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1. INTRODUCTION

Fractional calculus has recently devolved as an interesting and important field
of research. As a generalization of differentiation and integration to arbitrary non-
integer order, fractional calculus is a significant tool for solving complex problems
from various fields such as engineering, science, pure and applied mathematics. Much
attention has been focused on the study of the existence and multiplicity of solutions
or positive solutions for boundary value problems of fractional differential equations
by using techniques of nonlinear analysis. For more details, we refer the reader to
[1,2,3,4,5,6,7,8,9] and the references therein.

Although the boundary value problems of the fractional differential equation with
m-point fractional boundary conditions have been studied in many literature, only
a few papers can be found in the literature on the existence of solutions for the
fractional differential equation with m-point fractional integral boundary conditions,

see [10, 11, 12]. In particular, we would like to mention some excellent results.

In [2], Ahmad, Ntouyas and Alsaedi considered the existence and uniqueness of
solutions for a boundary value problem of nonlinear fractional differential equations

of order ¢ € (1,2] with three-point integral boundary conditions given by
‘Diz(t) = f(t,z(t)), 0<t<1l, 1<qg<2,
"

z(0) =0, =z(l) = a/ z(s)ds, 0<n<l,
0
where D9 denotes the Caputo fractional derivative of order ¢, f : [0,1] x X — X is

continuous, and a € R is such that a # 2/n% Here, (X,]| - ||) is a Banach space and
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C = C([0,1], X) denotes the Banach space of all continuous functions from [0, 1] — X

endowed with a topology of uniform convergence with the norm denoted by || - ||

In [3], Boucherif and Ntouyas considered the following first order initial value

problem for fractional differential equations with nonlocal conditions

cDix(t) = f(t,z(t)), 0<t<T, 0<q<l,
x(0) + Z%-:E(tj) =0,
j=1

where D7 denotes the Caputo fractional derivative of order ¢, f : [0,1] x R — R,
tj,(j = 0,1,...,m) are given point with 0 < ¢; < --- < t,, < T and ~; are real

m

numbers with 1 + Z’}/j # 0.
j=1
In this study, we discuss the existence and uniqueness of solutions of Riemann-
Liouville fractional differential equation involving the p-Laplacian operator with m-

point integral boundary conditions given by

—DP(g,(D2(t)) = f(t,x(t), 1<a<2 tel0l]

1.1 — ("
(L) D'x(0) =0, D'z(l)=) o / D’z(s)ds, D“x(0) =0,
i=1 Ni—1

where 0 < 6 <1,1<a—0<2,0< <1, 0=n<m < <NOn-2 <Nn_1=1,and
a; >0forie0,...,m—1, Zfl_ll ai% # 1. Here, D" denotes the Riemann-
Liouville fractional derivative of order (.), f is given continuous function and ¢,(s) is
a p-Laplacian operator, i.c., ¢,(s) = [s[""%s, p>1,(¢p) " = &y, -+ 7 =1.

We note that the m-point boundary condition is related to m — 1 intervals of the
area under the curve of solution u(t) from t =n;_; tot =mn; fori=1,...,m— 1.

The rest of the paper is organized as follows. In Section 2, we present some
definitions and lemmas that will be used to prove our main results. In Section 3, we
prove an existence and uniqueness results by using the Banach’s fixed point theorem.

Finally, as an application, the results are demonstrated with an example.

2. PRELIMINARIES

In this section, we give some basic definitions and lemmas which are useful for

the presentation of our main results.

Definition 2.1 ([13, 14]). The Riemann Liouville fractional integral of order v € R*

of a function A : (0,00) — R is defined by
I .
¢ — _ o\o—

provided that the right hand side is defined pointwise.
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Definition 2.2 ([13, 14]). The Riemann-Liouville fractional derivative of order oo > 0
of a function f : (0,00) — R is defined by

D0 = () T80 = s () [ 6= o stsyas

where n is the smallest integer greater than or equal to «, provided that the right-hand

side is defined pointwise. In particular, for o = n, Dy, f(t) = f M (t).
Lemma 2.3 ([14]). The equality D], I], f(t) = f(t) withy > 0 holds for f € L*(0,1).

Lemma 2.4 ([14]). Let o > 0. If we assume u € C(0,1)NL(0,1), then the fractional

differential equation
Dg+u =0

has a unique solution u(t) = cit* 1+ cot® 2+ -+ t*™, ¢; €R, i = 1,...,n, where

n 1s the smallest integer greater than or equal to c.

Lemma 2.5 ([14]). Let u € C(0,1) N L(0,1) with a fractional derivative of order «
(o > 0) that belongs to C'(0,1) N L(0,1). Then

DS u(t) = u(t) + e t® 4 egt® et

for some c; € R, i =1,...,n, where n is the smallest integer greater than or equal to

Q.

The basic properties of the p-Laplacian operator which will be used in the fol-

lowing studies are listed below.

(i) f 1 <p<2,2y >0, and |z|, |[y| > m > 0, then

[6p(2) = Sp(y)] < (0 — Lm" |z — y|.
(ii) If p > 2, |z|, |y| < M, then

|6p(x) — dp(y)| < (p — M|z — y].

Observe that the substitution x(t) = I°y(t) = D~°y(t) transforms the boundary value
problem (1.1) to the following form:

—D%(6,(D**y(t)) = f(t,y(t), te€[0,1],

y(0) = OzZ/ Z y(s)ds D*°y(0) = 0.

=1 i—1

(2.1)

To define the solutions of the problem (2.1), we need the following lemma.
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Lemma 2.6. For any h € C|0, 1], the unique solution of the linear fractional boundary

value problem

—Dy(t) = h(t), 1e @)
22 y(0) = = a,/ Z

i=1 i—1
18
ta—é—l m un
y(t) = —I°7Oh(t) + — (I“ *h(1) = a / Ia—éh(s)ds)
Mi—1

m—1 m; _777, 1 X
=200 g i=1

Proof. 1t is well known by means of Lemma 2.5 that the solution of fractional differ-

ential equation in (2.2) can be written as
(2.3) y(t) = —I°Oh(t) — ct® 01 — cpt* 072,

where ¢, ¢y € R are arbitrary constants. Using the boundary condition y(0) = 0, we

conclude that ¢y = 0. Then we have
y(l) = —Io‘_éh(l) — .
Hence, by the boundary condition y(1) = f n s)ds, we obtain that

m—1 n
“a= 1 et [_ 177h(1) + ; “ /17 Ia_(gh(s)ds]

N
Substituting these values in (2.3) yields

ta—é—l

y(t) = —I°7°h(t) + —— (Ia—éhu)— o / " Ia—éh(s)ds)

m—1 n; M1 - )
1— St e par i

1=

This completes the proof. O

Note that, by Lemma 2.5, the equation —D?(¢,(D*°y(t))) = h(t) subject to the

boundary conditions given by (2.1) can be written as
B (D" 0y(1)) = —IPh(t) — ext* .

Using boundary condition D*%y(0) = 0, we get ¢; = 0. Hence, we obtain

(2.4) —Dy(t) = ¢g(I°N(1)).
Thus, the boundary value problem (2.1) is equivalent to the following problem:
—D0y(t) = qﬁq(fﬁh(l)), € (0,1),
s =0, )= a / " y(s)ds,
i=1 i1

Lemma 2.6 implies that boundary value problem (2.1) has a unique solution,

y(t) = —1°7°¢,(I°h(t)



EXISTENCE OF SOLUTIONS FOR NONLINEAR FDE WITH m-POINT IBC 287

ta—é—l
+

— (1 0,(°h(1)) —gai / " 156,(17h(s))ds).

a—3
L= 30 et
Then, the solution of —DF(¢,(D%z(t))) = h(t) given by boundary conditions (1.1),

z(t) = I°y(t)

ta—5—1
= 1°[ = 100, (I°R(t) + e (1% 04(1"n(1)
— -1 Mmoo

-Sai /ﬁ 77 Ja—%q(lﬁh(s))ds)]

= —I6,(I°h(1)) + e (10 (()
R i
m—1 i 1 t
_ . a—o B - 01 .a—6-1
;a, /ml[ bq(1 h(s))ds) F(é)/o(t s)° s ds

1 -
————— (I, (1"h(1))
1= 0 eim s

S [ o) [0 =)

Here, we have used the substitution s = tv in the integral of the last term. Using the

= —1°¢,(I"h(t)) +

relation for the Beta function B(-, ),

Bla.) = [ (-t = [T

Fa+0)’
we get
o(t) = — 6, (IPh(1) + — L@
P(a)(1 - Yt o 2
(10 onw) = Y [ o (ns)as)
Then,
t o1 1 S )
o) = ~g5es | =905 [ =0 nman)as
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where
[ —0)
-5 a—§

(o)1 — Yt o, et

3. MAIN RESULTS

9:

In this section, we will use the Banach contraction mapping principle to prove

existence and uniqueness of the solution for the fractional boundary value problem
(1.1).

Let C = C([0,1],R) denote the Banach space of all continuous functions from
[0,1] — R endowed with the norm defined by |z|| = maxscp,1 |#(t)|. Now consider
T; : C[0,1] — C]0,1],i = 0,1, with

Tty = - [ ot d
2(t) = g3 | =0 )

and

1

Talt) = ~Foes / (t — 5)* by (x(s))ds

+ ta—le[ﬁ /01(1 — 5) 0, (x(s))ds

_2% /;ﬁ /0 (s — 700 g, (a(7)drds).

Then the operator 7' : C|0,1] — C[0,1], defined by T" = T} o Tj is continuous and
compact. Clearly, a fixed point of the operator T is a solution of the problem (1.1).

Theorem 3.1. Assume that 1 < p < 2 holds and the following condition is satisfied.

(A1) f:]0,1] x R — R is continuous function, there exist a nonnegative function
w € C[0,1] and a constant L > 0 such that

|f(t,z)| <w(t), forany (t,x) € [0,1] x R,

|f(t,x) — f(t,y)| < Llx —y|, forte0,1] and z,y € R.

If
L(g— 1)M2 1 1
A =
! T(6+1) <F(a+1)+9[F(a—5+1)
m—1 a—04+1 a—d+1
1 N; — i1
—— ; L,
+F(a—5—|—1);a a—0+1 D<
where

1 t .
M = max o / (t — )" w(n)dy

te[0,1]

then the problem (1.1) has a unique solution.
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Proof. Let 1 < p < 2, then we have ¢ > 2 from % + % = 1. By using (A4;), for any
t €10,1], z € R, we obtain

Ty (t)] = | / (t — ) f (n, )

X0
e
) < 737 | =0 st
1 ¢ .
Sgﬁﬁf@yéﬁ—ﬂw w(n)dn
=M.

By using (ii), (3.1) and (A;), for any z,y € R, we have

ou(To) = an(Ton0)| = |on( s [ =) o ata))in)

I'(3)
1 t 1
-z [ (6= vt
< OS] [ e st~ s vm)an
Sgg%%g?iié(t—nW”LM@)—y@WM
(¢ —1)M*>
< L -l
Therefore, for any x,y € R
[ Tx(t) — Ty(t)|
= Ty (Tox)(t) — Th(Toy) (1)
= féﬁ[kt—SV;%%«ﬂﬂﬂ$)—¢AUMD$»W$
a—1 1 ' a—90—1
w0 [ 09T 6T 9) ~ (T () s
e [ pagy ) 6 @) o Ty
L(q— 1)Mq_2 1 ! )1y 1 ! _ g)e0-14,
S TCES) <F(a)/0(t )7 +9[r(a—5)/0 (1=s)™"d
+ ; o /nm1 7“@1_ 5 /08(8 — T)a_‘;_ldes])Hx — 9|
Lig—1)M2 1 1
S TG <F(a—i—1) *9[r(a—5+1)

m—1 a—d6+1 a—d6+1
1 7; — N1 D
o> o R
r(a—5+1);“ a—o+1 Iz =yl
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= Mz —yl|.
Hence, for any z,y € R
[Tz = Tyl < Maflz =y,

where 0 < A; < 1. This implies that T : C[0,1] — C]0, 1] is a contraction mapping.
By Banach contraction mapping principle, 7" has a unique fixed point in C[0, 1] which
is a solution of problem (1.1). O

Theorem 3.2. Assume that p > 2 holds and the following condition is satisfied.

(A2) f:]0,1] x R — R is continuous function, there exist A >0, § >0, L > 0 such
that (0 +5)(¢—2)+1>0 and

ft,z) > M°, for any (t,z) € (0,1] x R,

|f(t,x) — f(t,y)| < Llx —y|, forte|0,1] and z,y € R.

If
A_A< T((6+6)(q—2)+1) [ L((6+6)(g—2)+1)
T\ T(a+ G+ B)(g—2)+1) T(a—0+ 0+ 08)(qg—2)+1)
- T((0+8)(g —2) +1)
* 2 (7 _ni_l)F(a—5+ 6+ 6)(qg—2)+ 1)D
<1,
where

(g — 1)L AI2D(5 + 1)0°2

S TB+ )T+ pB+1)r2
then the problem (1.1) has a unique solution.

Proof. From the definition of operator Ty, for any x,y € C|0, 1], we have |¢,(Tox(0)) —
¢4(Toy(0))| = 0 and for ¢ > 0, we obtain the following inequalities

t—n)" "’ < (t—n)""" f(n,z(n))
1

T(3) /ot(t — )’ \ldn < . /ot(t — )" f(n, z(n))dn

IN(E) I'(B)
AL(0+1) 45 1 ¢ .
mt h < m/o (t —n)""" f(n,z(n))dn.

By using (i), (Ay) and the definition of the operator Tp, for any z,y € R, we have
STz (1)) — 6y(Toy 1))

bulrs [ 6= s onan) = 0, (s [ (6= 0 o utnin)

A'(0 4+ 1) t5+ﬁ]q—2’ 1

e A e K (RO B OO
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<[] o [ @ ) - nlan
(4=1) [ADB+D) g0
< e aryt ] Al

Hence, for any ¢t > 0, we can get

| Tx(t) — Ty(t)]

I aml
=i | = 9 (@) 6) = o (Tan )
w0 [ =9 (@) 9) ~ 6 T o)
2o [ s [ = 0 @) - a@wr)aras)

t 1 1
_ )1 (64+6)(g—2) 1 — g)@0-1400+06)(g-2)
F(a)/o(t $)* s d8+9[r(a_5)/0( s) s ds
1

m— U 1 s
+ ' o / 7”0[ — 6)/0 (s — T)o‘_‘g_lT(‘;Jrﬁ)(q_z)desDHx -l

gA(ﬁB(a, (5+ﬁ)(q—2)+1)+9[ﬁ3(a—5, 6+ B)(g—2)+ 1)
3 0l o) Bl = 0.6+ (g~ 2+ 1] e — o]

L0 +6)(g=2)+1) [ L0+ 0)(g—=2)+1)
Ta+(@0+B)g—2)+1)  T(a—6d+(0+p)(g—2)+1)

-1

I((0+8)(¢—2)+1)
sy -2 7)) I

< Aoflz —y].
Thus, for any z,y € R
[Tz =Tyl < Aoflz =yl

where 0 < As < 1. This implies that T : C|0, 1] — C[0, 1] is a contraction mapping.
By Banach contraction mapping principle, 7" has a unique fixed point in C[0, 1] which
is a solution of problem (1.1). O
Theorem 3.3. Assume that p > 2 holds and the following condition is satisfied.

(A3) f:]0,1] x R — R is continuous function, there exist A >0, § >0, L > 0 such
that (6 4+ 6)(¢—2)+1>0 and

ft,z) < =Xt°, for any (t,z) € (0,1] x R,
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lf(t,x) — f(t,y)| < Llx —y|, fortel0,1] and x,y € R.

If
p=a(L D=9 +D o H0+ =2+ 1)
2T\ T+ (0+08)(@-2)+1)  T(a—d6+(6+p8)(qg—2)+1)
S D5+ B)g—2)+1)
+ 2 Oéi(ni _ni_l)F(a—5+ (5+ﬁ)(q—2)+1)}>
<1,
where

(¢ — 1)L NI20(5 + 1)4-2

ST+ + g+ 1)72

then the problem (1.1) has a unique solution.

Proof. The inequality f(¢t,z) < —At° implies that M° < —f(t,z(t)). Therefore,
replace f(t,z(t)) by —f(¢,x(t)) in the proof of Theorem 3.2. O

Example 3.1 Consider the following fractional boundary value problem

—D1/3(¢%(D3/2x(t))) = f(t,z(t)), 1l<a<2, te]0,1],
(3.2) DY4z(0) =0, DY4x(1) = %fj DY%(s)ds + § fg DYz (s)ds,

Dew(0) = 0,
Here « = 3/2, 6 = 1/4, 3 =1/3, a1 = 1/2, a3 = 0, a3 = 1/2, mp = 0, m;; = 1/4,
= 1/3,m5 = 1, and f(t,2) — ﬁsinx and w(t) = 1. As [f(t,2)] < w(t) = 1

1 1
and |f(t,z)— f(t,y)] < ?|a7—y|, then (A;) is satisfied with L = = and Ay ~ 0.30 < 1.
Hence, by the conclusion of Theorem 3.1, the boundary value problem (3.2) has a

unique solution on [0, 1].
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