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ABSTRACT. In this paper we consider an n-dimentional thermoelastic system of second sound

with viscoelastic damping. We establish an explicit and general decay rate result without imposing

restrictive assumptions on the behavior of the relaxation function at infinity. Our result allows a

larger class of ralxation functions and generalizes previous results existing in the literature.
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1. INTRODUCTION

In this paper we are concerned with the following problem

(1.1)






























utt − µ∆u − (µ + λ)∇(div u) +
∫ t

0
g(t − s)∆u(s)ds + β∇θ = 0, in Ω × (0,∞)

bθt + k div q + β div ut = 0, in Ω × (0,∞)

τqt + q + k∇θ = 0, in Ω × (0,∞)

u(x, t) = θ(x, t) = 0, on ∂Ω × (0,∞)

u(x, 0) = u0(x), ut(x, 0) = u1(x), θ(x, 0) = θ0(x), q(x, 0) = q0(x), x ∈ Ω,

a memory-type thermoelastic system of second sound associated with homogeneous

Dirichlet boundary conditions and initial data in suitable function spaces. Here Ω is

a bounded domain of R
n (n ≥ 2) with a smooth boundary ∂Ω, u = u(x, t) ∈ R

n is

the displacement vector, θ = θ(x, t) is the difference temperature, q = q(x, t) is the

heat flux vector, and the relaxation function g is a positive nonincreasing function.

The coefficients b, k, β, µ, λ, τ are positive constants, where τ is the thermal relaxation

time and µ, λ are Lame moduli. In this work, we study the decay properties of the

solutions of (1.1) for functions g of general-type decay.

In classical thermoelasticity, the heat conduction is governed by the Fourier’s law,

which means that the heat flux is proportional to the gradient of temperature. This

theory predicts an infinite speed of heat propagation; that is any thermal disturbance
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at one point has an instantaneous effect elsewhere in the body. Experiments showed

that heat conduction in some dielectric crystals at low temperatures is free of this

paradox and disturbances, which are almost entirely thermal, propagate in a finite

speed. Also, for some applications like working with very short laser pulses in laser

cleaning of computer chips, it is worthwhile thinking of another model removing this

paradox, but still keeping the essentials of a heat conduction process. To overcome this

physical paradox, many theories have merged. One of which, called thermoelasticity

with second sound, suggests the replacement of Fourier’s law by so called Cattaneo’s

law. The third equation of system (1.1) represents Cattaneo’s law of heat conduction

modeling thermal disturbances as wave-like pulses traveling at finite speed. Here,

if τ = 0, we obtain a classical thermoelastic system. For a discussion of the model

of thermoelasticity with second sound, we refer to [2, 3, 7, 19], and for classical

thermoelasticity, we refer to books by Jiang and Racke [6] and Zheng [21].

Results concerning existence and asymptotic behavior of smooth as well as weak

solutions in thermoelasticity with second sound have been established by many math-

ematicians. Tarabek [20] treated problems related to

(1.2)











utt − a(ux, θ, q)uxx + b(ux, θ, q)θx = α1(ux, θ)qqx

θt + g(ux, θ, q)qx + d(ux, θ, q)utx = α2(ux, θ)qqt

τ(ux, θ)qt + q + k(ux, θ)θx = 0

in both bounded and unbounded situations and established global existence results

for small initial data. He also showed that the classical solutions tend to equilibrium

as t tends to infinity; however, no rate of decay has been discussed. In his work,

Tarabek used the usual energy argument and exploited some relations from the second

law of thermodynamics to overcome the difficulty arising from the lack of Poincare’s

inequality in the unbounded domains.

Racke [16] discussed lately (1.2) and established uniform decay results for several

linear and nonlinear initial boundary value problems. In particular, he studied (1.2),

with α1 = α2 = 0, for a rigidly clamped medium with temperature hold constant on

the boundary, and showed that, for small enough initial data, classical solutions decay

exponentially to the equilibrium state. Messaoudi and Said-Houari [13] extended the

decay result of [16] to the case when α1 6= 0 and α2 6= 0. Irmscher and Racke [5]

obtained explicit sharp exponential decay rates for solutions of the system of classical

thermoelasticity as well as for that of thermoelasticity with second sound in one

dimension and compared the results of both models with respect to the asymptotic

behavior of solutions. Recently, Qin et al. [15] considered a one-dimensional nonlinear

system of thermoelasticity with thermal memory and second sound and proved global

existence and exponential decay of solution provided that the initial data are close to

equilibrium and the relaxation function decays exponentially. Also, Racke and Wang
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[18] considered a nonlinear one-dimensional Cauchy problem of thermoelasticity with

second sound, discussed the well-posedness and described the long-time behavior of

the global small solutions, obtaining a polynomial decay rate.

In the multi-dimensional case the situation is much different where the dissipation

given by heat conduction is not in general strong enough to produce uniform rate of

decay to the solution as in the one-dimensional case. The exponential rate of decay

in two or three dimensional space was obtained by Racke [17] under the conditions

rotu = rotq = 0. This applies automatically to the radially symmetric solution,

since it is only a special case. Messaoudi [8] investigated (1.1), in the absence of the

viscoelastic term and the presence of a source term in the first equation, and proved a

local existence, as well as, a blow up result for solutions with negative initial energy.

This result was later extended to certain solutions with positive energy by Messaoudi

and Said-Houari [12].

Although the dissipative effects of heat conduction induced by Cattaneo’s law

are usually weaker than those induced by Fourier’s law, but the results mentioned

above nourish the expectation that always both models lead to exponential stability

(or both do not). In general, this is not true, where it was shown by Fernández Sare

and Racke [4] that, for a Timoshenko system, the coupling via Cattaneo’s law causes

loss of the exponential decay usually obtained in the case of coupling via Fourier’s

law [14]. They also proved that this surprising result holds even for Timoshenko

systems with history. In the presence of an extra frictional damping, Messaoudi et al.

[11] established exponential decay results for several linear and nonlinear Timoshenko

systems of thermoelasticity with second sound.

Regarding viscoelastic damping, we mention the works of Messaoudi and Al-

Shehri who treated an n-dimensional classical thermoelasticity in [9] and thermoe-

lasticity with second sound in [10] both subject to boundary conditions of memory

type. If g is the relaxation function and f is the resolvent kernel of −g′

g(0)
, they showed

in [9] that the energy decays at the same rate as of (−f ′), while, in [10], when (−f ′)

decays exponentially, the energy decays at a polynomial rate.

Our aim in this work is to investigate (1.1) and obtain a general relation between

the decay rate for the energy and that of the relaxation function g without imposing

restrictive assumptions on the behavior of g at infinity. In this paper, we provide

an explicit energy decay formula that allows a wider class of functions g which are

not necessarily of exponential or polynomial-type decay. The proof is based on the

multiplier method and makes use of some properties of convex functions including the

use of the general Young’s inequality and Jensen’s inequality. The paper is organized

as follows. In section 2, we present some notation and material needed for our work.

Some technical lemmas and the proof of our main result will be given in section 3.
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2. PRELIMINARIES

In the sequel we consider (u, θ, q) to be a solution of system (1.1) with the reg-

ularity needed to justify the calculations in this paper. Throughout this paper, c is

used to denote a generic positive constant. We also consider the following assumption

(A) g : R+ → R+ is a C1 function satisfying

(2.1) g(0) > 0, µ −
∫ +∞

0

g(s)ds = l > 0

and there exists a positive function H ∈ C1(R+), with H(0) = 0, and H is linear or

strictly increasing and strictly convex C2 function on (0, r], r < 1, such that

g′(t) ≤ −H(g(t)), ∀t > 0.

Now, we introduce the first and second order energy functionals

E1(t) :=
1

2

∫

Ω

(

|ut|2 + (µ −
∫ t

0

g(s)ds) |∇u|2 + (µ + λ)(div u)2 + bθ2 + τ |q|2
)

dx

+
1

2
(g ◦ ∇u)(t)

and

E2(t) :=
1

2

∫

Ω

(

|utt|2 + (µ −
∫ t

0

g(s)ds) |∇ut|2 + (µ + λ)(div ut)
2 + bθ2

t + τ |qt|2
)

dx

+
1

2
(g ◦ ∇ut)(t)

where |∇u|2 =
∑n

i=1 |∇ui|2 and

(g ◦ v)(t) =

∫

Ω

∫ t

0

g(t − s) |v(t) − v(s)|2 ds dx.

By multiplying the first equation in (1.1) by ut, the second equation by θ, and the

third equation by q, adding the resulting equations, and integrating over Ω, we obtain

(2.2) E ′

1(t) = −
∫

Ω

|q|2 dx +
1

2
(g′ ◦ ∇u) − 1

2
g(t)

∫

Ω

|∇u|2 dx.

Then, hypothesis (A) implies that E1 is a nonincreasing function of t. Differentiating

the first three equations in (1.1) with respect to t and assuming throughout the paper

that u0 ≡ 0, we get by similar calculations

(2.3) E ′

2(t) ≤ −
∫

Ω

|qt|2 dx ≤ 0.

Our main stability result is the following

Theorem 2.1. Assume that (A) holds. Then there exist positive constants C, K, t1

and ε0 such that
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(I) In the special case H(t) = ctp, where 1 ≤ p < 3
2
, the solution of (1.1) satisfies

E1(t) ≤
C

t
1

2p−1

∀t ≥ t1.

(II) In the general case, the solution of (1.1) satisfies

(2.4) E1(t) ≤ H−1
1

(

K

t

)

∀t ≥ t1,

where

H1(t) = tH ′

0(ε0t) and H0(t) = H(D(t))

provided that D is a positive C1 function, with D(0) = 0, for which H0 is strictly

increasing and strictly convex C2 function on (0, r] and

(2.5)

∫ +∞

0

g(s)

H−1
0 (−g′(s))

ds < +∞.

Remarks.

1. Theorem 2.1 ensures

lim
t→+∞

E1(t) = 0

with an explicit formula for the decay rate of the energy. Our result is obtained under

very general hypotheses on the relaxation function g that allow to deal with a much

wider class of functions g.

2. The usual case of treating a relaxation function g that satisfies (2.1) and g′ ≤ −kgp,

1 ≤ p < 3/2, is a special case of our more general result. We will provide a proof for

this special case.

3. The condition g′ ≤ −kgp, 1 ≤ p < 3/2 assumes g(t) ≤ ωe−kt when p = 1 and

g(t) ≤ ω

t
1

p−1

when 1 < p < 3/2. Our result allows relaxation functions which are not

necessarily of exponential or polynomial decay. For instance, if

g(t) = a exp(−
√

t)

and a is chosen so that g satisfies (2.1), then g′(t) = −H(g(t)) where

H(t) =
t

2 ln(a/t)
.

Since

H ′(t) =
ln

(

a
t

)

+ 1

2
[

ln
(

a
t

)]2 and H ′′(t) =
ln

(

a
t

)

+ 2

2t
[

ln
(

a
t

)]3 ,

then the function H satisfies hypothesis (A) on the interval (0, r] for any 0 < r < a.

Also, by taking D(t) = tα, (2.5) is satisfied for any α > 1. Therefore, an explicit rate

of decay can be obtained by Theorem 2.1. The function H0(t) = H(tα) has derivative

H ′

0(t) =
αtα−1

[

1 + ln
(

a
tα

)]

2
[

ln
(

a
tα

)]2
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Then, we do some direct calculations and use (2.4) to deduce that E1(t) ≤ Cα/t
1

2α ,

for any α > 1. Therefore, taking α → 1, the energy decays at the following rate

E1(t) ≤
C

t
1

2

.

4. The well-known Jensen’s inequality will be of essential use in establishing our main

result. If F is a convex function on [a, b], f : Ω → [a, b] and h are integrable functions

on Ω, h(x) ≥ 0, and
∫

Ω
h(x)dx = k > 0, then Jensen’s inequality states that

F

[

1

k

∫

Ω

f(x)h(x)dx

]

≤ 1

k

∫

Ω

F [f(x)]h(x)dx.

5. By (A), we easily deduce that limt→+∞ g(t) = 0. This implies that lim
t→+∞

(−g′(t))

cannot be equal to a positive number, and so it is natural to assume that lim
t→+∞

(−g′(t)) =

0. Hence, there is t1 > 0 large enough such that g(t1) > 0 and

(2.6) max{g(t),−g′(t)} < min{r, H(r), H0(r)}, ∀ t ≥ t1.

As g is nonincreasing, g(0) > 0 and g(t1) > 0, then g(t) > 0 for any t ∈ [0, t1] and

0 < g(t1) ≤ g(t) ≤ g(0), ∀ t ∈ [0, t1].

Therefore, since H is a positive continuous function, then

a ≤ H(g(t)) ≤ b, ∀ t ∈ [0, t1]

for some positive constants a and b. Consequently, for all t ∈ [0, t1],

g′(t) ≤ −H(g(t)) ≤ −a = − a

g(0)
g(0) ≤ − a

g(0)
g(t)

which gives, for some positive constant d,

(2.7) g′(t) ≤ −dg(t), ∀ t ∈ [0, t1].

3. PROOF OF THE MAIN RESULT

In this section we prove Theorem 2.1. For this purpose, we establish several

lemmas.

Lemma 3.1. Under the assumption (A), the functional

K1(t) :=

∫

Ω

u · utdx

satisfies, along the solution of (1.1), the estimate

K ′

1(t) ≤ − l

2

∫

Ω

|∇u|2 dx − (µ + λ)

∫

Ω

(div u)2dx

+

∫

Ω

|ut|2 dx + c

∫

Ω

|∇θ|2 dx + c(g ◦ ∇u)(t).(3.1)
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Proof. Direct computations, using (1.1) and (2.1), yield

K ′

1(t) =

∫

Ω

(

|ut|2 + µu · ∆u + (µ + λ)u · ∇(div u) − βu · ∇θ
)

dx

−
∫

Ω

∫ t

0

g(t− s)u(t) · ∆u(s)ds dx

≤
∫

Ω

(

|ut|2 − l |∇u|2 − (µ + λ)(div u)2 − βu · ∇θ
)

dx

∫

Ω

∫ t

0

g(t− s)∇u(t) · (∇u(s) −∇u(t))ds dx.

By Young’s and Poincaré’s inequalities, we obtain

K ′

1(t) ≤
∫

Ω

(

|ut|2 − l |∇u|2 − (µ + λ)(div u)2
)

dx + δ

∫

Ω

|u|2 dx +
β2

4δ

∫

Ω

|∇θ|2 dx

+δ

(
∫ t

0

g(s)ds

)
∫

Ω

|∇u|2 dx +
1

4δ

∫

Ω

∫ t

0

g(t − s) |∇u(s) −∇u(t)|2 ds dx

≤
∫

Ω

(

|ut|2 − l |∇u|2 − (µ + λ)(div u)2
)

dx + δc

∫

Ω

|∇u|2 dx +
β2

4δ

∫

Ω

|∇θ|2 dx

+δµ

∫

Ω

|∇u|2 dx +
1

4δ
(g ◦ ∇u)(t)

which, by choosing δ small enough, gives (3.1).

Lemma 3.2. Under the assumption (A), the functional

K2(t) := −
∫

Ω

ut(t) ·
∫ t

0

g(t− s)(u(t) − u(s))ds dx

satisfies for any 0 < δ < 1, along the solution of (1.1), the estimate

K ′

2(t) ≤ −
(

∫ t

0

g(s)ds − δ

)
∫

Ω

|ut|2 dx + δ

∫

Ω

|∇u|2 dx

+
c

δ
(g ◦ ∇u)(t) − c

δ
(g′ ◦ ∇u)(t) + c

∫

Ω

|∇θ|2 dx.(3.2)

Proof. By exploiting equations (1.1) and integrating by parts, we have

K ′

2(t) = µ

∫

Ω

∫ t

0

g(t − s)∇u(t) · (∇u(t) −∇u(s))ds dx

+(µ + λ)

∫

Ω

∫ t

0

g(t − s)(div[u(t)])(div[u(t) − u(s)])ds dx

+β

∫

Ω

∫ t

0

g(t − s)∇θ(t) · (u(t) − u(s))ds dx

−
∫

Ω

(
∫ t

0

g(t− s)∇u(s)ds

)

·
(

∫ t

0

g(t − s)(∇u(t) −∇u(s))ds

)

dx

−
∫

Ω

∫ t

0

g′(t − s)ut(t) · (u(t) − u(s))ds dx−
(

∫ t

0

g(s)ds

)
∫

Ω

|ut|2 dx.(3.3)
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Using Cauchy-Schwarz and Young’s inequalities, we obtain

µ

∫

Ω

∫ t

0

g(t − s)∇u(t) · (∇u(t) −∇u(s))ds dx

−
∫

Ω

(
∫ t

0

g(t − s)∇u(s)ds

)

·
(

∫ t

0

g(t− s)(∇u(t) −∇u(s))ds

)

dx

=

(

µ −
∫ t

0

g(s)ds

)
∫

Ω

∫ t

0

g(t − s)∇u(t) · (∇u(t) −∇u(s))ds dx

+

∫

Ω

∣

∣

∣

∣

∫ t

0

g(t− s)(∇u(t) −∇u(s))ds

∣

∣

∣

∣

2

dx

≤ δ

2

∫

Ω

|∇u|2 dx +
c

δ
(g ◦ ∇u)(t).(3.4)

Also, the use of Young’s and Poincaré’s inequalities gives

+ (µ + λ)

∫

Ω

∫ t

0

g(t − s)(div[u(t)])(div[u(t) − u(s)])ds dx

+ β

∫

Ω

∫ t

0

g(t − s)∇θ(t) · (u(t) − u(s))ds dx

−
∫

Ω

∫ t

0

g′(t − s)ut(t) · (u(t) − u(s))ds dx

≤ δ

2

∫

Ω

|∇u|2 dx + δ

∫

Ω

|ut|2 dx +
c

δ
(g ◦ ∇u)(t)

− c

δ
(g′ ◦ ∇u)(t) + c

∫

Ω

|∇θ|2 dx.(3.5)

Combining (3.3)–(3.5), (3.2) is established.

Proof of Theorem 2.1. Taking E(t) = E1(t) + E2(t) and N1, N2 > 0, we define

L(t) := N1E(t) + K1(t) + N2K2(t)

and let g1 =
∫ t1

0
g(s)ds > 0, where t1 was introduced in (2.6). By combining (2.2),

(2.3), (3.1), (3.2) and taking δ = l/(4N2), we obtain, for all t ≥ t1,

L′(t) ≤ −N1

∫

Ω

|q|2 dx − N1

∫

Ω

|qt|2 dx − l

4

∫

Ω

|∇u|2 dx

− (N2g1 −
l

4
− 1)

∫

Ω

|ut|2 dx − (µ + λ)

∫

Ω

(div u)2dx

+ (c + cN2)

∫

Ω

|∇θ|2 dx

+

(

4c

l
N2

2 + c

)

(g ◦ ∇u)(t)

+

(

1

2
N1 −

4c

l
N2

2

)

(g′ ◦ ∇u)(t).(3.6)
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From the third equation of (1.1), we conclude that
∫

Ω

|∇θ|2 dx ≤ 2τ 2

k2

∫

Ω

|qt|2 dx +
2

k2

∫

Ω

|q|2 dx

which we use in (3.6) to get

L′(t) ≤ −
(

N1 −
2

k2
[c + cN2 + 1]

)
∫

Ω

|q|2 dx −
(

N1 −
2τ 2

k2
[c + cN2 + 1]

)
∫

Ω

|qt|2 dx

− l

4

∫

Ω

|∇u|2 dx −
(

N2g1 −
l

4
− 1

)
∫

Ω

|ut|2 dx − (µ + λ)

∫

Ω

(div u)2dx

−
∫

Ω

|∇θ|2 dx +

(

4c

l
N2

2 + c

)

(g ◦ ∇u)(t) +

(

1

2
N1 −

4c

l
N2

2

)

(g′ ◦ ∇u)(t).

At this point, we choose N2 large enough so that

γ1 := N2g1 −
l

4
− 1 > 0,

then N1 large enough so that

γ2 := N1 −
2

k2
[c + cN2 + 1] > 0,

and

N1 −
2τ 2

k2
[c + cN2 + 1] > 0,

1

2
N1 −

4c

l
N2

2 > 0.

So, we arrive at

L′(t) ≤ −
∫

Ω

[

γ2 |q|2 +
l

4
|∇u|2 dx + γ1 |ut|2 + (µ + λ)(div u)2 +

∫

Ω

|∇θ|2 dx

]

dx

+ c(g ◦ ∇u)(t)

which, using Poincaré’s inequality, yields

(3.7) L′(t) ≤ −mE1(t) + c(g ◦ ∇u)(t), ∀ t ≥ t1.

On the other hand, we find that

|L(t) − N1E(t)| ≤ |K1(t)| + N2 |K2(t)|

≤
∫

Ω

|u · ut| dx + N2

∫

Ω

∣

∣

∣

∣

ut(t) ·
∫ t

0

g(t − s)(u(t) − u(s))ds

∣

∣

∣

∣

dx

≤ 1

2

∫

Ω

|u|2 dx +
1 + N2

2

∫

Ω

|ut|2 dx +
N2

2

∫

Ω

∣

∣

∣

∣

∫ t

0

g(t − s)(u(t) − u(s))ds

∣

∣

∣

∣

2

dx

≤ c

[
∫

Ω

|∇u|2 dx +

∫

Ω

|ut|2 dx + (g ◦ ∇u)(t)

]

≤ cE1(t).

Therefore, we can choose N1 even larger (if needed) so that

(3.8) L(t) ∼ E(t).
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Now, we use (2.2) and (2.7) to conclude that, for any t ≥ t1,

∫ t1

0

g(s)

∫

Ω

|∇u(t) −∇u(t − s)|2 dx ds ≤ −1

d

∫ t1

0

g′(s)

∫

Ω

|∇u(t) −∇u(t − s)|2 dx ds

≤ −cE ′

1(t).(3.9)

Next, we take F (t) = L(t)+ cE1(t), which is clearly equivalent to E(t), and use (3.7)

and (3.9), to get, for all t ≥ t1,

(3.10) F ′(t) ≤ −mE1(t) + c

∫ t

t1

g(s)

∫

Ω

|∇u(t) −∇u(t − s)|2 dx ds.

(I) H(t) = ctp and 1 ≤ p < 3
2

:

If 1 < p < 3
2

, then one can easily show that
∫ +∞

0
g1−δ0(s)ds < +∞ for any δ0 < 2−p.

Using this fact and (2.2) and choosing t1 even larger if needed, we deduce that, for

all t ≥ t1,

η(t) :=

∫ t

t1

g1−δ0(s)

∫

Ω

|∇u(t) −∇u(t− s)|2 dx ds

≤ 2

∫ t

t1

g1−δ0(s)

∫ 1

0

(|∇u(t)|2 + |∇u(t− s)|2)dx ds

≤ cE1(0)

∫ t

t1

g1−δ0(s)ds < 1.(3.11)

Then, Jensen’s inequality, (2.2), hypothesis (A), and (3.11) lead to

∫ t

t1

g(s)

∫

Ω

|∇u(t) −∇u(t − s)|2 dx ds =

∫ t

t1

gδ0(s)g1−δ0(s)

∫

Ω

|∇u(t) −∇u(t − s)|2 dx ds

=

∫ t

t1

g
(p−1+δ0)(

δ0
p−1+δ0

)
(s)g1−δ0(s)

∫

Ω

|∇u(t) −∇u(t − s)|2 dx ds

≤ η(t)

[

1

η(t)

∫ t

t1

g(s)(p−1+δ0)g1−δ0(s)

∫

Ω

|∇u(t) −∇u(t − s)|2 dx ds

]

δ0
p−1+δ0

≤
[
∫ t

t1

g(s)p

∫

Ω

|∇u(t) −∇u(t − s)|2 dx ds

]

δ0
p−1+δ0

≤ c

[
∫ t

t1

−g′(s)

∫

Ω

|∇u(t) −∇u(t − s)|2 dx ds

]

δ0
p−1+δ0

≤ c [−E ′

1(t)]
δ0

p−1+δ0 .

Then, particularly for δ0 = 1
2
, we find that (3.10) becomes

F ′(t) ≤ −mE1(t) + c [−E ′

1(t)]
1

2p−1 .

Now, we multiply by E2p−2
1 (t) to get, using the fact that E ′

1(t) ≤ 0,

(FE2p−2
1 )′(t) ≤ F ′(t)E2p−2

1 (t) ≤ −mE2p−1
1 (t) + cE2p−2

1 (t) [−E ′

1(t)]
1

2p−1 .



GENERAL STABILITY IN MEMORY-TYPE THERMOELASTICITY 337

Then, Young’s inequality, with σ = 2p − 1 and σ′ = 2p−1
2p−2

, gives

(FE2p−2
1 )′(t) ≤ −mE2p−1

1 (t) + εE2p−1
1 (t) + Cε(−E ′

1(t)).

Consequently, picking ε < m, we obtain

F ′

0(t) ≤ −m′E2p−1
1 (t)

where F0 = FE2p−2
1 +CεE1 and m′ is some positive constant. Also, it is easy to show

that this inequality is true for p = 1. Once again, we use the fact that E ′

1(t) ≤ 0 to

deduce that

(tE2p−1
1 )′(t) ≤ E2p−1

1 (t) ≤ − 1

m′
F ′

0(t).

A simple integration over (t1, t) yields

tE2p−1
1 ≤ 1

m′
F0(t1) + t1E

2p−1
1 (t1).

This gives, for all t ≥ t1,

(3.12) E1(t) ≤
C

t
1

2p−1

.

(II) The general case: We define I(t) by

I(t) :=

∫ t

t1

g(s)

H−1
0 (−g′(s))

∫

Ω

|∇u(t) −∇u(t − s)|2 dx ds

where H0 is such that (2.5) is satisfied. As in (3.11), we find that I(t) satisfies, for

all t ≥ t1,

(3.13) I(t) < 1.

We also assume, without loss of generality that I(t) ≥ β > 0, for all t ≥ t1; otherwise

(3.10) yields an exponential decay. In addition, we define ξ(t) by

ξ(t) := −
∫ t

t1

g′(s)
g(s)

H−1
0 (−g′(s))

∫

Ω

|∇u(t) −∇u(t − s)|2 dx ds

and infer from (A) and the properties of H0 and D that

g(s)

H−1
0 (−g′(s))

≤ g(s)

H−1
0 (H(g(s)))

=
g(s)

D−1(g(s))
≤ k0

for some positive constant k0. Then, using (2.2) and choosing t1 even larger (if

needed), one can easily see that ξ(t) satisfies, for all t ≥ t1,

ξ(t) ≤ −k0

∫ t

t1

g′(s)

∫

Ω

|∇u(t) −∇u(t − s)|2 dx ds

≤ −cE1(0)

∫ t

t1

g′(s) ≤ cg(t1)E1(0)

< min{r, H(r), H0(r)}.(3.14)

Since H0 is strictly convex on (0, r] and H0(0) = 0, then

H0(θx) ≤ θH0(x)
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provided 0 ≤ θ ≤ 1 and x ∈ (0, r]. The use of this fact, hypothesis (A), (2.6), (3.13),

(3.14), and Jensen’s inequality leads to

ξ(t) =
1

I(t)

∫ t

t1

I(t)H0[H
−1
0 (−g′(s))]

g(s)

H−1
0 (−g′(s))

∫

Ω

|∇u(t) −∇u(t − s)|2 dx ds

≥ 1

I(t)

∫ t

t1

H0[I(t)H−1
0 (−g′(s))]

g(s)

H−1
0 (−g′(s))

∫

Ω

|∇u(t) −∇u(t − s)|2 dx ds

≥ H0

(

1

I(t)

∫ t

t1

I(t)H−1
0 (−g′(s))

g(s)

H−1
0 (−g′(s))

∫

Ω

|∇u(t) −∇u(t − s)|2 dx ds

)

= H0

(
∫ t

t1

g(s)

∫

Ω

|∇u(t) −∇u(t− s)|2 dx ds

)

This implies that
∫ t

t1

g(s)

∫

Ω

|∇u(t) −∇u(t − s)|2 dx ds ≤ H−1
0 (ξ(t))

and (3.10) becomes

(3.15) F ′(t) ≤ −mE1(t) + cH−1
0 (ξ(t)), ∀ t ≥ t1.

Now, for ε0 < r and c0 > 0, using (3.15), and the fact that E ′

1 ≤ 0, H ′

0 > 0, H ′′

0 > 0

on (0, r], we find that the functional F1, defined by

(3.16) F1(t) := H ′

0(ε0
E1(t)

E1(0)
)F (t) + c0E1(t)

satisfies

F ′

1(t) = ε0
E ′

1(t)

E1(0)
H ′′

0

(

ε0
E1(t)

E1(0)

)

F (t) + H ′

0

(

ε0
E1(t)

E1(0)

)

F ′(t) + c0E
′

1(t)

≤ −mE1(t)H
′

0

(

ε0
E1(t)

E1(0)

)

+ cH ′

0

(

ε0
E1(t)

E1(0)

)

H−1
0 (ξ(t)) + c0E

′

1(t).(3.17)

Let H∗

0 be the convex conjugate of H0 in the sense of Young (see [1] p. 61-64), then

(3.18) H∗

0 (s) = s(H ′

0)
−1(s) − H0[(H

′

0)
−1(s)], if s ∈ (0, H ′

0(r)]

and H∗

0 satisfies the following Young’s inequality

(3.19) AB ≤ H∗

0 (A) + H0(B), if A ∈ (0, H ′

0(r)], B ∈ (0, r]

With A = H ′

0

(

ε0
E1(t)
E1(0)

)

and B = H−1
0 (ξ(t)), using (2.2), (3.14) and (3.17)–(3.19), we

arrive at

F ′

1(t) ≤ −mE1(t)H
′

0

(

ε0
E1(t)

E1(0)

)

+ cH∗

1

(

H ′

0

(

ε0
E1(t)

E1(0)

))

+ cξ(t) + c0E
′

1(t)

≤ −mE1(t)H
′

0

(

ε0
E1(t)

E1(0)

)

+ cε0
E1(t)

E1(0)
H ′

0

(

ε0
E1(t)

E1(0)

)

− cE ′

1(t) + c0E
′

1(t).

Consequently, with a suitable choice of ε0 and c0, we obtain, for all t ≥ t1,

(3.20) F ′

1(t) ≤ −k1

(

E1(t)

E1(0)

)

H ′

0

(

ε0
E1(t)

E1(0)

)

= −k1H1

(

E1(t)

E1(0)

)

,
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where H1(t) = tH ′

0(ε0t).

Since H ′

1(t) = H ′

0(ε0t) + ε0tH
′′

0 (ε0t), then, using the strict convexity of H0 on

(0, r], we find that H ′

1(t), H1(t) > 0 on (0, 1]. Thus, taking in account that E ′

1 ≤ 0,

we have
[

tH1

(

E1(t)

E1(0)

)]

′

(t) ≤ H1

(

E1(t)

E1(0)

)

≤ − 1

k1

F ′

1(t).

A simple integration over (t1, t) yields

tH1

(

E1(t)

E1(0)

)

≤ 1

k1

F1(t1) + t1H1

(

E1(t1)

E1(0)

)

.

This gives, for all t ≥ t1,

E1(t) ≤ H−1
1

(

K

t

)

.

Therefore, estimate (2.4) is established. �
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