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ABSTRACT. This paper is devoted to optimal control problem of stochastic switching systems.

Dynamics of this processes governed by stochastic differential equations with control terms in the

drift and diffusion coefficients. Necessary conditions for optimality of described systems with the

restrictions in each interval are obtained. The constraints on the transitions are described by the

set of functional inclusions. Ekeland’s variational principle are applied to prove maximum principle

in general form.
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1. INTRODUCTION

Optimal control problems of stochastic systems have a multitude practical appli-

cations in fields such as pricing an option,forecasting the growth of population and

determining optimal portfolio of investments,etc. [1, 2, 3, 4, 5]. Modern theory of

stochastic optimal control in the main has been developed along the two lines: maxi-

mum principle and dynamic programming [6, 7]. The analogue of maximum principle

for stochastic systems has been first obtained by Kushner [8]. Earlier results on the

developments of Pontryagin’s maximum principle for stochastic control systems are

met in [9, 10, 11, 12]. Investigation of stochastic maximum principle by using random

convex analysis was obtained by Bismut [13]. In [14, 15, 16] are obtained the modern

presentation of maximum principle for stochastic systems with backward stochastic

differential equations . Many real systems have unpredictable structural changes in

their behavior from causes of random failures, sudden disturbances, abrupt variation

of the connecting points on a mechanisms. These processes have been described by

the collection of stochastic differential equations [17, 18] are known as hybrid systems.

A switching systems are special class of hybrid systems and have the advantage of

modeling nature phenomena with the continuous changing law of system’s structure.

Therefore optimization problems of switching systems provide both theoretical and

practical interest [19, 20, 21, 22, 23].
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This paper is dedicated to the stochastic optimal control problems of switching

systems with controlled drift and controlled diffusion coefficients. We obtain necessary

condition of optimality in the form of a maximum principle for such systems, where

the restrictions on transitions are described by functional constraints in the each of

constituent interval.

In present paper, backward stochastic differential equations have been used to

prove a maximum principle for stochastic optimal control problems of switching sys-

tems. Optimal control problems of stochastic switching systems with uncontrolled

diffusion coefficients have been considered by the authors in [24, 25, 26, 27]. The

problem with controlled diffusion coefficients without endpoint constraints is studied

in [28]. Stochastic switching systems with controlled diffusion and with the special

type of restrictions were investigated in [29, 30].

This paper contains five sections. Notations, definitions and the statement of

main problem are given in Section 2. Section 3 is devoted to problem of optimality

of stochastic switching systems with controlled coefficients. In section 4 stochastic

optimal control problem of switching system with endpoint restrictions is treated. It

is proved some important facts for our goal and is established necessary condition of

optimality in form of maximum principle. Conclusion finalizes the present paper.

2. DESCRIPTION OF MAIN PROBLEM

Following notations are used throughout present paper. Rm represents the m

dimensional real vector space; | · | denotes the Euclidean norm. We use N as notation

for some positive constant; 1, r denotes the set of integer numbers 1, . . . , r. Assume

that σ-algebras F l
t = σ̄(wl

t, tl−1 ≤ t ≤ tl) are generated by independent Wiener

processes w1
t , w

2
t , . . . , w

r
t . Let (Ω, F, P ) be a complete probability space with filtration

{Ft, t ∈ [0, T ]}, where Ft = σ̄(F l
t , l = 1, r). L2

F l(0, T ; Rm) denotes the space of all

predictable processes xt(ω) in Rm such that E
T
∫

0

|xt(ω)|2dt < +∞. Rk×m represents

the space of all linear transformations from Rk to Rm. Let Ol ⊂ Rnl , Ql ⊂ Rml, be

open sets. Unless specified otherwise, we will use following notations: t = (t0, . . . , tr),

u = (u1, . . . , ur) and x = (x1, . . . , xr)

Consider the following stochastic control system:

(2.1) dxl
t = gl(xl

t, u
l
t, t)dt+ f l(xl

t, u
l
t, t)dw

l
t, t ∈ (tl−1, tl], l = 1, r;

(2.2) xl+1
tl

= Φl(xl
tl
, tl ) l = 1, r − 1 ; x1

t0
= ξ,

(2.3) ul
t ∈ U l

∂ ≡ {ul(·, ·) ∈ L2
F l(tl−1, tl;R

ml)|ul(t, ·) ∈ U ⊂ Rml a.c.}

where {tk} denote the time that xt is heavily changed, which are a series of unknown

moments satisfying t1 < t2 < t3 < · · · .
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Elements of U∂ = U1
∂ × U2

∂ × · · · × U r
∂ are called admissible controls. Our main

goal is to find optimal inputs (x1, x2, . . . , xr, u1, u2, . . . , ur) and switching sequence

t1, t2, . . . , tr, which are minimize following cost functional:

(2.4) J(u) = E



ϕ(xr
tr

) +

r
∑

l=1

tl
∫

tl−1

pl(xl
t, u

l
t, t)dt





on the decisions of the system (2.1)-(2.3), which are generated by all admissible

controls at conditions:

(2.5) Eql(xl
tl
) ∈ Gl, l = 1, r .

Gl are a closed convex sets in R1.

To establish necessary condition of optimality for the stochastic control problem

(2.1)–(2.5) we need to the following assumptions.

(H1) Functions gl, f l, pl,Φl, ql are twice continuously differentiable with respect to x

for each l = 1, 2, . . . , r.

(H2) For each l = 1, 2, . . . , r functions gl, f l, pl, and all their derivatives are continuous

in (x, u). gl
x, g

l
xx, f

l
x, f

l
xx, p

l
xx are bounded and hold the linear growth conditions.

(H3) Functions ϕ(x) : Rnr → R are twice continuously differentiable and hold the

condition:

|ϕ(x)| + |ϕx(x)| ≤ N(1 + |x|), |ϕxx(x)| ≤ N.

(H4) For each l = 1, 2, . . . , r − 1 functions Φl(x, t) : Rnl × T → R1 are twice continu-

ously differentiable with respect to (t) and satisfy the condition:
∣

∣Φl(x, t)
∣

∣ +
∣

∣Φl
x(x, t)

∣

∣ ≤ N(1 + |x|),
∣

∣Φl
xx(x, t)

∣

∣ ≤ N.

(H5) Functions ql (x) : Rnl → R1, l = 1, r are continuously differentiable with respect

to (x) and meet the condition:
∣

∣ql(x)
∣

∣ +
∣

∣ql
x(x)

∣

∣ ≤ N(1 + |x|),
∣

∣ql
xx(x)

∣

∣ ≤ N.

Consider the sets:

Ai = Ti+1 ×
i

∏

j=1

Oj ×
i

∏

j=1

Qj , i = 1, r,

with the elements

πi = (t0, t1, . . . , ti, x
1
t , x

2
t , . . . , x

i
t, u

1, u2, . . . , ui).

Definition 2.1. Collection of stochastic processes
{

xl
t = xl(t, πl)

}

, t ∈ [tl−1, tl] , l =

1, r is called a solution of variable structure system (2.1)–(2.2) corresponding to an

element πr ∈ Ar, if stochastic process xl
t ∈ Ol almost certainly continuous on the

interval [tl−1, tl], holds the condition (2.2) at point tl and satisfies the equation (2.1)

almost everywhere.
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Definition 2.2. πr ∈ Ar is called the admissible element if pairs (xl
t, u

l
t), t ∈ [tl−1, tl],

l = 1, r satisfy (2.1)–(2.3) and conditions (2.5).

Definition 2.3. Let A0
r be the set of admissible elements. The element π̃r ∈ A0

r, is

called an optimal solution of problem (2.1)–(2.5) if there exist admissible controls ũl
t,

t ∈ [tl−1, tl] and corresponding solutions of system (2.1)–(2.2) such that pairs (x̃l
t, ũ

l
t),

l = 1, r minimize the functional (2.4).

3. MAXIMUM PRINCIPLE OF STOCHASTIC SWITCHING

SYSTEMS

Applying the similar technique as in [28] following necessary condition of opti-

mality for stochastic control system (2.1)–(2.4) is obtained.

Theorem 3.1. Suppose that,

πr = (t0, t1, . . . , tr, x
1
t , . . . , x

r
t , u

1, . . . , ur)

is an optimal solution of problem (2.1)–(2.4) and conditions (H1)–(H4) hold . Then,

a) there exist stochastic processes (ψl
t, β

l
t) ∈ L2

F l(tl−1, tl;R
nl)×L2

F l(tl−1, tl;R
nlxnl) and

(Ψl
t,K

l
t) ∈ L2

F l(tl−1, tl;R
nl)×L2

F l(tl−1, tl;R
nlxnl) which are the solutions of the follow-

ing conjugate equations:

(3.1)











dψl
t = −H l

x(ψ
l
t, x

l
t, u

l
t, t)dt+ βl

tdw
l
t, tl−1 ≤ t < tl, l = 1, r,

ψl
tl

= ψl+1
tl

Φl
x(x

l
tl
, tl), l = 1, r − 1,

ψr
tr

= −ϕx(x
r
tr
),

(3.2)























dΨl
t = −[Hl

x(Ψ
l
t, x

l
t, u

l
t, t) +H l

xx(ψ
l
t, x

l
t, u

l
t, t)

+f l∗
x (xl

t, u
l
t, t)Ψ

l
tf

l
x(x

l
t, u

l
t, t)] dt+ Kl

tdw
l
t, t ∈ [tl−1, tl)

Ψl
tl

= Ψl+1
tl

Φl
xx(x

l
tl
, tl), l = 1, r − 1,

Ψr
tr

= −ϕxx(x
r
tr

)

b) almost everywhere in θ ∈ [tl−1, tl], and ∀ ũl ∈ U l, l = 1, r, almost certainly (a.c.)

fulfills the maximum principle:

(3.3)

H l(ψl
θ, x

l
θ, u

l, θ) −H l(ψl
θ, x

l
θ, u

l
θ, θ) + 0.5∆ulf l∗(xl

θ, u
l
θ, θ)Ψ

l
θ∆ulf l(xl

θ, u
l
θ, θ) ≤ 0

c) following transversality conditions hold:

(3.4) ψl+1
tl

Φl
t(x

l
tl
, tl) = 0 , l = 1, r − 1 , a.c.

Here we used following notations:

H l(ψt, xt, ut, t) = ψtg
l(xt, ut, t) + βtf

l(xt, ut, t) − pl(xt, ut, t),

Hl (Ψt, xt, ut, t) = Ψtg
l (xt, ut, t) + gl∗ (xt, ut, t)Ψt + Ktf

l (xt, ut, t) + f l∗ (xt, ut, t)Kt.
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Proof. Let ūl
t = ul

t+∆ūl
t l = 1, r represent some admissible controls and x̄l

t = xl
t+∆x̄l

t

l = 1, r represent the corresponding trajectories of system (2.1)–(2.3). Let 0 = t0 <

t1 < · · · < tr = T be switching sequence. Then following identities are obtained for

some sequence 0 = t̄0 < t̄1 < · · · < t̄r = T :

(3.5)






















d∆x̄l
t =

[

∆ūlgl(xl
t, u

l
t, t) + gl

x(x
l
t, u

l
t, t)∆x̄

l
t + 0.5∆x∗t g

l
xx(x

l
t, u

l
t, t)∆xt

]

dt+
[

∆ūlf l(xl
t, u

l
t, t) + f l

x(x
l
t, u

l
t, t)∆x̄

l
t + 0.5∆x∗t f

l
xx(x

l
t, u

l
t, t)∆xt

]

dwl
t + η1

t , t ∈ (tl−1, tl]

∆x̄1
t0

= 0,

∆x̄l
tl−1

= Φl−1(x̄l−1
tl−1

, t̄l−1) − Φl−1(xl−1
tl−1

, tl−1 ), l = 2, r.

where

η1
t =

{ 1
∫

0

[

gl∗
x (xl

t + µ∆x̄l
t, ū

l
t, t) − gl∗

x (xl
t, u

l
t, t)

]

∆x̄l
tdµ

+ 0.5 ·
1

∫

0

∆x̄l∗
t

[

gl∗
xx(x

0
t + µ∆x̄l

t, u
l
t, t) − g∗xx(x

l
t, u

l
t, t)

]

∆x̄l
tdµ

}

dt

+

{ 1
∫

0

[

f l∗
x (xl

t + µ∆x̄l
t, ū

l
t, t) − f l∗

x (xl
t, u

l
t, t)

]

∆x̄l
tdµ

+ 0.5 ·
1

∫

0

∆x̄l∗
t

[

f l∗
xx(x

0
t + µ∆x̄l

t, u
l
t, t) − f ∗

xx(x
l
t, u

l
t, t)

]

∆x̄l
tdµ

}

dwl
t.

According to Ito’s formula implies that following identities are true:

(3.6)

d(ψl∗
t ∆x̄l

t∆t̄l) = dψl∗
t ∆x̄l

t∆t̄l + ψl∗
t d∆x̄

l
t∆t̄l + { βl∗

t [∆ūlf l(xl
t, u

l
t, t) + f l

x(x
l
t, u

l
t, t)∆x̄

l
t

+0.5∆x̄l∗
t f

l
xx(x

l
t, u

l
t, t)∆x̄

l
t]∆t̄l + βl∗

t

1
∫

0

[

f l
x(x

0
t + µ∆x̄l

t, ū
l
t, t) − f l

x(x
l
t, ū

l
t, t)

]

∆x̄l
t∆t̄ldµ

+0.5βl∗
t

1
∫

0

∆x̄l∗
t

[

f l
xx(x

0
t + µ∆x̄l

t, ū
l
t, t) − f l

xx(x
0
t , ū

l
t, t)

]

∆x̄l
t∆t̄l } dt

and

(3.7)

d(∆x̄l∗
t Ψl

t∆x̄
l
t∆t̄l) = ∆x̄l∗

t Ψl
t∆x̄

l
t + ∆x̄l∗

t dΨ
l
t∆x

l
t∆t̄l + ∆xl∗

t Ψl
td∆x̄

l
t∆t̄l+

d∆x̄l∗
t Ψl

t∆x̄
l
t∆t̄l + {Kl∗

t [∆ūf
l(xl

t, u
l
t, t) + f l

x(x
l
t, u

l
t, t)∆x̄

l
t + 0.5∆x̄l∗

t f
l
xx(x

l
t, u

l
t, t)∆x̄

l
t]∆t̄l

+[∆ūf
l
x(x

l
t, u

l
t, t) + f l

x(x
l
t, u

l
t, t)∆x̄

l
t + 0.5∆x̄l∗

t f
l
xx(x

l
t, u

l
t, t)∆x̄

l
t]Ψ

l
t·

[∆ūf
l(xl

t, u
l
t, t) + f l

x(x
l
t, u

l
t, t)∆x̄

l
t + 0.5∆x̄l∗

t f
l
xx(x

l
t, u

l
t, t)∆x̄

l
t]∆t̄l}dt

Note that linear terms in (3.5) can be handled in the following way. Consider the

following matrix-valued equations:

dZt = AtZtdt+BtZtdwt,

Z0 = I,
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which have a unique solution Zt with E sup ‖Zt‖2s < ∞, s ≥ 1, if At and Bt are the

predictable and bounded matrices (see [11]). It is easy to show that the matrix Zt

has an inverse and Gt = Z−1
t is a solution of the equation:

dGt = − (GtAt −GtBtBt) − GtBtdwt,

G0 = I.

In order to establish the existence and uniqueness of solution of adjoint stochastic

differential equations, it is enough to follow the method described in the article [10]

and to make use the independence of Wiener processes w1
t , . . . , w

r
t in the each in-

terval [tl−1, tl], l = 1, . . . , r. The stochastic processes ψl
t,Ψ

l
t, l = 1, r, at the points

t1, t2, . . . , tr are defined as:

(3.8) ψl
tl

= ψl+1
tl

Φl
x(x

l
tl
, tl), l = 1, r − 1; ψr

tr
= −ϕx(x

r
tr

)

and

(3.9) Ψl
tl

= Ψl+1
tl

Φl
xx(x

l
tl
, tl), l = 1, r − 1; Ψr

tr
= −ϕxx(x

r
tr

)

Using the expressions (3.5)-(3.9) for the increment of a functional (2.4) we obtain the

form as indicated below:

(3.10)

∆J( u ) = E

{

ϕ(x̄r
tr

) − ϕ(xr
tr

) +
r

∑

l=1

tl
∫

tl−1

[

pl(x̄l
t, ū

l
t, t) − pl(xl

t, u
l
t, t)

]

dt

}

=

−
r

∑

l=1

E
tl
∫

t
−1

{

∆ūlH l(ψl
t, x

l
t, u

l
t, t) +H l

x(ψ
l
t, x

l
t, u

l
t, t)∆x̄

l
tl

+ 0.5 · ∆ūlf l∗(xl
t, u

l
t, t)Ψ

l
t×

∆ūlf l(xl
t, u

l
t, t) − 0.5∆x̄l∗

tl
f l∗(xl

t, u
l
t, t)Ψ

l
tf

l
x(x

l
t, u

l
t, t)∆x̄

l
tl

+ ∆x̄l∗
tl
∆ūlgl(xl

t, u
l
t, t) Ψl

t∆x̄
l
tl

−∆x̄l∗
tl
gl

x(x
l
t, u

l
t, t) Ψl

t∆x̄
l
tl

+ ∆x̄l∗
tl
∆ūlf l(xl

t, u
l
t, t)K

l
t∆x̄

l
tl
− ∆x̄l∗

tl
f l

x(x
l
t, u

l
t, t)K

l
t∆x̄

l
tl
+

+ψl∗
t ∆ūlgl

x(x
l
t, u

l
t, t)∆x̄

l
tl

+ βl∗
t ∆ūlf l

x(x
l
t, u

l
t, t)∆x̄

l
tl
− ∆ūlpl

x(x
l
t, u

l
t, t) ∆x̄l

tl

}

∆t̄ldt

+
r−1
∑

l=1

ψl+1
tl

Φt(x
l
tl
, tl)∆t̄ldt + η0 +

r
∑

l=1

ηtl
tl−1

,

where

(3.11)

η0 = −E
1
∫

0

(1 − µ)
[

ϕ∗
x(x

r
tr

+ µ∆x̄r
tr

) − ϕ∗
x(x

r
tr

)
]

∆x̄r
tr
dµ−

E
1
∫

0

(1 − µ)∆x̄r∗
tr

[

ϕ∗
xx(x

r
tr

+ µ∆x̄r
tr
) − ϕ∗

xx(x
r
tr
)
]

∆x̄r
tr
dµ
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and

(3.12)

ηtl
tl−1

= E
tl
∫

tl−1

1
∫

0

(1 − µ)
[

H l
x(ψ

l
t, x

l
t + µ∆x̄l

t, u
l
t, t) − H l

x(ψ
l
t, x

l
tu

l
t, t)

]

∆x̄l
t ∆t̄ldµdt−

−E
1
∫

0

(1 − µ)ψl+1
tl

[

Φl
x(x

l
t + µ∆x̄l

t, tl)−Φl
x(x

l
t, tl)]∆x

l
t∆t̄ldµ

E
tl
∫

tl−1

1
∫

0

(1 − µ)∆x̄l∗
t

[

H l
xx(ψ

l
t, x

l
t + µ∆x̄l

t, u
l
t, t) − H l

xx(ψ
l
t, x

l
tu

l
t, t)

]

∆x̄l
t ∆t̄ldµdt−

−E
1
∫

0

(1 − µ)∆x̄l∗
tl
Ψl+1

tl

[

Φl
xx(x

l
t + µ∆x̄l

t, tl)−Φl
xx(x

l
t, tl)]∆x

l
t∆t̄ldµ

According to (3.1), (3.2), (3.8) and (3.9) , through the simple transformations expres-

sion (3.10) may be written as:

(3.13)

∆J( u ) = −
r

∑

l=1

E
tl
∫

tl−1

[

∆ulH l (ψl
t, x

l
t, u

l
t, t) + ∆ulH l

xl(ψ
l
t, x

l
t, u

l
t, t)∆x̄

l
t+

+0.5 · ∆ūlf l∗(xl
t, u

l
t, t) · Ψl

t∆ūlf l(xl
t, u

l
t, t) − 0.5∆x̄l∗

tl
f l∗(xl

t, u
l
t, t)Ψ

l
tf

l
x(x

l
t, u

l
t, t)∆x̄

l
tl
+

+∆x̄l∗
tl
∆ūlgl(xl

t, u
l
t, t) Ψl

t∆x̄
l
tl
− ∆x̄l∗

tl
gl

x(x
l
t, u

l
t, t) Ψl

t∆x̄
l
tl

+ ∆x̄l∗
tl
∆ūlf l(xl

t, u
l
t, t)K

l
t∆x̄

l
tl
−

−∆x̄l∗
tl
f l

x(x
l
t, u

l
t, t)K

l
t∆ x̄l

tl

]

∆t̄ldt+
r−1
∑

l=1

ψl+1
tl

Φt(x
l
tl
, tl)∆t̄ldt + η0 +

r
∑

l=1

ηtl
tl−1

Based on fact that πr = (t,x,u) is optimal solution, using the independence of

increments respective to different arguments and assumption (H4) from expression

(3.13), we obtain that (3.4) is true.

Consider the following spike variations:

∆ul
t = ∆uθl

t,εl =

{

0, t /∈ [θl, θl + εl), εl > 0, θl ∈ [tl−1, tl)

ũl − ul
t, t ∈ [θl, θl + εl), ũ

l ∈ L2(Ω, F θl, P ;Rm)

where εl are enough small numbers. Then the expression (3.13) takes the form of:

(3.14)
∆θJ( u) =

r
∑

l=1

E
θl+εl
∫

θl

[ ∆ũlH l(ψl
t, x

l
t, u

l
t, t) + ∆ūlH l

xl(ψ
l
t, x

l
t, u

l
t, t)∆x̄

l
t+

+ 0.5∆ūlf l∗(xl
t, u

l
t, t) · Ψl

t∆ūlf l(xl
t, u

l
t, t) ] dt +

r
∑

l=1

ηθl+εl

θl

In order to obtain estimation for increment (3.14), we introduce following lemma.

Lemma 3.2 (Gronwall’s inequality [6]). Let m(t) is a continuous function satisfying:

0 ≤ m(t) ≤ h(t) +
t
∫

s

g(τ)m(τ)dτ, s ≤ t ≤ t1, here g(t) is continuous,h(t) is bounded

functions and
t1
∫

s

g(t)dt < +∞. Then following holds:

m(t) ≤ h(t) +

t
∫

s

g(τ)h(τ) exp[

t
∫

s

g(u)du]dτ, s ≤ t ≤ t1
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Proof of following lemma can be found in [29]. Here, the brief proof will be given

in due to make comprehensible content for this paper.

Lemma 3.3. Suppose that conditions (H1)–(H2) are satisfied. Then, the following

is obtained:

lim
εl→0

E
∣

∣

∣
xθl

t,εl
− xl

t

∣

∣

∣

2

≤ Nεl, a.e. in t ∈ [tl−1, tl), l = 1, r.

Here xθl
t,εl

are the solutions of system (2.1)–(2.2), corresponding to the controls uθl
t,εl

=

ul
t + ∆uθl

t,εl
.

Proof. Let’s denote the following: x̃l
t,εl

= xθl
t,εl

−xl
t. It is clear that ∀t ∈ [tl−1, θl) x̃

l
t,εl

=

0, l = 1, r. Then for ∀t ∈ [θl, θl + εl)

dx̃l
t,εl

=
[

gl(xl
t + εlx̃l

t,εl
, ũl, t) −gl(xl

t, u
l
t, t)

]

dt+
[

f l(xl
t + εlx̃

l
t,εl
, ũl, t) − f l(xl

t, u
l
t, t)

]

dwl
t

x̃l
θl,εl

= −(gl(xl
θl
, ũl, θl) − g(xl

θl
, ul

θl
, θl))

or

x̃l
θl+εl,εl

=

θl+εl
∫

θl

[

gl(xl
s + εlx̃

l
s,εl
, ul, s) − gl(xl

s, u
l
s, s)

]

ds

+

θl+εl
∫

θl

[

gl(xl
θ, u

l
θl
, θl) − gl(xl

s, u
l
s, s)

]

ds

+

θl+εl
∫

θl

[

f l(xl
s + εlx̃

l
s,εl
, ul

s, s) − f l(xl
s, u

l
s, s)

]

dwl
s

+

θl+εl
∫

θl

[

gl(xl
s, ũ

l, s) − gl(xl
θl
, ũl, θl)

]

ds

Therefore from the conditions (H1)–(H2) and using the Lemma 3.2 we have

E
∣

∣x̃l
θl+εl,εl

∣

∣

2 ≤ N

[

ε2
l sup

θl≤t≤θl+εl

E
∣

∣

∣
xθl

t,εl
− xl

t

∣

∣

∣

2

+ ε2
l sup

θl≤t≤θl+εl

E
∣

∣xl
t − xl

θl

∣

∣

2

+ sup
θl≤t≤θl+εl

ε2
l E

∣

∣gl(xl
t, ũ

l, t) − gl(xl
θl
, ũl, θl)

∣

∣

2

+ εlE

θl+εl
∫

θl

∣

∣f l(xl
t, u

l
t, t) − f l(xl

θl
, ul

θl
, θl)

∣

∣

2
dt

+ ε2
l E

θl+εl
∫

θl

∣

∣gl(xl
t, u

l
t, t) − gl(xl

θl
, ul

θl
, θl)

∣

∣

2
dt

]



STOCHASTIC SWITCHING CONTROL SYSTEMS 251

Hence: E
∣

∣x̃l
t+εl,εl

∣

∣

2 ≤ εlN , εl → 0, ∀t ∈ [θl, θl + εl). According to identity (3.5) for

special spike variation of control ∀t ∈ [θl + εl, tl] :

dx̃l
t,ε = [gl(xl

t + εlx̃
l
t,εl
ul

t, t)−gl(xl
t, u

l
t, t)] dt+

[

f l(xl
t + εlx̃

l
t,εl
, ul

t, t) − f(xl
t, u

l
t, t)

]

dwl
t

which can be rewritten as follow:

dx̃l
t,εl

=

1
∫

0

gl
x(x

l
t + µεlx̃

l
t,εl
, ul

t, t)x̃
l
t,εl
dµdt+

1
∫

0

f l
x(x

l
t + µεlx̃

l
t,εl
, ul

t, t)x̃
l
t,εl
dµdwt

x̃l
θl+εl,εl

εl = −(gl(xl
θl+εl

, ul
θl+εl

, θl) − g(xl
θl+εl

, ũl, θl)).

Hence: E
∣

∣x̃l
t,εl

∣

∣

2 ≤ εlN, for ∀t ∈ [θl + εl, tl], if εl → 0.

Thus: sup
tl−1≤t≤tl

E
∣

∣x̃l
t,εl

∣

∣

2 ≤ Nεl, l = 1, r.

From the expression (3.12), due to Lemma 3.3 for each l implies following esti-

mation:

ηθl+εl

θl
= o(εl).

Then according to fact that ūt = (ū1
t , ū

2
t , . . . , ū

r
t ) is optimal of control from (3.14)

for each l it follows that:

∆θlJ(u) = −E
[

ψl∗
θl

∆ũl gl(xl
θl
, ul

θl
, θl) − ∆ũlpl(xl

θl
, ul

θl
, θl)

+ 0.5∆ũlf l∗(xl
θl
, ul

θl
, θl)Ψ

l
θl
∆ūlf l(xl

θl
, ul

θl
, θl) ]∆t̄l + o(εl) ≥ 0

Finally, due to the smallness and arbitrariness of εl (3.3) is achieved.

4. NECESSARY CONDITION OF OPTIMALITY FOR SWITCHING

SYSTEMS WITH CONSTRAINTS

First, we recall notion Ekeland’s variational principle to use in our main result.

Theorem 4.1 (Ekeland’s variational principle [31]). Let (X, d) is complete metric

space and f : X −→ R
⋃

(+∞) be a semi-continuous function from below. ε, λ are

positive numbers and for some point x0 ∈ X is satisfied: f(x0) ≤ min
x∈X

f(x)+ελ, there

exist x̄ ∈ X such that:

1) f(x̄) ≤ f(x0),

2) d(x̄, x0) ≤ λ,

3) ∀x ∈ X, f(x̄) ≤ f(x) + ελd(x̄, x).

By applying the Theorem 3.1 and Theorem 4.1 the necessary condition of opti-

mality for stochastic control problem of switching systems (2.1)–(2.5) is obtained.
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Theorem 4.2. Assume that, assumptions (H1)–(H5) satisfy and πr = (t,x,u) is an

optimal solution of problem (2.1)–(2.5). Then,

a) there exist non-zero vector (λ0, λ1, . . . , λr) ∈ Rr+1 and stochastic functions (ψl
t, β

l
t) ∈

L2
F l(tl−1, tl;R

nl)×L2
F l(tl−1, tl;R

nlxnl) and (Ψl
t,K

l
t) ∈ L2

F l(tl−1, tl;R
nl)×L2

F l(tl−1, tl;R
nlxnl)

which are the solutions of the following conjugate equations:

(4.1)











dψl
t = −H l

x(ψ
l
t, x

l
t, u

l
t, t)dt+ βl

tdw
l
t, t ∈ [tl−1, tl), l = 1, r

ψl
tl

= −λlq
l
x(x

l
tl
) + ψl

tl+1
Φl

x(x
l
tl
, tl), l = 1, r − 1,

ψr
tr

= −λ0ϕx(x
r
tr
) − λrq

r
x(x

r
tr

);

(4.2)























dΨl
t = −[Hl

x(Ψ
l
t, x

l
t, u

l
t, t) +H l

xx(ψ
l
t, x

l
t, u

l
t, t)

+f l∗
x (xl

t, u
l
t, t)Ψ

l
tf

l
x(x

l
t, u

l
t, t)] dt+ Kl

tdw
l
t, t ∈ [tl−1, tl)

Ψl
tl

= −λlq
l
xx(x

l
tl
) + Ψl

tl+1
Φl

xx(x
l
tl
, tl), l = 1, r − 1,

Ψr
tr

= −λ0ϕxx(x
r
tr
) − λrq

r
xx(x

r
tr

).

b) a.e. θ ∈ [tl−1, tl] and ∀ ũl ∈ U l, l = 1, r, a.c. holds the maximum principle:

(4.3)

H l(ψl
θ, x

l
θ, u

l, θ) −H l(ψl
θ, x

l
θ, u

l
θ, θ) + 0.5∆ulf l∗(xl

θ, u
l
θ, θ)Ψ

l
θ∆ulf l(xl

θ, u
l
θ, θ) ≤ 0

c) following transversality conditions holds:

(4.4) ψl+1
tl

Φl
t(x

l
tl
, tl) = 0, a.c.

Proof. First, we discuss the existence of uniquely solutions of adjoint equations (4.1)

and (4.2). In fact from [10, 15, 16], the first-order adjoint processes (ψl
t, β

l
t) and sec-

ond order adjoint processes (Ψl
t,K

l
t) described in a unique way by (4.1) and (4.2)

respectively. Using Theorem 4.1 , the problem is convert into the sequence of un-

constrained problems. Finally, we obtain maximum principle in the case when and

endpoint constraints are imposed. Consider following approximating functional for

any natural j :

Ij(u) = Sj(Eϕ(xr
tr

) + E

r
∑

l=1

tl
∫

tl−1

pl(xl
t, u

l
t, t)dt,Eq

1(x1
t1

), . . . ,Eqr(xr
tr

)) =

min
(c,y)∈χ

√

√

√

√|c− 1/j − EM(x,u, t)|2 +

r
∑

l=1

∣

∣yl − Eql(xl
tl
)
∣

∣

2

where M(x,u, t) = ϕ(xr
tr

) +
r

∑

l=1

tl
∫

tl−1

p(xl
t, u

l
t, t)dt, y = (y1, . . . , yr) and χ = {c : c ≤ J0,

y1 ∈ G1, . . . , yr ∈ Gr}, J0 minimal value of the functional in the problem (2.1)–(2.5).

Introduce space of controls V l ≡ (U l
∂
, d) obtained by means of the metric:

d(ul, vl) = (l ⊗ P )
{

(t, ω) ∈ [tl−1, tl] × Ω : νl
t 6= ul

t

}

.

V 1, V 2, . . . , V r are complete metric spaces [31]. It is easy to prove the following fact:
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Lemma 4.3. Assume that conditions (H1)–(H4) hold, for each l ul,n
t be the sequence

of admissible controls from V l, and xl,n
t be the sequence of corresponding trajecto-

ries of the system (2.1)–(2.3). If the following condition is met: d(ul,n
t , ul

t) → 0,

then, lim
n→∞

{

sup
tl−1≤t≤tl

E
∣

∣

∣
xl,n

t − xl
t

∣

∣

∣

2
}

= 0, where xl
t is a trajectory corresponding to an

admissible controls ul
t, l = 1, r.

Due to continuity of the functionals Ij : V 1×· · ·V r → Rnl , according to Ekeland’s

variational principle, there are controls such as: ul,j
t : d(ul,j

t , u
l
t) ≤

√
εj and for ∀ul

t ∈
V l follows: Ij(u

j) ≤ Ij(u) +
√
εj

r
∑

l=1

d(ul,j, ul), εj = 1
j
.

This fact can be treated following way: (t1, . . . , tr, x
1,j
t , . . . , xr,j

t , u1,j
t , . . . , ur,j

t ) is a

solution of the following problem:

(4.5)







































Jj(u) = Ij(u) +
√
εjE

r
∑

l=1

tl
∫

tl−1

δ(ul
t, u

l,j
t )dt→ min

dxl
t = gl(xl

t, u
l
t, t)dt+ f l(xl

t, u
l
t, t)dwt, l = 1, r

xl+1
tl

= Φl(xl
tl
, tl ), l = 1, r − 1 ;

x1
t0

= x0,

ul
t ∈ U l

∂

Here

δ(u, v) =

{

0, u = v

1, u 6= v

Then according to the Theorem 3.1, it is obtained as follows:

1) there exist the stochastic processes (ψl,j
t , β

l,j
t ) ∈ L2

F l(tl−1, tl;R
nl)×L2

F l(tl−1, tl;R
nl×nl),

which are solutions of following system:

(4.6)











dψl,j
t = −H l

x(ψ
l,j
t , x

l,j
t , u

l,j
t , t)dt+ βl,j

t dwt, t ∈ [tl−1, tl ) l = 1, r;

ψl,j
tl

= −λj
l q

l
x(x

l,j
tl

) + ψl
tl+1

Φl
x(x

l,j
tl
, tl), l = 1, r − 1

ψ
rj

tr = −λj
0ϕx(x

r,j
tr ) − λj

rq
r
x(x

r,j
tr ) .

and the random processes Ψl,j
t ∈ L2

F l(tl−1, tl;R
nl), Kl,j

t ∈ L2
F l(tl−1, tl;R

nl×nl), which

are solutions of the system:

(4.7)























dΨl,j
t = −[Hl

x(Ψ
l,j
t , x

l,j
t , u

l,j
t , t) +H l

xx(ψ
l,j
t , x

l,j
t , u

l,j
t , t)

+f l∗
x (xl,j

t , u
l,j
t , t)Ψ

l,j
t f

l
x(x

l,j
t , u

l,j
t , t)] dt+ Kl,j

t dw
l
t

Ψl,j
tl

= −λj
l q

l
xx(x

l,j
tl

) + Ψl,j
tl+1

Φl
xx(x

l,j
tl
, tl), l = 1, r − 1,

Ψr,j
tr = −λj

0ϕxx(x
r,j
tr ) − λj

rq
r
xx(x

r,j
tr ).

where non-zero (λj
0, λ

j
1, . . . , λ

j
r) ∈ Rr+1 meet the following requirement:

(λj
0, λ

j
1, . . . , λ

j
r) =

(

[

−c + 1/j + EM(xj ,uj, t)
]

,

− y1 + Eq1(x1,j
t1

), . . . ,−yr + Eqr(xr,j
tr )

)

/J0
j(4.8)
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here

J0
j =

√

√

√

√

r
∑

l=1

∣

∣yl − Eql(xl
tl
)
∣

∣

2
+ |c− 1/j − EM(x,u, t)|2

2) a.e. t ∈ [tl−1, tl] and ∀ ũl ∈ V l, l = 1, r, a.c. is satisfied:

H l
(

ψl,j
t , x

l,j
t , ũ

l
t, t

)

− H l
(

ψl,j
t , x

l,j
t , u

l,j
t , t

)

+ 0.5∆ũlf l∗(xl,j
t , u

l,j
t , t)Ψ

l,j
t ∆ũlf l(xl,j

t , u
l,j
t , t) ≤ 0(4.9)

3) following conditions of transversality satisfy:

(4.10) ψl+1,j
tl

Φl
ti
(xl,j

tl
, tl) = 0, a.c.

Since the following has existed |(λj
0, λ

j
1, . . . , λ

j
r)| = 1, then according to (4.8) and

conditions (H1)–(H5) it is implied that (λj
0, λ

j
1, . . . , λ

j
r) → (λ0, λ1, . . . , λr) if j → ∞.

We now state the following results which will be needed in the future.

Lemma 4.4. Let ψl
tl

be a solution of system (4.1), ψl,j
tl

be a solution of system (4.6).

If d(ul,j
t , u

l
t) → 0, then

lim
j→∞

E

tl
∫

tl−1

[|ψl,j
t − ψl

t|2 + |βl,j
t − βl

t|2]dt) = 0 , l = 1, r.

Proof. It is clear that ∀t ∈ [tl−1, tl]:

(4.11)

d(ψl,j
t − ψl

t) = −
[

H l
x(ψ

l,j
t , x

l,j
t , u

l,j
t , t) −H l

x(ψ
l
t, x

l
t, u

l
t, t)

]

dt+ (βl,j
t − βl

t)dwt

=
[

ψl,j
t g

l
x(x

l,j
t , u

l,j
t , t) + βl,j

t f
l
x(x

l,j
t , u

l,j
t , t) − pl

x(x
l,j
t , u

l,j
t , t) − ψl

tg
l
x(x

l
t, u

l
t, t)−

−βl
tf

l
x(x

l
t, u

l
t, t) + pl

x(x
l
t, u

l
t, t)

]

dt+ (βl,j
t − βl

t)dwt

Squaring both sides of the equation, according to Ito formula ∀s ∈ [tl−1, tl] we obtain:

E(ψl,j
tl

− ψl
tl
)2 − E(ψl,j

s − ψl
s)

2 = 2E

tl
∫

s

[ψl,j
t − ψl

t][(g
l∗
x (xl,j

t , u
l,j
t , t) − gl∗

x (xl
t, u

l
t, t))ψ

l,j
t +

+gl∗
x (xl

t, u
l
t, t)(ψ

l,j
t − ψl

t) + (f l∗
x (xl,j

t , u
l,j
t , t) − f l∗

x (xl
t, u

l
t, t))β

l,j
t + f l∗

x (xl
t, u

l
t, t)×

×(βl,j
t − βl

t) − pl(xl,j
t , u

l,j
t , t) + pl

x(x
l
t, u

l
t, t)]dt+ E

tr
∫

s

(βl,j
t − βl

t)
2dt

Now, using the assumptions (H1)–(H5) we have:

E

tr
∫

s

|βl,j
t − βl

t|2dt+ E|ψl,j
s − ψl

s|2 ≤ EN

tr
∫

s

|ψl,j
t − ψl

t|2dt

+ ENε

tr
∫

s

|βl,j
t − βl

t|2dt+ E
∣

∣

∣
ψl,j

tl
− ψl

tl

∣

∣

∣

2
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Hence, by the Lemma 3.2 we establish that:

(4.12) E|ψr,j
s − ψr

s |2 ≤ DeN(tr−s) a.e. in [tr−1, tr],

where D = E|ψr,j
tr − ψr

tr
|2. Hence from (4.1),(4.6) and conditions (H3),(H5) it follows

that ψr,j
tr

→ ψr
tr

and D → 0. Consequently, from (4.12) we obtain that ψr,j
s → ψr

s in

L2
F (tr−1, tr; R

nr) and thus βr,j
s → βr

s in L2
F (tr−1, tr; R

nr×nr).

Then from expression (4.11) in view of assumptions (H1)–(H5) and according to

Lemma 3.2 we get:

E|ψl,j
s − ψl

s|2 ≤ DeN(tl−s) a.e. in [tl−1, tl], l = 1, r − 1,

here D = E|ψl,j
tl

− ψl
tl
|2, which D → 0 according to (4.1), (4.6) and conditions (H3)–

(H4). Hence, from (4.12) implies that ψl,j
s → ψl

s in L2
F l(tl−1, tl;R

n) and βl,j
s → βl

s in

L2
F l(tl−1, tl;R

n×n).

Lemma 4.5. Let Ψl,j
tl

be a solution of system (4.2), and Ψl
tl

be a solution of system

(4.7). Then

E

tl
∫

tl−1

|Ψl,j
t − Ψl

t|2dt+E

tl
∫

tl−1

|Kl,j
t − Kl

t|2dt→ 0 , l = 1, r, if j → ∞.

Proof. Due to Ito’s formula from expressions (4.2) and (4.7) for ∀s ∈ [tl−1, tl):

d(Ψl,j
t − Ψl

t) = −{(gl∗
x (xl,j

t , u
l,j
t , t)Ψ

l,j
t − gl∗

x (xj
t , u

j
t , t)Ψ

l
t) + (Ψl,j

t g
l
x(x

l,j
t , u

l,j
t , t)−

−Ψl
tg

l
x(x

j
t , u

j
t , t)) + (f l∗

x (xl,j
t , u

l,j
t , t)Ψ

l,j
t f

l
x(x

l,j
t , u

l,j
t , t) − f l∗

x (xl
t, u

l
t, t)Ψ

l
tf

l
x(x

l
t, u

l
t, t))

+(f l∗
x (xl,j

t , u
l,j
t , t)K

l,j
t − f l∗

x (xl
t, u

l
t, t)K

l
t) + (Kl,j

t f
l
x(x

l,j
t , u

l,j
t , t) − Kl

tf
l
x(x

l
t, u

l
t, t))+

+H l
xx(ψ

l,j
t , x

l,j
t , u

l,j
t , t) −H l

xx(ψ
l
t, x

l
t, u

l
t, t)} dt+ (Kl,j

t − Kl
t)dw

l
t

Then with help simple transformations we obtain:

E

tl
∫

s

|Kl,j
t − Kl

t|2dt+ E|Ψl,j
t − Ψl

t|2 ≤ EN

tl
∫

s

|Ψl,j
t − Ψl

t|2dt

+ ENε

t1
∫

s

|Kl,j
t − Kl

t|2dt+ E|Ψl,j
tl
− Ψl

tl
|2

According to Gronwall inequality a.e. in [tl−1, tl) we have:

E|Ψl,j
s − Ψl

s|2 ≤ De−N(tl−s)

where the constant D defined as:

D = E|Ψl,j
tl

− Ψl
tl
|2 + ENε

tl
∫

s

|Kl,j
t − Kl

t|2dt
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Follow the same steps as in Lemma 4.4 in view of (4.2), (4.7) and assumptions (H3),

(H5) we establish that: Ψr,j
tr → Ψr

tr
. Further, according to assumptions (H1)–(H4)

and expressions (4.2), (4.6) we obtain : Ψr,j
t → Ψr

t in L2
F r(tr−1, tr;R

n) if j → ∞.

According to sufficient smallness of ε follows that D → 0 . Consequently: Ψl,j
t →

Ψl
t in L2

F l(tl−1, tl;R
n) and Kl,j

t → Kl
t in L2

F l(tl−1, tl;R
n×n),l = 1, r − 1 .

Due to Lemma 4.4 and Lemma 4.5 it can be proceed to the limit in systems

(4.6) , (4.7) and the fulfilment of (4.1),(4.2) are obtained. Follow a similar scheme by

taking limit in (4.9) and (4.10) it is proved that (4.3),(4.4) are true. Theorem 4.2 is

proved.

5. CONCLUSION

A lot of theoretical and numerical advances have recently been realized in the

field of modelling and control related with randomness [3, 4, 5, 32, 33]. Necessary

conditions satisfied by an optimal solution, play an important role for investigation of

optimization and optimal control problems. The present paper is devoted to optimal

control problem of stochastic switching systems with the endpoint state restrictions

in the form of functional constraints. The necessary conditions developed in this

study can be viewed as a stochastic analogues of the problems that are formulated

in [19, 20, 23]. However, Theorem 4.2 is a natural evolution of the results given in

[28, 26, 29].
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