we denote ∪x∈SB(x, r). For two nonempty subsets S1 and S2

of X we define the generalized Hausdorff distance H to be

H(S1, S2) = inf{ǫ > 0 : S1 ⊆ B(S2, ǫ), S2 ⊆ B(S1, ǫ)}.

Now suppose G : S → 2X and Φ : S → 2X . Then G is said to be Φ-hemicompact if

each sequence {xn}n∈N in S has a convergent subsequence whenever G(xn)∩Φ(xn) 6= ∅

(here N = {1, 2, . . .}).

Now let I be a directed set with order ≤ and let {Eα}α∈I be a family of locally

convex spaces. For each α ∈ I, β ∈ I for which α ≤ β let πα,β : Eβ → Eα be a

continuous map. Then the set
{

x = (xα) ∈
∏

α∈I

Eα : xα = πα,β(xβ) ∀ α, β ∈ I, α ≤ β

}

is a closed subset of
∏

α∈I Eα and is called the projective limit of {Eα}α∈I and is

denoted by lim←Eα (or lim←{Eα, πα,β} or the generalized intersection [3] ∩α∈IEα.)
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2. COINCIDENCE THEORY IN FRÉCHET SPACES

We now present an approach to establishing coincidence points based on projec-

tive limits (see [3]). Let E = (E, {| · |n}n∈N) be a Fréchet space with the topology

generated by a family of seminorms {| · |n : n ∈ N}; here N = {1, 2, . . .}. We assume

that the family of seminorms satisfies

(2.1) |x|1 ≤ |x|2 ≤ |x|3 ≤ · · · for every x ∈ E.

A subset X of E is bounded if for every n ∈ N there exists rn > 0 such that |x|n ≤ rn

for all x ∈ X. For r > 0 and x ∈ E we denote B(x, r) = {y ∈ E : |x − y|n ≤ r ∀n ∈

N}. To E we associate a sequence of Banach spaces {(En, | · |n)} described as follows.

For every n ∈ N we consider the equivalence relation ∼n defined by

(2.2) x ∼n y iff |x − y|n = 0.

We denote by E
n = (E/∼n, | · |n) the quotient space, and by (En, | · |n) the completion

of E
n with respect to | · |n (the norm on E

n induced by | · |n and its extension to En are

still denoted by | · |n). This construction defines a continuous map µn : E → En. Now

since (2.1) is satisfied the seminorm | · |n induces a seminorm on Em for every m ≥ n

(again this seminorm is denoted by | · |n). Also (2.2) defines an equivalence relation

on Em from which we obtain a continuous map µn,m : Em → En since Em/∼n can be

regarded as a subset of En. Now µn,mµm,k = µn,k if n ≤ m ≤ k and µn = µn,mµm if

n ≤ m. We now assume the following condition holds:

(2.3)

{

for each n ∈ N, there exists a Banach space (En, | · |n)

and an isomorphism (between normed spaces) jn : En → En.

Remark 2.1. (i). For convenience the norm on En is denoted by | · |n.

(ii). In many applications En = E
n for each n ∈ N .

(iii). Note if x ∈ En (or E
n) then x ∈ E. However if x ∈ En then x is not necessaily

in E and in fact En is easier to use in applications (even though En is isomorphic

to En). For example if E = C[0,∞), then E
n consists of the class of functions in E

which coincide on the interval [0, n] and En = C[0, n].

Finally we assume

(2.4)

{

E1 ⊇ E2 ⊇ · · · and for each n ∈ N,

|jnµn,n+1j
−1

n+1x|n ≤ |x|n+1∀x ∈ En+1

(here we use the notation from [3] i.e. decreasing in the generalized sense). Let

lim←En (or ∩∞1 En where ∩∞1 is the generalized intersection [3]) denote the projective

limit of {En}n∈N (note πn,m = jnµn,mj−1
m : Em → En for m ≥ n) and note lim←En

∼=

E, so for convenience we write E = lim←En.
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For each X ⊆ E and each n ∈ N we set Xn = jnµn(X), and we let Xn, intXn

and ∂Xn denote respectively the closure, the interior and the boundary of Xn with

respect to | · |n in En. Also the pseudo-interior of X is defined by

pseudo-int (X) = {x ∈ X : jnµn(x) ∈ Xn\∂Xn for every n ∈ N}.

The set X is pseudo-open if X = pseudo-int(X). For r > 0 and x ∈ En we denote

Bn(x, r) = {y ∈ En : |x − y|n ≤ r}.

Remark 2.2. If X is pseudo-open then for every n ∈ N we claim that Xn is an open

subset of En. Fix n ∈ N . We show Xn = int Xn. To see this note Xn ⊆ Xn\∂Xn

since if y ∈ Xn then there exists x ∈ X with y = jnµn(x) and this together with

X = pseudo-int X yields jnµn(x) ∈ Xn\∂Xn i.e. y ∈ Xn\∂Xn. In addition notice

Xn\∂Xn = (int Xn ∪ ∂Xn)\∂Xn = int Xn\∂Xn = int Xn

since int Xn ∩ ∂Xn = ∅. Consequently

Xn ⊆ Xn\∂Xn = int Xn, so Xn = int Xn.

Let M ⊆ E and consider the map F : M → 2E. Assume for each n ∈ N and

x ∈ M that jnµnF (x) is closed. Let n ∈ N and Mn = jnµn(M). Since we first

consider Volterra type operators we assume (note this assumption is only needed in

Theorems 2.3)

(2.5) if x, y ∈ E with |x − y|n = 0 then Hn(Fx, Fy) = 0;

here Hn denotes the appropriate generalized Hausdorff distance (alternatively we

could assume ∀n ∈ N, ∀x, y ∈ M if jnµnx = jnµny then jnµnFx = jnµnFy and of

course here we do not need to assume that jnµnF (x) is closed for each n ∈ N and

x ∈ M). Now (2.5) guarantees that we can define (a well defined) Fn on Mn as

follows:

For y ∈ Mn there exists a x ∈ M with y = jnµn(x) and we let

Fny = jnµnFx

(we could of course call it Fy since it is clear in the situation we use it); note Fn :

Mn → C(En) and note if there exists a z ∈ M with y = jnµn(z) then jnµnFx =

jnµnFz from (2.5) (here C(En) denotes the family of nonempty closed subsets of

En). In our next result we assume Fn will be defined on Mn i.e. we assume the Fn

described above admits an extension (again we call it Fn) Fn : Mn → 2En (we will

assume certain properties on the extension).

Now we present some results in Fréchet spaces. Our first result is motivated by

Volterra type operators.
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Theorem 2.3. Let E and En be as described above, U a pseudo-open subset of E

and F : U → 2E, G : U → 2E and Φ : U → 2E. Also assume for each n ∈ N and

x ∈ U that jnµnF (x), jnµnG(x) and jnµnΦ(x) are closed and in addition for each

n ∈ N that Fn : Un → 2En, Gn : Un → 2En and Φn : Un → 2En are as described above.

Suppose the following conditions are satisfied:

(2.6)

{

for each n ∈ N, Gn ∈ A∂Un
(Un, En), Φn ∈ B(Un, En)

and Gn is Φn-essential in A∂Un
(Un, En)

(2.7) for each n ∈ N, Fn ∈ A∂Un
(Un, En) is Φn-hemicompact

(2.8) for each n ∈ N, Gn
∼= Fn in A∂Un

(Un, En)

and

(2.9)











for each n ∈ {2, 3, . . .} if y ∈ Un is such

that Fn(y) ∩ Φn(y) 6= ∅ in En then

jkµk,nj
−1
n (y) ∈ Uk for k ∈ {1, . . . , n − 1}.

Then there exists x ∈ E with F (x) ∩Φ(x) 6= ∅ in E; here x = (zk) where zk ∈ Uk for

each k ∈ N .

Proof. For each n ∈ N , from Theorem 1.6 there exists yn ∈ Un with Fn(yn)∩Φn(yn) 6=

∅ in En. Lets look at {yn}n∈N . Notice y1 ∈ U1 and j1µ1,kj
−1

k (yk) ∈ U1 for k ∈ N\{1}

from (2.9). Fix n ∈ N . There exists a x ∈ E with yn = jnµn(x) so

(2.10) jnµnF (x) ∩ jnµnΦ(x) 6= ∅ on En.

We now claim

(2.11) F1(j1µ1,nj
−1

n yn) ∩ Φ1(j1µ1,nj−1

n yn) 6= ∅ on E1.

To see this note on E1 that

F1(j1µ1,nj−1

n yn) ∩ Φ1(j1µ1,nj
−1

n yn) = F1(j1µ1,nj−1

n jnµn(x))

∩ Φ1(j1µ1,nj
−1

n jnµn(x))

= F1(j1µ1,nµn(x))

∩ Φ1(j1µ1,nµn(x))

= F1(j1µ1(x)) ∩ Φ1(j1µ1(x))

= j1µ1F (x) ∩ j1µ1Φ(x)

= j1µ1,nj
−1

n jnµnF (x)

∩ j1µ1,nj
−1

n jnµnΦ(x)

6= ∅



226 H. H. ALSULAMI AND D. O’REGAN

from (2.10). We can do this for each n ∈ N so (2.11) holds for each n ∈ N . Now (2.7)

guarantees that there is a subsequence N⋆
1 of N and a z1 ∈ U1 with j1µ1,nj−1

n (yn) → z1

in E1 as n → ∞ in N⋆
1 . Let wn ∈ F1(j1µ1,nj

−1
n yn) and wn ∈ Φ1(j1µ1,nj−1

n yn). Now

since F1 is upper semicontinuous then [7] there exists a w1 ∈ F1(z1) and a subsequence

(wm) of (wn) with wm → w1. The upper semicontinuity of the map Φ1 together with

wm → w1 and wm ∈ Φ1(j1µ1,mj−1
m ym) implies w1 ∈ Φ1(z1). Thus F1(z1) ∩ Φ1(z1) 6= ∅

on E1. Also note z1 ∈ U1 since F1 ∈ A∂U1
(U1, E1).

Let N1 = N⋆
1\{1}. Now j2µ2,nj

−1
n (yn) ∈ U2 for n ∈ N1. Note also (argument

similar to the above) for n ∈ N1 that

F2(j2µ2,nj
−1

n yn) ∩ Φ2(j2µ2,nj−1

n yn) 6= ∅ on E2.

Now (2.7) guarantees that there is a subsequence N⋆
2 of N1 and a z2 ∈ U2 with

j2µ2,nj
−1
n (yn) → z2 in E2 as n → ∞ in N⋆

2 . Similar reasoning as above yields F2(z2)∩

Φ2(z2) 6= ∅ on E2. Also note z2 ∈ U2 since F2 ∈ A∂U2
(U2, E2). Note from (2.4) and the

uniqueness of limits that j1µ1,2j
−1

2 z2 = z1 in E1 since N⋆
2 ⊆ N1 (note j1µ1,nj−1

n (yn) =

j1µ1,2j
−1

2 j2µ2,nj
−1
n (yn) for n ∈ N⋆

2 ). Let N2 = N⋆
2\{2}. Proceed inductively to obtain

subsequences of integers

N⋆
1 ⊇ N⋆

2 ⊇ · · ·N⋆
k ⊆ {k, k + 1, . . .}

and zk ∈ Uk with jkµk,nj
−1
n (yn) → zk in Ek as n → ∞ in N⋆

k . Also note Fk(zk) ∩

Φk(zk) 6= ∅ on Ek, zk ∈ Uk since Fk ∈ A∂Uk
(Uk, Ek), and jkµk,k+1j

−1

k+1
zk+1 = zk in Ek

for k ∈ {1, 2, . . .}. Also let Nk = N⋆
k\{k}.

Fix k ∈ N . Now Fk(zk) ∩ Φk(zk) 6= ∅ in Ek. Note as well that

zk = jkµk,k+1j
−1

k+1
zk+1 = jkµk,k+1j

−1

k+1
jk+1µk+1,k+2j

−1

k+2
zk+2

= jkµk,k+2j
−1

k+2
zk+2 = · · · = jkµk,mj−1

m zm = πk,mzm

for every m ≥ k. We can do this for each k ∈ N . As a result y = (zk) ∈ lim←En = E

and also note zk ∈ Uk for each k ∈ N . Now for each k ∈ N , jkµk(y) = zk in Ek, and

Fk(zk)∩Φk(zk) 6= ∅ in Ek (i.e. jkµkF (y)∩jkµkΦ(y) 6= ∅ in Ek). Thus F (y)∩Φ(y) 6= ∅

in E.

Our next result is motivated by Urysohn type operators. In this case the maps

Fn, Φn will be related to F , Φ by the closure property (2.16). For the convenience of

the reader we write the hemicompact condition in an easy verifiable form (see (2.15)

and Remark 2.5).

Theorem 2.4. Let E and En be as described above, U a pseudo-open subset of E

and F : Y → 2E, G : Y → 2E and Φ : Y → 2E with U ⊆ Y and Un ⊆ Yn for each

n ∈ N . Also for each n ∈ N assume there exist Fn : Un → 2En, Gn : Un → 2En and
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Φn : Un → 2En and suppose the following conditions hold:

(2.12)

{

for each n ∈ N, Fn, Gn ∈ A∂Un
(Un, En), Φn ∈ B(Un, En)

and Gn is Φn-essential in A∂Un
(Un, En)

(2.13) for each n ∈ N, Gn
∼= Fn in A∂Un

(Un, En)

(2.14)











for each n ∈ {2, 3, . . .} if y ∈ Un is such

that Fn(y) ∩ Φn(y) 6= ∅ in En then

jkµk,nj
−1
n (y) ∈ Uk for k ∈ {1, . . . , n − 1}.

(2.15)







































for any sequence {yn}n∈N with yn ∈ Un

and Fn(yn) ∩ Φn(yn) 6= ∅ in En for n ∈ N and

for every k ∈ N there exists a subsequence

Nk ⊆ {k + 1, k + 2, . . . }, Nk ⊆ Nk−1 for

k ∈ {1, 2, . . .}, N0 = N, and a zk ∈ Uk with

jkµk,nj
−1
n (yn) → zk in Ek as n → ∞ in Nk

and

(2.16)































if there exists a w ∈ Y and a sequence {yn}n∈N

with yn ∈ Un and Fn(yn) ∩ Φn(yn) 6= ∅ in En such that

for every k ∈ N there exists a subsequence S ⊆

{k + 1, k + 2, . . . } of N with jkµk,nj
−1
n (yn) → jkµk(w)

in Ek as n → ∞ in S, then F (w) ∩ Φ(w) 6= ∅ in E.

Then there exists x ∈ E with F (x) ∩Φ(x) 6= ∅ in E; here x = (zk) where zk ∈ Uk for

each k ∈ N .

Remark 2.5. Notice to check (2.15) we need to show that for each k ∈ N ,

{jkµk,nj
−1
n (yn)}n∈Nk−1

⊆ Uk is sequentially compact.

Remark 2.6. If we replace (2.15) with






































for any sequence {yn}n∈N with yn ∈ Un

and Fn(yn) ∩ Φn(yn) 6= ∅ in En for n ∈ N and

for every k ∈ N there exists a subsequence

Nk ⊆ {k + 1, k + 2, . . . }, Nk ⊆ Nk−1 for

k ∈ {1, 2, . . .}, N0 = N, and a zk ∈ Uk with

jkµk,nj
−1
n (yn) → zk in Ek as n → ∞ in Nk,

then Y is the statement of Theorem 2.4 can be replaced by U .

Proof. For each n ∈ N there exists yn ∈ Un with Fn(yn) ∩ Φn(yn) 6= ∅ in En. Lets

look at {yn}n∈N . Notice y1 ∈ U1 and j1µ1,kj
−1

k (yk) ∈ U1 for k ∈ {2, 3, . . .}. Now

(2.15) with k = 1 guarantees that there exists a subsequence N1 ⊆ {2, 3, . . .} and a
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z1 ∈ U1 with j1µ1,nj−1
n (yn) → z1 in E1 as n → ∞ in N1. Look at {yn}n∈N1

. Now

j2µ2,nj
−1
n (yn) ∈ U2 for k ∈ N1. Now (2.15) with k = 2 guarantees that there exists a

subsequence N2 ⊆ {3, 4, . . .} of N1 and a z2 ∈ U2 with j2µ2,nj−1
n (yn) → z2 in E2 as

n → ∞ in N2. Note from (2.4) and the uniqueness of limits that j1µ1,2j
−1

2 z2 = z1 in

E1 since N2 ⊆ N1 (note j1µ1,nj
−1
n (yn) = j1µ1,2j

−1

2 j2µ2,nj−1
n (yn) for n ∈ N2). Proceed

inductively to obtain subsequences of integers

N1 ⊇ N2 ⊇ · · ·Nk ⊆ {k + 1, k + 2, . . . }

and zk ∈ Uk with jkµk,nj
−1
n (yn) → zk in Ek as n → ∞ in Nk. Note jkµk,k+1j

−1

k+1
zk+1 =

zk in Ek for k ∈ {1, 2, . . .}.

Fix k ∈ N . Note

zk = jkµk,k+1j
−1

k+1
zk+1 = jkµk,k+1j

−1

k+1
jk+1µk+1,k+2j

−1

k+2
zk+2

= jkµk,k+2j
−1

k+2
zk+2 = · · · = jkµk,mj−1

m zm = πk,mzm

for every m ≥ k. We can do this for each k ∈ N . As a result y = (zk) ∈ lim←En = E

and also note zk ∈ Uk for each k ∈ N . Also since Fn(yn) ∩ Φn(yn) 6= ∅ in En for

n ∈ Nk and jkµk,nj
−1
n (yn) → zk = y in Ek as n → ∞ in Nk we have from (2.16) that

F (y) ∩ Φ(y) 6= ∅ in E.

Remark 2.7. From the proof we see that condition (2.14) can be removed from

the statement of Theorem 2.2. We include it only to explain condition (2.15) (see

Remark 2.5).
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