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ABSTRACT. In this article, we make use of the monotone iterative technique to verify the exis-

tence of concave symmetric positive solutions of a second-order three-point boundary value problem

with integral boundary conditions. The interesting point here is that the nonlinear term f depends

on the first-order derivative explicitly. An example which supports our result is also indicated.
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1. INTRODUCTION

The multi-point boundary value problems for ordinary differential equations arise

in variety of different areas of applied mathematics and physics. The study of multi-

point boundary value problems for linear second-order ordinary differential equations

was initiated Il’in and Moiseev [5]. Since then, nonlinear multi-point boundary value

problems have been studied by many authors. We refer the reader to [2–4,12] and

their references.

At the same time, boundary value problems with integral boundary conditions

for ordinary differential equations represent a very interesting and important class of

problems. For an overview of the literature on integral boundary value problems, see

[1,6,11,14].

In [14], J. Tariboon and T. Sitthiwirattham considered the second-order three-

point differential equation






u′′(t) + a(t)f(u(t)) = 0, t ∈ (0, 1),

u(0) = 0, u(1) = α

∫ η

0

u(s)ds.

They showed the existence of at least one positive solutions if f is either superlinear

or sublinear by applying the fixed point theorem in cones.
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In [11], H. Pang and Y. Tong considered second-order boundary value problem






u′′(x) + f(x, u(x), u′(x)) = 0, 0 < x < 1,

u(0) = u(1) =

∫ 1

0

p(s)u(s)ds.

They investigated the existence of concave symmetric positive solutions and estab-

lished corresponding iterative schemes for a second-order boundary value problem

with integral boundary conditions.

Motivated by the results above, in this paper, we are interested in the existence

of the concave symmetric positive solutions for the following second-order three-point

boundary value problems with integral boundary conditions

(1.1)







u′′(x) + f(x, u(x), u′(x)) = 0, 0 < x < 1,

u(0) = u(1) = α

∫ η

0

u(s)ds,

where η ∈ (0, 1), 0 < α < 1
η
, and f ∈ C((0, 1) × [0, +∞) × R, [0, +∞)).

The organization of the paper is as follows. In Section 2, we present definitions

and some necessary lemmas that will be used to prove our main result. In Section 3, we

apply the monotone iterative technique to obtain the existence of concave symmetric

positive solutions for BVP (1.1). Monotone iterative technique has been successfully

used to prove to existence of a positive solutions of boundary value problems, see

[7-11,13,15,16]. In Section 4, we give example to illustrate our result.

2. PRELIMINARIES

Definition 2.1. Let E be a real Banach Space. A nonempty closed convex set P ⊂ E

is called a cone if it provides the following two conditions:

(i) u ∈ P , λ ≥ 0 implies λu ∈ P ;

(ii) u ∈ P , −u ∈ P implies u = 0.

Definition 2.2. Let E be a real Banach Space. A function u ∈ E is said to be

symmetric on [0, 1] if

u(x) = u(1 − x), x ∈ [0, 1].

Definition 2.3. Let (E,≤) be an ordered real Banach Space. An operator α : E → E

is said to be nondecreasing provided that α(u) ≤ α(v) for all u, v ∈ E with u ≤ v. If

the inequality is strict, then α is said to be strictly nondecreasing.

Definition 2.4. Let E be a real Banach Space, u ∈ E is said to be concave on [0, 1]

if

u(λx1 + (1 − λ)x2) ≥ λu(x1) + (1 − λ)u(x2)

for any x1, x2 ∈ [0, 1] and λ ∈ [0, 1].
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We consider the Banach space E = C2[0, 1] equipped with norm ‖u‖ = max{‖u‖∞,

‖u′‖∞}, where ‖u′‖∞ = maxx∈[0,1] |u
′(x)|. Throughout this paper, we always assume

that the following assumptions are satisfied:

(H1) f ∈ C((0, 1) × [0, +∞) × R, [0, +∞)), f(x, u, v) = f(1 − x, u,−v) for x ∈ (0, 1
2
],

and f(x, u, v) ≥ 0 for all (x, u, v) ∈ (0, 1) × [0, +∞) × R.

(H2) f(x, ., v) is nondecreasing for each (x, v) ∈ (0, 1
2
] × R, f(x, u, .) is nondecreasing

for (x, u) ∈ (0, 1
2
] × [0, +∞).

Define the cone P ⊂ E by

P = {u ∈ E : u(x) ≥ 0 is concave and u(x) = u(1 − x), x ∈ [0, 1]} .

Lemma 2.5. For any u ∈ C2[0, 1], suppose that u is the solution of the following

BVP






u′′(x) + f(x, u(x), u′(x)) = 0, 0 < x < 1,

u(0) = u(1) = α

∫ η

0

u(s)ds.

Then we can easily get the solution

(2.1) u(x) =

∫ 1

0

(H(s) + G(x, s))f(s, u(s), u′(s))ds,

where

(2.2) V (s) =







(η − s)2, s ≤ η;

0, η ≤ s.
H(s) =

αη2

2(1 − αη)
(1 − s) −

α

2(1 − αη)
V (s),

(2.3) G(x, s) =

{

s(1 − x), 0 ≤ s ≤ x ≤ 1;

x(1 − s), 0 ≤ x ≤ s ≤ 1.

Proof. Suppose that u ∈ C2[0, 1] is a solution of problem (1.1). Then we have

u′′(x) = −f(x, u(x), u′(x)).

For x ∈ [0, 1], by integration from 0 to 1, we have

u′(x) = u′(0) −

∫ x

0

f(s, u(s), u′(s))ds.

For x ∈ [0, 1], by integration again from 0 to 1, we have

u(x) = u′(0)x −

∫ x

0

(
∫ τ

0

f(s, u(s), u′(s))ds

)

dτ.

That is,

(2.4) u(x) = u(0) + u′(0)x −

∫ x

0

(x − s)f(s, u(s), u′(s))ds,

therefore,

u(1) = u(0) + u′(0) −

∫ 1

0

(1 − s)f(s, u(s), u′(s))ds.
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From condition (1.1), we have

u′(0) =

∫ 1

0

(1 − s)f(s, u(s), u′(s))ds.

By integrating (2.4) from 0 to η, where η ∈ (0, 1), we have
∫ η

0

u(s)ds = u(0)η + u′(0)
η2

2
−

∫ η

0

(
∫ τ

0

(τ − s)f(s, u(s), u′(s))ds

)

dτ

= u(0)η + u′(0)
η2

2
−

1

2

∫ η

0

(η − s)2f(s, u(s), u′(s))ds,

and from u(0) = α

∫ η

0

u(s)ds, we have

u(0) =
αη2

2(1 − αη)
u′(0) −

α

2(1 − αη)

∫ η

0

(η − s)2f(s, u(s), u′(s))ds.

Therefore, (1.1) has a unique solution

u(x) =
αη2

2(1 − αη)

∫ 1

0

(1 − s)f(s, u(s), u′(s))ds

−
α

2(1 − αη)

∫ η

0

(η − s)2f(s, u(s), u′(s))ds

+ x

∫ 1

0

(1 − s)f(s, u(s), u′(s))ds −

∫ x

0

(x − s)f(s, u(s), u′(s))ds.

From (2.2) and (2.3), we obtain

u(x) =

∫ 1

0

(H(s) + G(x, s))f(s, u(s), u′(s))ds.

The proof is complete.

The functions H and G have the following properties.

Lemma 2.6. If η ∈ (0, 1) and 0 < α < 1
η
, then we have H(s) ≥ 0, for s ∈ [0, 1].

Proof. From the definition of H(s), s ∈ (0, 1), η ∈ (0, 1), and 0 < α < 1
η
, we have

H(s) ≥ 0.

Lemma 2.7. G(1 − x, 1 − s) = G(x, s), 0 ≤ G(x, s) ≤ G(s, s) for x, s ∈ [0, 1].

Proof. From the definition of G(x, s), we get G(1 − x, 1 − s) = G(x, s) and 0 ≤

G(x, s) ≤ G(s, s) for x, s ∈ [0, 1].

Lemma 2.8. Let η ∈ (0, 1) and 0 < α < 1
η
. If f(x, u(x), u′(x)) ∈ C((0, 1)× [0, +∞)×

R, [0, +∞)), then the unique solution u of BVP (1.1) satisfies u(x) ≥ 0 for x ∈ [0, 1].

Proof. From the definition of u(x), f(x, u(x), u′(x)) ∈ C((0, 1)×[0, +∞)×R, [0, +∞)),

Lemma 2.6, and Lemma 2.7, we have u(x) ≥ 0.
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Lemma 2.9. Let αη > 1. If f(x, u(x), u′(x)) ∈ C((0, 1)× [0, +∞)×R, [0, +∞)) then

BVP (1.1) has no positive solution.

Proof. Suppose that problem (1.1) has a positive solutions u satisfying u(x) > 0,

x ∈ (0, 1). If u(0) = u(1) > 0, by the concavity of u

(2.5) u(s) ≥ u(1) for s ∈ (0, 1),

by integrating (2.5) from 0 to η, where η ∈ (0, 1), we have
∫ η

0

u(s)ds ≥ ηu(1),

and from u(1) = α
∫ η

0
u(s)ds, we have

u(1)(1 − αη) ≥ 0,

which is a contradiction to the u(1) > 0 and (1 − αη) < 0. So, no positive solutions

exist.

For any u ∈ C2[0, 1], T : P → E is defined

(2.6) (Tu)(x) =

∫ 1

0

(H(s) + G(x, s))f(s, u(s), u′(s))ds, for x ∈ [0, 1].

Clearly, u is the solution of BVP (1.1) if and only if u is fixed point of T .

Lemma 2.10. Assume that (H1) and (H2) are satisfied, and let η ∈ (0, 1), 0 < α <
1
η
. Then the operator T is completely continuous in C2[0, 1] and T is nondecreasing.

Proof. For any u ∈ P , from the expression of Tu, we know










(Tu)′′(x) + f(x, u(x), u′(x)) = 0, x ∈ (0, 1),

(Tu)(0) = (Tu)(1) = α

∫ η

0

(Tu)(s)ds.

Clearly, Tu is concave. From the definition of Tu, Lemma 2.6, and Lemma 2.7 we see

that Tu is nonnegative on [0, 1]. We now show that Tu is symmetric about 1
2
. From

Lemma 2.7 and (H1), for x ∈ [0, 1], we have

(Tu)(1 − x) =

∫ 1

0

(H(s) + G(1 − x, s))f(s, u(s), u′(s))ds

=

∫ 1

0

H(s)f(s, u(s), u′(s))ds +

∫ 1

0

G(1 − x, s)f(s, u(s), u′(s))ds

=

∫ 1

0

H(s)f(s, u(s), u′(s))ds

−

∫ 0

1

G(1 − x, 1 − s)f(1 − s, u(1 − s), u′(1 − s))ds

=

∫ 1

0

H(s)f(s, u(s), u′(s))ds +

∫ 1

0

G(x, s)f(1 − s, u(s),−u′(s))ds
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=

∫ 1

0

H(s)f(s, u(s), u′(s))ds +

∫ 1

0

G(x, s)f(s, u(s), u′(s))ds

= (Tu)(x).

Therefore, TP ⊂ P .

The continuity of T with respect to u(x) ∈ C2[0, 1] is clear. We now show that T

is compact. Suppose that D ⊂ P is a bounded set. Then there exists r such that

D = {u ∈ P | |‖u‖ ≤ r} .

For any u ∈ D, we have

0 ≤ f(s, u(s), u′(s)) ≤ max {f(s, u, u′) | |s ∈ [0, 1], u ∈ [0, r], u′ ∈ [−r, r]} =: M.

So, we have from (2.6)

‖(Tu)(x)‖∞ = max
x∈[0,1]

∣

∣

∣

∣

∫ 1

0

(H(s) + G(x, s))f(s, u(s), u′(s))ds

∣

∣

∣

∣

≤ M

∫ 1

0

H(s)ds + M max
x∈[0,1]

∫ 1

0

G(x, s)ds =: L

and

‖(Tu)
′

(x)‖∞ = max
x∈[0,1]

∣

∣

∣

∣

∫ 1

0

(1 − s)f(s, u(s), u′(s))ds −

∫ x

0

f(s, u(s), u′(s))ds

∣

∣

∣

∣

≤
M

2
+ M.

These equations imply that the operator T is uniformly bounded. Now we show that

Tu is equi-continuous. We separate these three conditions:

Case (i). 0 ≤ x1 ≤ x2 ≤
1
2
;

Case (ii). 1
2
≤ x1 ≤ x2 ≤ 1;

Case (iii). 0 ≤ x1 ≤
1
2
≤ x2 ≤ 1.

We solely need to think Case (i) since the proofs of the other two are like. For

0 ≤ x1 ≤ x2 ≤
1

2
, we have

|(Tu)(x2) − (Tu)(x1)|

=

∣

∣

∣

∣

∫ 1

0

(G(x2, s) − G(x1, s))f(s, u(s), u′(s))ds

∣

∣

∣

∣

≤































∫ 1

0

|(x2 − x1)(1 − s)|f(s, u(s), u′(s))ds, 0 ≤ x1 ≤ x2 ≤ s ≤
1

2
,

∫ 1

0

|s(x1 − x2)|f(s, u(s), u′(s))ds, 0 ≤ s ≤ x1 ≤ x2 ≤
1

2
,

∫ 1

0

|s(1 − x2) − x1(1 − s)|f(s, u(s), u′(s))ds, 0 ≤ x1 ≤ s ≤ x2 ≤
1

2
.
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≤































M

2
|x2 − x1|,

M

2
|x2 − x1|,

3M

2
|x2 − x1|.

In addition

|(Tu)′(x2) − (Tu)′(x1)| =

∣

∣

∣

∣

∫ x1

x2

f(s, u(s), u′(s))ds

∣

∣

∣

∣

≤ M |x2 − x1|.

By applying the Arzela-Ascoli theorem, we can guarantee that T (D) is relatively

compact, which means T is compact. Then we have T is completely continuous.

Finally, we show T is noncecreasing with respect to u(x) ∈ C2[0, 1].

Let ui(x) ∈ P (i = 1, 2) and u1(x) ≤ u2(x) then, we have u2(x) − u1(x) ∈ P and

u2(x) − u1(x) ≥ 0 is concave, symmetric about 1
2
. Therefore







u′

2(x) ≥ u′

1(x) for x ∈ [0, 1
2
],

u′

2(x) ≤ u′

1(x) for x ∈ [1
2
, 1].

So, for x ∈ [0, 1], by applying (H1), (H2), and the definition of Tu, we have

(Tu2)(x) − (Tu1)(x) =

∫ 1

0

(H(s) + G(x, s))f(s, u2(s), u
′

2(s))ds

−

∫ 1

0

(H(s) + G(x, s))f(s, u1(s), u
′

1(s))ds

=

∫ 1

0

(H(s) + G(x, s))

(

f(s, u2(s), u
′

2(s))

− f(s, u1(s), u
′

1(s))

)

ds

≥ 0.

Thus T is nondecreasing. These complete the proof.

3. EXISTENCE OF TWO CONCAVE SYMMETRIC POSITIVE

SOLUTIONS FOR BVP (1.1)

Now we find the existence of two concave symmetric positive solutions and cor-

responding iterative scheme for BVP (1.1).

Theorem 3.1. Suppose that (H1) and (H2) are provided, and let η ∈ (0, 1), 0 < α <
1
η
. If there exist two positive number b1 < b such that

(3.1) sup
x∈[0, 1

2
]

f(x, b, b) ≤ b1,
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where b and b1 satisfy,

(3.2) b ≥ max

{

αη2(3 − 2η)

3(1 − αη)
,

αη2

4(1 − αη)
−

αη3

6(1 − αη)
+

1

8

}

b1,

then BVP (1.1) has a concave symmetric positive solutions w∗, v∗ ∈ P with

‖w∗‖ ≤ b and lim
n→∞

T nw0 = w∗, where w0(x) = bx(1 − x) +
b

4
,

‖v∗‖ ≤ b and lim
n→∞

T nv0 = v∗, where v0(x) = 0.

Proof. We show Pb = {w ∈ P : ‖w‖ ≤ b}. In what follows, we now show TPb ⊂

Pb. Let w ∈ Pb, then 0 ≤ w(x) ≤ max
x∈[0,1]

w(x) = ‖w‖∞ ≤ b. On the other hand,

max
x∈[0,1]

|w′(x)| = w′(0) ≤ b. By using (3.1) and (H2), for x ∈ [0, 1
2
], we have

0 ≤ f(x, w(x), w′(x)) ≤ f(x, b, b) ≤ sup
x∈[0, 1

2
]

f(x, b, b) ≤ b1.

Let x ∈ [1
2
, 1], then (1 − x) ∈ [0, 1

2
], by using (H1), (H2), and (3.1), we have

0 ≤ f(x, w(x), w′(x)) = f(1 − x, w(1 − x), w′(1 − x)) = f(1 − x, w(x),−w′(x))

= f(x, w(x), w′(x)) ≤ f(x, b, b)

≤ sup
x∈[0, 1

2
]

f(x, b, b) ≤ b1.

Then

(3.3) f(x, w(x), w′(x)) ≤ b1, for x ∈ [0, 1].

For any w(x) ∈ Pb, from Lemma 2.10, we obtain T (w) ∈ P and, thus

‖Tw‖∞ = (Tw)(
1

2
)

=

∫ 1

0

(H(s) + G(
1

2
, s))f(s, w(s), w

′

(s))ds

≤
αη2

4(1 − αη)
b1 −

αη3

6(1 − αη)
b1 +

1

8
b1

≤ b,

and

‖(Tw)′‖∞ = (Tw)′(0) =

∫ 1

0

(1 − s)f(s, w(s), w′(s))ds ≤
b1

2
< b.

So, ‖Tw‖ ≤ b. Then, we obtain TPb ⊂ Pb. Let w0(x) = bx(1 − x) + b
4

for x ∈ [0, 1],

then ‖w0‖ = b and w0(x) ∈ Pb. Let w1 = Tw0, then w1 ∈ Pb. We denote

(3.4) wn+1 = Twn = T n+1w0 (n = 0, 1, 2, . . . ).

Because TPb ⊂ Pb, we have wn ∈ Pb (n = 0, 1, 2, . . . ). According to Lemma 2.10,

T is compact, we claim that {wn}
∞

n=1 has a convergent subsequence {wnk
}∞k=1 and
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there exist w∗ ∈ Pb such that wnk
−→ w∗. From the definition of T , (3.2), and (3.3),

we have

w1(x) = (Tw0)(x)

=

∫ 1

0

(H(s) + G(x, s))f(s, w0(s), w0
′(s))ds

=

∫ 1

0

H(s)f(s, w0(s), w
′

0(s))ds +

∫ 1

0

G(x, s)f(s, w0(s), w
′

0(s))ds

≤
αη2(3 − 2η)

12(1 − αη)
b1 +

b1

2
x(1 − x)

≤
b

4
+ bx(1 − x) = w0(x).

Thus, w0(x) − w1(x) ∈ Pb. By using Lemma 2.10, we obtain Tw1 ≤ Tw0, which

means w2 ≤ w1, x ∈ [0, 1]. By induction, wn+1 ≤ wn, x ∈ [0, 1], (n = 0, 1, 2, . . . ).

Now we show that |w′

n+1(x)| ≤ |w′

n(x)|, x ∈ [0, 1]. We separate these two condi-

tions:

Case (i). Let x ∈ [0, 1
2
], then w′

n(x) ≥ 0.

w′

1(x) = (Tw0)
′(x)

=

∫ 1

0

(1 − s)f(s, w0(s), w0
′(s))ds −

∫ x

0

f(s, w0(s), w
′

0(s))ds

≤
b1

2
− b1x = b1(

1

2
− x)

≤ b − 2bx = w′

0(x).

Then, |w′

1(x)| ≤ |w′

0(x)|, by using Lemma 2.10, we obtain |Tw′

1(x)| ≤ |Tw′

0(x)|, which

means |w′

2(x)| ≤ |w′

1(x)|, x ∈ [0, 1
2
]. By the induction |w′

n+1(x)| ≤ |w′

n(x)|, x ∈ [0, 1
2
].

Case (ii). Let x ∈ [1
2
, 1], then w′

n(x) ≤ 0.

−w′

1(x) = −(Tw′

0)(x)

= −

(
∫ 1

0

(1 − s)f(s, w0(s), w
′

0(s))ds −

∫ x

0

f(s, w0(s), w
′

0(s))ds

)

≤ b1(x −
1

2
)

≤ 2bx − b = −w′

0(x).

Then, |w′

1(x)| ≤ |w′

0(x)|, by using Lemma 2.10, we obtain |Tw′

1(x)| ≤ |Tw′

0(x)|, which

means |w′

2(x)| ≤ |w′

1(x)|, x ∈ [1
2
, 1]. By the induction |w′

n+1(x)| ≤ |w′

n(x)|, x ∈ [1
2
, 1].

Consequently, |w′

n+1(x)| ≤ |w′

n(x)|, x ∈ [0, 1].

So, we claim that wn −→ w∗ in norm ‖ · ‖. Let n −→ ∞ in (3.4) to get Tw∗ = w∗

because T is continuous. It is clear that the fixed point of the operator T is the
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solution of BVP (1.1). Hence, w∗ is concave symmetric positive solution (1.1). And

since w∗ ∈ Pb, we have ‖w∗‖ ≤ b.

Let v0(x) = 0, 0 ≤ x ≤ 1, then v0 ∈ Pb. Let v1 = Tv0, then v1 ∈ Pb, we denote

(3.5) vn+1 = Tvn = T n+1v0 (n = 0, 1, 2, . . . ).

Likely to {vn}
∞

n=1, we claim that {vn}
∞

n=1 has a convergent subsequence {vnk
}∞k=1

and there exist v∗ ∈ Pb such that vnk
−→ v∗. Because v1 ≥ v0, by using Lemma 2.10,

we obtain Tv1 ≥ Tv0, which means v2 ≥ v1, x ∈ [0, 1]. By induction, vn+1 ≥ vn,

x ∈ [0, 1] (n = 0, 1, 2, . . . ). And |v′

1(x)| ≥ |v′

0(x)|, by using Lemma 2.10, we obtain

|Tv′

1(x)| ≥ |Tv′

0(x)|, which means |v2
′(x)| ≥ |v′

1(x)|, x ∈ [0, 1]. By the induction,

|v′

n+1| ≥ |v′

n|, x ∈ [0, 1] (n = 0, 1, 2, . . . ). So we claim that vn −→ v∗ in norm ‖ · ‖

and then Tv∗ = v∗ and v∗ ≥ 0, 0 ≤ x ≤ 1. Hence, v∗ is concave symmetric positive

solution of BVP (1.1). And since v∗ ∈ Pb, we have ‖v∗‖ ≤ b. Therefore, our proof is

complete.

4. EXAMPLE

Example 4.1. We consider the following three-point second-order boundary value

problem with integral boundary conditions:

(4.1)















u′′(x) +
1

3
ex(1−x) ((u

′)2 + sgn(u + 1) + 2)

80
= 0, 0 < x < 1,

u(0) = u(1) = 3

∫ 1

4

0

u(s)ds,

where

f(x, u, v) =
1

3
ex(1−x) (v

2 + sgn(u + 1) + 2)

80
, η =

1

4
, α = 3.

It is not difficult to check that the assumptions (H1) and (H2) hold. Let b = 33

and b1 = 32, then conditions (3.1) and (3.2) are confirmed. Then applying Theo-

rem 3.1, BVP (4.1) has a concave symmetric positive solutions w∗, v∗ ∈ P with

‖w∗‖ ≤ 33 and lim
n→∞

T nw0 = w∗, where w0(x) = 33x(1 − x) +
33

4
,

‖v∗‖ ≤ 33 and lim
n→∞

T nv0 = v∗, where v0(x) = 0.
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