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ABSTRACT. In this paper, by using four functionals fixed point theorem and five functionals fixed

point theorem, we study the existence of at least one positive solution and three positive solutions

respectively of a fourth-order four-point boundary value problem with alternating coefficient on a

time scale. Examples are also included to illustrate our results.
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1. INTRODUCTION

The theory of time scales was introduced by Stefan Hilger [11] in his PhD thesis

in 1988. Theoretically, this new theory has not only unify continuous and discrete

equations, but has also exhibited much more complicated dynamics on time scales.

Moreover, the study of dynamic equations on time scales has led to several important

applications, for example, insect population models, biology, neural networks, heat

transfer, and epidemic models, see [1, 2, 3, 10, 17]. Some preliminary definitions and

theorems on time scales can be found in the books [7, 8] which are excellent references

for the calculus of time scales. Due to the unification of the theory of differential and

difference equations, there have been many investigations working on the existence of

positive solutions to boundary value problems for dynamic equations on time scales

[3, 4, 12, 15, 16, 19, 20].

There have been extensive studies on two-point and multi-point boundary value

problems via many methods- for example [3, 4, 9, 10, 12, 13, 14] and references

therein. In most of these studies, the coefficient function is assumed to be nonnegative.

There is not much studies on multi-point boundary value problems with alternating

coefficient, see [9, 13, 14, 18]. Especially the existence and positive solutions for

fourth-order multi-point boundary value problems with alternating coefficient on time

scales has never been discussed. So this paper fills the gap.

In this paper, we consider the following fourth-order four-point boundary value

problem (BVP)
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









y∆4

(t) = h(t)f(t, y(t)), t ∈ [0, 1] ⊂ T,

y(0) = 0, y(1) = 0,

αy∆2

(ξ1) − βy∆3

(ξ1) = 0, γy∆2

(ξ2) + δy∆3

(ξ2) = 0

(1.1)

where T is a time scale, and h(t) is the alternating coefficient on [0, 1].

Throughout this paper we assume that following conditions hold:

(H1) α, β, γ, δ ≥ 0, 0 < ξ1 < ξ2 < 1, and D = αγ(ξ2 − ξ1) + αδ + γβ > 0.

(H2) h : [0, 1] → R is continuous and such that h(t) ≤ 0, t ∈ [0, ξ1]; h(t) ≥ 0,

t ∈ [ξ1, ξ2]; h(t) ≤ 0, t ∈ [ξ2, 1]. Moreover, it does not vanish identically on any

subinterval of [0, 1].

(H3) f ∈ C([0, 1] × [0,∞) × [0,∞)).

By using four functionals fixed point theorem [5] and five functionals fixed point

theorem [4], we get the existence of at least one positive solution and of at least three

positive solutions respectively.

This work is organized as follows. After this section, we give some preliminary

lemmas. In Section 3, we give our main results Theorems 3.3 and 3.4. Examples are

also given to show our results.

2. PRELIMINARIES

In this section, we present auxiliary lemmas which will be used later.

Lemma 2.1. Assume that the condition (H1) is satisfied. If g ∈ C[0, 1]
{

y∆2

(t) = g(t), t ∈ [0, 1],

αy(ξ1) − βy∆(ξ1) = 0, γy(ξ2) + δy∆(ξ2) = 0

has a unique solution

y(t) = −

∫ 1

0

G(t, s)g(s)∆s, t ∈ [0, 1],

where

G (t, s) =































































s ∈ [0, ξ1],

{

t− s, t ≤ s,

0, s ≤ t,

s ∈ [ξ1, ξ2],
1

D

{

(α(t− ξ1) + β)(γ(ξ2 − s) + δ), t ≤ s,

(α(s− ξ1) + β)(γ(ξ2 − t) + δ), s ≤ t,

s ∈ [ξ2, 1],

{

0, t ≤ s,

s− t, s ≤ t.

(2.1)
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Proof. It is easy to see that G(t, s) satisfies the boundary conditions
{

αy(ξ1) − βy∆(ξ1) = 0,

γy(ξ2) + δy∆(ξ2) = 0.

For each t ∈ [0, 1], we consider three cases:

Case 1 : t ∈ [0, ξ1].

y(t) =

∫ ξ1

t

(s− t)h(s)f(s, y(s))∆s+
1

D

∫ ξ2

ξ1

[α(ξ1 − t) − β][γ(ξ2 − s) + δ]g(s)∆s.

Case 2 : t ∈ [ξ1, ξ2].

y(t) =
1

D

∫ t

ξ1

[α(ξ1 − s) − β][γ(ξ2 − t) + δ]h(s)f(s, y(s))∆s

+
1

D

∫ ξ2

t

[α(ξ1 − t) − β][γ(ξ2 − s) + δ]h(s)f(s, y(s))∆s.

Case 3 : t ∈ [ξ2, 1].

y(t) =
1

D

∫ ξ2

ξ1

[α(ξ1 − s) − β][γ(ξ2 − t) + δ]h(s)f(s, y(s))∆s

+

∫ t

ξ2

(t− s)h(s)f(s, y(s))∆s.

For each of three cases, we get y∆2

(t) = g(t). This completes the proof. �

Lemma 2.2. Assume that (H1) holds. If β ≥ αξ1 and δ ≥ γ(1 − ξ2), then G(t, s) is

nonpositive on [0, 1] × ([0, ξ1] ∪ [ξ2, 1]) and nonnegative on [0, 1] × [ξ1, ξ2].

Proof. The lemma follows from (2.1) immediately. �

Lemma 2.3. Assume that the conditions (H1)–(H3) are satisfied. Then the BVP

(1.1) has a unique solution

y(t) =

∫ 1

0

G1(t, s)

∫ 1

0

G(s, τ)h(τ)f(τ, y(τ))∆τ∆s, t ∈ [0, 1],

where G is defined as in (2.1) and

G1 (t, s) =

{

t(1 − s), t ≤ s,

s(1 − t), s ≤ t.
(2.2)

Proof. Consider the following boundary value problem






y∆2

(t) = −

∫ 1

0

G(t, s)h(s)f(s, y(s))∆s, t ∈ [0, 1],

y(0) = 0, y(1) = 0

(2.3)

The Green’s function associated with the BVP (2.3) is G1(t, s). This completes the

proof. �

Throughout this paper, we assume ω, ν ∈ T with ξ1 < ω < ν < ξ2.
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Lemma 2.4. Under the condition (H1) the Green’s function G1(t, s) satisfies
{

0 ≤ G1(t, s) ≤ G1(s, s) for (t, s) ∈ [0, 1] × [0, 1]

G1(t, s) ≥ kG1(s, s) for (t, s) ∈ [ω, ν] × [0, 1]
(2.4)

where

k = min{ω, 1 − ν}.(2.5)

Proof. From (2.2), one can easily see these inequalities (2.4). �

Lemma 2.5. Let (H1)–(H3) hold. Then the unique solution of BVP (1.1) satisfies

y(t) ≥ k ‖y‖ for t ∈ [ω, ν],

where ‖y‖ = maxt∈[0,1] y(t) and k is as in (2.5).

Proof. We have from (2.4) that for all t ∈ [0, 1]

y(t) ≤

∫ 1

0

G1(s, s)

∫ 1

0

G(s, τ)h(τ)f(τ, y(τ))∆τ∆s,

which implies that

‖y‖ ≤

∫ 1

0

G1(s, s)

∫ 1

0

G(s, τ)h(τ)f(τ, y(τ))∆τ∆s.

Thus for t ∈ [ω, ν],

y(t) =

∫ 1

0

G1(s, s)

∫ 1

0

G(s, τ)h(τ)f(τ, y(τ))∆τ∆s

=

∫ 1

0

G1(t, s)

G1(s, s)
G1(s, s)

∫ 1

0

G(s, τ)h(τ)f(τ, y(τ))∆τ∆s

≥ k

∫ 1

0

G1(s, s)

∫ 1

0

G(s, τ)h(τ)f(τ, y(τ))∆τ∆s

≥ k‖y‖.

�

Lemma 2.6. Assume that (H1)–(H3) hold. If β ≥ αξ1 and δ ≥ γ(1 − ξ2), then the

unique solution y(t) of BVP (1.1) is positive on [0, 1] and concave on [0, 1].

Proof. By Lemma 2.2, Lemma 2.3 and Lemma 2.4, y(t) is positive on [0, 1].

For t ∈ [0, ξ1],

y∆2

(t) =

∫ ξ1

t

(s− t)h(s)f(s, y(s))∆s

+
1

D

∫ ξ2

ξ1

[α(ξ1 − t) − β][γ(ξ2 − s) + δ]h(s)f(s, y(s))∆s ≤ 0.

Similarly, for t ∈ [ξ1, ξ2] and t ∈ [ξ2, 1], we get y∆2

(t) ≤ 0. Hence y(t) is concave on

[0, 1]. �
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We work in the Banach space B = {C[0, 1] : y(0) = y(1) = 0} with the norm

‖y‖ = maxt∈[0,1] y(t). Then define a cone P in B by

P = {y ∈ B : y(t) ≥ 0, y is concave on [0, 1]} .

Define an operator A by

Ay(t) :=

∫ 1

0

G1(t, s)

∫ 1

0

G(s, τ)h(τ)f(τ, y(τ))∆τ∆s, t ∈ [0, 1].

Set

N = −ξ1
∫ ξ1

0
h(τ)∆τ −

∫ 1

ξ2
h(τ)∆τ

+ 1
D

[β + α(ξ2 − ξ1)][δ + γ(ξ2 − ξ1)]
∫ ξ2

ξ1
h(τ)∆τ.

(2.6)

Lemma 2.7. Assume that (H1)–(H3) hold. If β ≥ αξ1 and δ ≥ γ(1 − ξ2), then

Q(α, β, r, R) is bounded and A : Q(α, β, r, R) → P is completely continuous.

Proof. From the definition of A, it is clear that A(P ) ⊂ P . It is obvious that A is

continuous in view of continuity of f , G, and G1. Let Ω ⊂ P be bounded. Then,

there exist positive constant C > 0 such that |f(t, y)| ≤ C, ∀y ∈ Ω. Thus for all

y ∈ Ω, we have

‖Ay‖ = max
t∈[0,1]

Ay(t)

≤ C max
t∈[0,1]

∫ 1

0

G1(t, s)∆smax

[

max
s∈[0,ξ1]

∫ 1

0

G(s, τ)h(τ)∆τ,

max
s∈[ξ1,ξ2]

∫ 1

0

G(s, τ)h(τ)∆τ, max
s∈[ξ2,1]

∫ 1

0

G(s, τ)h(τ)∆τ

]

≤ C max
t∈[0,1]

∫ 1

0

G1(t, s)∆smax

[

max
s∈[0,ξ1]

(
∫ ξ1

s

(s− τ)h(τ)∆τ

+
1

D

∫ ξ2

ξ1

[α(s− ξ1) + β][γ(ξ2 − τ) + δ]h(τ)∆τ

)

,

max
s∈[ξ1,ξ2]

1

D

(
∫ s

ξ1

[α(τ − ξ1) + β][γ(ξ2 − s) + δ]h(τ)∆τ

+

∫ ξ2

s

[α(s− ξ1) + β][γ(ξ2 − τ) + δ]h(τ)∆τ

)

,

max
s∈[ξ2,1]

(

1

D

∫ ξ2

ξ1

[α(τ − ξ1) + β][γ(ξ2 − s) + δ]h(τ)∆τ +

∫ s

ξ2

(τ − s)h(τ)∆τ

)]

≤ C max
t∈[0,1]

∫ 1

0

G1(t, s)∆smax

[
∫ ξ1

0

−τh(τ)∆τ +
1

D

∫ ξ2

ξ1

β[γ(ξ2 − τ) + δ]h(τ)∆τ,

1

D

∫ s

ξ1

[α(τ − ξ1) + β][γ(ξ2 − s) + δ]h(τ)∆τ

+
1

D

∫ ξ2

s

[α(s− ξ1) + β][γ(ξ2 − τ) + δ]h(τ)∆τ,
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1

D

∫ ξ2

ξ1

δ[α(τ − ξ1) + β]h(τ)∆τ +

∫ 1

ξ2

−(1 − τ)h(τ)∆τ

]

≤ C max
t∈[0,1]

∫ 1

0

G1(t, s) max

[
∫ ξ1

0

−τh(τ)∆τ +
1

D
β[γ(ξ2 − ξ1) + δ]

∫ ξ2

ξ1

h(τ)∆τ,

1

D
[α(ξ2 − ξ1) + β][γ(ξ2 − ξ1) + δ]

∫ ξ2

ξ1

h(τ)∆τ,

1

D
δ[α(ξ2 − ξ1) + β]

∫ ξ2

ξ1

h(τ)∆τ −

∫ 1

ξ2

(1 − τ)h(τ)∆τ

]

≤ C max
t∈[0,1]

∫ 1

0

G1(t, s)∆s

[
∫ ξ1

0

−τh(τ)∆τ −

∫ 1

ξ2

(1 − τ)h(τ)∆τ

+
1

D
[α(ξ2 − ξ1) + β][γ(ξ2 − ξ1) + δ]

∫ ξ2

ξ1

h(τ)∆τ

]

≤ C max
t∈[0,1]

∫ 1

0

G1(t, s)∆s

[

− ξ1

∫ ξ1

0

h(τ)∆τ −

∫ 1

ξ2

h(τ)∆τ

+
1

D
[α(ξ2 − ξ1) + β][γ(ξ2 − ξ1) + δ]

∫ ξ2

ξ1

h(τ)∆τ

]

≤ CN max
t∈[0,1]

∫ 1

0

G1(t, s)∆s,

which implies that the operator A is uniformly bounded.

In addition, for t1, t2 ∈ [0, 1], we have

|Ay(t1) − Ay(t2)| = |

∫ 1

0

G1(t1, s)

∫ 1

0

G(s, τ)h(τ)f(τ, y(τ))∆τ∆s

−

∫ 1

0

G1(t2, s)

∫ 1

0

G(s, τ)h(τ)f(τ, y(τ))∆τ∆s|

≤ CN

∫ 1

0

|G1(t1, s) −G1(t2, s)|∆s

which implies that A is equicontinuous on [0, 1]. Thus, by the Arzela-Ascoli Theorem,

A : P → P is completely continuous. �

3. MAIN RESULTS

In this section, we discuss the existence of at least one positive solution and

three positive solutions for the BVP (1.1) by using Theorem 3.1 and Theorem 3.2

respectively.

Let α, ψ be nonnegative continuous concave functionals on P , and β and θ be

nonnegative continuous convex functionals on P . Then for positive numbers r, j, l

and R, we define the sets

Q(α, β, r, R) = {y ∈ P : r ≤ α(y), β(y) ≤ R},
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U(ψ, l) = {y ∈ Q(α, β, r, R) : l ≤ ψ(y)} ,

V (θ, v) = {y ∈ Q(α, β, r, R) : θ(y) ≤ v} .

Theorem 3.1 (Four Functionals Fixed Point Theorem [5]). If P is a cone in a real

Banach space B, α and ψ are nonnegative continuous concave functionals on P , β and

θ are nonnegative continuous convex functionals on P , and there exist nonnegative

positive numbers r, l, v and R such that

A : Q(α, β, r, R) → P

is a completely continuous operator, and Q(α, β, r, R) is a bounded set. If

(i) {y ∈ U(ψ, l) : β(x) < R} ∩ {y ∈ V (θ, v) : r < α(y)} 6= ∅,

(ii) α(Ay) ≥ r, for all y ∈ Q(α, β, r, R), with α(y) = r and v < θ(Ay),

(iii) α(Ay) ≥ r, for all y ∈ V (θ, v), with α(y) = r,

(iv) β(Ay) ≤ R, for all y ∈ Q(α, β, r, R), with β(y) = R and ψ(Ay) < l,

(v) β(Ay) ≤ R, for all y ∈ U(ψ, l), with β(y) = R,

then A has a fixed point in y in Q(α, β, r, R).

We are now in a position to present the five functionals fixed point theorem.

Let γ, β, θ be nonnegative continuous convex functionals on P and α, ϕ nonnegative

continuous concave functionals on P . For nonnegative numbers h, a, b, d, and c, define

the following convex sets:

P (γ, c) = {x ∈ P : γ(x) < c},

P (γ, α, a, c) = {x ∈ P : a ≤ α(x), γ(x) ≤ c},

Q(γ, β, d, c) = {x ∈ P : β(x) ≤ d, γ(x) ≤ c},

P (γ, θ, α, a, b, c) = {x ∈ P : a ≤ α(x), θ(x) ≤ b, γ(x) ≤ c}.

Theorem 3.2 (Five Functionals Fixed Point Theorem [4]). Let P be a cone in a real

Banach space B. Suppose that there exist nonnegative numbers r and M , nonnegative

continuous concave functionals α and ϕ on P , and nonnegative continuous convex

functionals γ, β, and θ on P , with

α(x) ≤ β(x), ‖x‖ ≤Mγ(x), ∀x ∈ P (γ, c).

Suppose that A : P (γ, r) → P (γ, r) is completely continuous and there exist nonneg-

ative numbers h, a, k, b with 0 < p < q such that

(i) {x ∈ P (γ, θ, α, q, v, r) : α(x) > q} 6= ∅ and α(A(x)) > q for x ∈ Q(γ, θ, α, q, v, r),

(ii) {x ∈ P (γ, β, ϕ, h, p, r) : β(x) < p} 6= ∅ and β(A(x)) < p for x ∈ Q(γ, β, ϕ, h, p, r),

(iii) α(Ax) > q for x ∈ P (γ, α, q, r) with θ(Ax) > v,

(iv) β(Ax) < p for x ∈ Q(γ, β, p, r) with ϕ(Ax) < h,



320 I. Y. KARACA

then A has at least three fixed points x1, x2, x3 ∈ P (γ, r) such that

β(x1) < p, α(x2) > q, β(x3) > p,with α(x3) < q.

Set

M = max{M1,M2},

where

M1 = βδ

∫ ξ2

ξ1

G1(ω, s)

∫ ν

ω

h(τ)∆τ∆s,

M2 = βδ

∫ ξ2

ξ1

G1(ν, s)

∫ ν

ω

h(τ)∆τ∆s.

Let k and N be as in (2.5), (2.6), respectively.

Theorem 3.3. Let β ≥ αξ1 and δ ≥ γ(1 − ξ2). Assume that (H1) − (H3) hold,

if there exist constant r, l, v, R with v ≥ max{2l, r
k
}, l > r, R > max{2l, l

k
}, and

suppose that f(t, y) satisfies the following conditions:

(i) f(t, y) ≤ R
N

[

maxt∈[0,1]

∫ 1

0
G1(t, s)∆s

]

−1

, (t, y) ∈ [0, 1] × [0, R],

(ii) f(t, y) ≥ r
M

, (t, y) ∈ [ω, ν] × [r, v],

then the boundary value problem (1.1) has a fixed point y ∈ P such that

min
t∈[ω,ν]

y(t) ≥ r, max
t∈[ω,ν]

y(t) ≤ R.

Proof. The BVP (1.1) has a solution y = y(t) if and only if y solves the operator equa-

tion y = Ay. Thus we set out to verify that the operator A satisfies four functionals

fixed point theorem which will prove the existence of a fixed point of A.

Define maps

α(y) = ψ(y) = min
t∈[ω,ν]

y(t),

β(y) = max
t∈[0,1]

y(t), θ(y) = max
t∈[ω,ν]

y(t).

To check condition (i) of Theorem 3.1, we choose y(t) = 2l, 0 ≤ t ≤ 1. It is easy

to see that ψ(y) ≥ l, β(y) < R, θ(y) ≤ v and α(y) > r. So, y ∈ {y ∈ U(ψ, l) : β(y) <

R} ∩ {y ∈ V (θ, v) : r < α(y)} 6= ∅ which means that (i) in Theorem 3.1 is satisfied.

For all y ∈ Q(α, β, r, R), with α(y) = r and v < θ(Ay), from Lemma 2.5, we have

α(Ay) = min
t∈[ω,ν]

Ay(t) ≥ k‖Ay‖ ≥ kθ(Ay) > kv ≥ r.

For all y ∈ Q(α, β, r, R) with β(y) = R and ψ(Ay) < l,

β(Ay) ≤
1

k
min

t∈[ω,ν]
Ay(t) =

1

k
ψ(Ay) <

l

k
< R.

Hence (ii) and (iv) in Theorem 3.1 are hold.

For any y ∈ V (θ, v) with α(y) = r,
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Case 1 :

α(Ay) = Ay(ω) =

∫ 1

0

G1(ω, s)

∫ 1

0

G(s, τ)f(τ, y(τ))h(τ)∆τ∆s

> βδ

∫ ξ2

ξ1

G1(ω, s)

∫ ν

ω

f(τ, y(τ))h(τ)∆τ∆s

≥
r

M
βδ

∫ ξ2

ξ1

G1(ω, s)

∫ ν

ω

h(τ)∆τ∆s

=
r

M
M1 ≥ r.

Case 2 :

α(Ay) = Ay(ν) =

∫ 1

0

G1(ν, s)

∫ 1

0

G(s, τ)f(τ, y(τ))h(τ)∆τ∆s

> βδ

∫ ξ2

ξ1

G1(ν, s)

∫ ν

ω

f(τ, y(τ))h(τ)∆τ∆s

≥
r

M
βδ

∫ ξ2

ξ1

G1(ν, s)

∫ ν

ω

h(τ)∆τ∆s

=
r

M
M2 ≥ r.

And for all y ∈ U(ψ, l) with β(y) = R,

β(Ay) = max
t∈[0,1]

∫ 1

0

G1(t, s)

∫ 1

0

G(s, τ)f(τ, y(τ))h(τ)∆τ∆s

≤
R

N maxt∈[0,1]

∫ 1

0
G1(t, s)∆s

max
t∈[0,1]

∫ 1

0

G1(t, s)

∫ 1

0

G(s, τ)h(τ)∆τ∆s

≤
R

N maxt∈[0,1]

∫ 1

0
G1(t, s)∆s

max
t∈[0,1]

∫ 1

0

G1(t, s)∆s[−ξ1

∫ ξ1

0

h(τ)∆τ

−

∫ 1

ξ2

h(τ)∆τ +
1

D
[β + α(ξ2 − ξ1)][δ + γ(ξ2 − ξ1)]

∫ ξ2

ξ1

h(τ)∆τ ]

≤ N
R

N maxt∈[0,1]

∫ 1

0
G1(t, s)∆s

max
t∈[0,1]

∫ 1

0

G1(t, s)∆s = R.

Hence (iii) and (v) in Theorem 3.1 hold. Thus, all the conditions of Theorem 3.1 are

satisfied. A has a fixed point y ∈ Q(α, β, r, R). Therefore, the BVP (1.1) has at least

one positive solution y ∈ P such that

min
t∈[ω,ν]

y(t) ≥ r, max
t∈[ω,ν]

y(t) ≤ R.

�

Theorem 3.4. Let β ≥ αξ1 and δ ≥ γ(1 − ξ2). Assume that (H1), (H2), and (H3)

hold. If there exist constants p, q, r, v with v ≥ max{2q, q

k
}, h ≤ min{kp, p

2
}, 2q ≤ r,

p < q further suppose that f(t, y) satisfies the following conditions:
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(B1) f(t, y) < p

N

[

maxt∈[0,1]

∫ 1

0
G1(t, s)∆s

]

−1

, (t, y) ∈ [0, 1] × [0, p],

(B2) f(t, y) > q

M
, (t, y) ∈ [ω, ν] × [q, v],

(B3) f(t, y) ≤ r
N

[

maxt∈[0,1]

∫ 1

0
G1(t, s)∆s

]

−1

, (t, y) ∈ [0, 1] × [0, r],

then the BVP (1.1) has at least three positive solutions y1 y2 and y3 such that

max
t∈[ω,ν]

y1(t) < p < max
t∈[ω,ν]

y3(t), min
t∈[ω,ν]

y3(t) < q < min
t∈[ω,ν]

y2(t).

Proof. Define the maps

α(y) = ϕ(y) = min
t∈[ω,ν]

y(t), β(y) = θ(y) = max
t∈[ω,ν]

y(t), γ(y) = max
t∈[0,1]

y(t).

It is clear that

α(y) ≤ β(y), ‖y‖ ≤ γ(y), ∀y ∈ P (γ, r).

From Lemma 2.7, we obtain that A : P (γ, r) → P is completely continuous. Thus,

we only need to show that A : P (γ, r) → P (γ, r). Let y ∈ P (γ, r), then from (B3)

we have

γ(Ay) = max
t∈[0,1]

Ay(t)

≤
r

N maxt∈[0,1]

∫ 1

0
G1(t, s)∆s

max
t∈[0,1]

∫ 1

0

G1(t, s)∆s[−ξ1

∫ ξ1

0

h(τ)∆τ

−

∫ 1

ξ2

h(τ)∆τ +
1

D
[β + α(ξ2 − ξ1)][δ + γ(ξ2 − ξ1)]

∫ ξ2

ξ1

h(τ)∆τ ]

≤ N
r

N maxt∈[0,1]

∫ 1

0
G1(t, s)∆s

max
t∈[0,1]

∫ 1

0

G1(t, s)∆s = r

which implies that A(P (γ, r)) ⊂ P (γ, r).

We take y(t) = 2q, t ∈ [0, 1]. It is easy to see that y(t) ∈ P, α(y) > q,

θ(y) ≤ v and γ(y) ≤ r. That is {y ∈ P(γ, θ, α, q, v, r) : α(y) > q} 6= ∅. For

y ∈ P (γ, θ, α, q, v, r), we have, by condition (B2),

Case 1 :

α(Ay) = (Ay)(ω) > βδ

∫ ξ2

ξ1

G1(ω, s)

∫ ν

ω

f(τ, y(τ))h(τ)∆τ∆s

>
q

M
βδ

∫ ξ2

ξ1

G1(ω, s)

∫ ν

ω

h(τ)∆τ∆s

=
q

M
M1 ≥ q.

Case 2 :

α(Ay) = (Ay)(ν) > βδ

∫ ξ2

ξ1

G1(ν, s)

∫ ν

ω

h(τ)f(τ, y(τ))∆τ∆s

>
q

M
βδ

∫ ξ2

ξ1

G1(ν, s)

∫ ν

ω

h(τ)∆τ∆s
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=
q

M
M2 ≥ q.

So, α(Ay) > q. Hence, condition (i) of Theorem 3.2 holds. We take y(t) = p

2
. It

is easy to see that y(t) ∈ P, β(y) < p, ϕ(y) ≥ h and γ(y) ≤ r. That is {y ∈

P(α, β, ϕ, h, p, r) : β(y) < p} 6= ∅.

By condition (B1), we get for y ∈ Q(γ, β, ϕ, h, p, r),

β(Ay) = max
t∈[ω,ν]

∫ 1

0

G1(t, s)

∫ 1

0

G(s, τ)h(τ)f(τ, y(τ))∆τ∆s

≤
p

N maxt∈[0,1]

∫ 1

0
G1(t, s)∆s

max
t∈[0,1]

∫ 1

0

G1(t, s)∆s[−ξ1

∫ ξ1

0

h(τ)∆τ

−

∫ 1

ξ2

h(τ)∆τ +
1

D
[β + α(ξ2 − ξ1)][δ + γ(ξ2 − ξ1)]

∫ ξ2

ξ1

h(τ)∆τ ]

≤ N
p

N maxt∈[0,1]

∫ 1

0
G1(t, s)∆s

max
t∈[ω,ν]

∫ 1

0

G1(t, s)∆s < p.

Thus, condition (ii) of Theorem 3.2 is satisfied.

On the other hand, for y ∈ P (γ, α, q, r) with θ(Ay) > v, we have

α(Ay) = min
t∈[ω,ν]

Ay(t) ≥ k‖Ay‖ ≥ kθ(Ay) > kv ≥ q.

For y ∈ P (γ, β, p, r) with ϕ(Ay) < h, we can obtain

β(Ay) ≤
1

k
min

t∈[ω,ν]
Ay(t) =

1

k
ψ(Ay) <

h

k
≤ p.

Thus, (iii) and (iv) in Theorem 3.2 hold.

So, by Theorem 3.2, we obtain that the BVP (1.1) has at least three positive

solutions y1, y2, y3 ∈ P (γ, r) such that

max
t∈[ω,ν]

y1(t) < p < max
t∈[ω,ν]

y3(t), min
t∈[ω,ν]

y3(t) < q < max
t∈[ω,ν]

y2(t).

�

4. EXAMPLES

We illustrate Theorem 3.3 with specific time scale T = {2−n : n ∈ N
+} ∪ {0} ∪

[1, 2]. Consider the boundary value problem:















y∆4

(t) = h(t)f(t, y(t)), t ∈ [0, 1],

y(0) = 0, y(1) = 0,

4y∆2

(
1

16
) − 2y∆3

(
1

16
) = 0, 6y∆2

(
1

2
) + 5y∆3

(
1

2
) = 0,

(4.1)
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where f(t, y) = 2
19

(68y − 65), ξ1 = 1
16

, ξ2 = 1
2
, ω = 1

8
, ν = 1

4
, α = 4, β = 2, γ = 6,

δ = 5,

h(t) =































−1, t ∈ [0,
1

16
],

1, t ∈ [
1

16
,
1

2
],

−1, t ∈ [
1

2
, 1]

After some calculation, we have

M = M2 =
315

4096
, M1 =

415

8192
, N =

3474

4352
, k =

1

8
.

Choose r = 1, l = 2, v = 10, R = 20.

Consequently f satisfies

f(t, y) ≤ 150 < 150.3281 =
6R

N
, (t, y) ∈ [0, 1] × [0, 20],

f(t, y) ≥ 14 > 13.0031 =
r

M
, (t, y) ∈ [

1

8
,
1

4
] × [1, 10].

Then all conditions of Theorem 3.3 hold. Thus, with Theorem 3.3, problem (4.1) has

a fixed point y ∈ P such that

min
t∈[ 1

8
, 1
4
]
y(t) ≥ 1, max

t∈[ 1
8
, 1
4
]
y(t) ≤ 20.

Example 4.2 We illustrate Theorem 3.4 with specific time scale T = {n+1
10

: n ∈ N}.

Consider the boundary value problem:






















y∆4

(t) = h(t)f(t, y(t)), t ∈ [0, 1],

y(0) = 0, y(1) = 0,

1

4
y∆2

(
1

5
) − 10y∆3

(
1

5
) = 0,

1

2
y∆2

(
1

2
) + 20y∆3

(
1

2
) = 0,

(4.2)

where f(t, y) = 5y, ξ1 = 1
5
, ξ2 = 1

2
, ω = 1

4
, ν = 1

3
, α = 1

4
, β = 10, γ = 1

2
, δ = 20,

h(t) =































−2, t ∈ [0,
1

5
],

t, t ∈ [
1

5
,
1

2
],

−1, t ∈ [
1

2
, 1],

It follows from a direct calculation that

M1 =
377

1920
, M = M2 =

21315

97200
, N =

2393161

1606000
, k =

1

4
.

Choose p = 1
2
, q = 1, r = 4, v = 5.
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Consequently f satisfies

f(t, y) ≤
5

2
< 2.68431 =

8p

N
, (t, y) ∈ [0, 1] × [0,

1

2
],

f(t, y) ≥ 5 > 4.5601 =
q

M
, (t, y) ∈ [

1

4
,
1

3
] × [1, 5],

f(t, y) ≤ 20 < 21.4745 =
8r

N
, (t, y) ∈ [0, 1] × [0, 4].

Then all conditions of Theorem 3.4 hold. Thus, with Theorem 3.4, problem (4.2) has

a fixed point y ∈ P such that

max
t∈[ 1

4
, 1
3
]
y1(t) <

1

2
< max

t∈[ 1
4
, 1
3
]
y3(t), min

t∈[ 1
4
, 1
3
]
y3(t) < 1 < min

t∈[ 3
2
, 5
2
]
y2(t).
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