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ABSTRACT. In this study, we consider time-like regular surface in Minkowski space as y = y(u, v)

and investigate Darboux vectors of the time-like curves on time-like surface as (c), (c1) and (c2) which

are not intersect perpendicularly. Moreover, we give a relation between the Darboux vectors of these

Darboux frames. By this relation we obtain general Liouville formula and general form Euler and

O. Bonnet.
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1. INTRODUCTION

It is well-known that, if a curve differentiable on an open interval, at each point,

a set of mutually orthogonal unit vectors can be constructed. And these vectors are

called Frenet frame or moving frame vectors. The set, whose elements are frame

vectors and curvatures of a curve, is called Frenet apparatus of the curves. In recent

years, the theory of degenerate submanifolds has been treated by researchers and some

classical differential geometry topics have been extended to Lorentz manifolds. For

instance, in [6], the authors extended and studied spacelike involute-evolute curves in

Minkowski space. Classical differential geometry of the curves may be surrounded by

the topics which are general helices, involute-evolute curve couples, spherical curves

and Bertrand curves. Such special curves are investigated and used in some of real

world problems like mechanical design or robotics by well-known Frenet-Serret equa-

tions. Because, we think of curves as the path of a moving particle in the Euclidean

space.

At the beginning of the twentieth century Einstein’s theory opened a door to new

geometries such as Minkowski space-time, which is simultaneously the geometry of

special relativity and the geometry induced on each fixed tangent space of an arbitrary

Lorentzian manifold. Some authors have aimed to determine Frenet–Serret invariants

in higher dimensions. There exists a vast literature on this subject, for instance [1–4,

6, 7, 8]. In the light of the available literature, in [4] the author extended spherical
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images of curves to a four-dimensional Lorentzian space and studied such curves in the

case where the base curve is a space-like curve according to the signature (+ + +−).

By using the Darboux vector, various well-known formulas of differential geometry

had been produced by [5]. Then, in [1], authors had been given these formulas in

Minkowski 3-space .

In this work, we study to investigate the formulae between the Darboux vectors

of the curve (c), the parameter curves (c1) and (c2) which are not intersecting perpen-

dicularly. Thus, we will find an opportunity to investigate regular time-like surface

by taking the parameter curves which are intersect under the angle θ.

2. PRELIMINARIES

To meet the requirements in the next sections, here, the basic elements of the

theory of curves in the space R3

1
are briefly presented. (A more complete elementary

treatment can be found in [1].) The Minkowski 3-space provided with the standard

flat metric given by

(2.1) 〈, 〉 = dx2

1
+ dx2

2
− dx2

3

where (x1, x2, x3) is rectangular coordinate system in R3

1
. Recall that, the norm of an

arbitrary vector a ∈ R3

1
is given by ‖~a‖ = |〈~a,~a〉|. Let Φ = Φ(s) be a regular curve

in R3

1
. Φ is called an unit speed curve if the velocity vector ~v of Φ satisfies ‖~v‖ = 1.

For the vectors ~u ~, w ∈ R3

1
it is said to be orthogonal if and only if 〈~u, ~w〉 = 0.

On the other hand, the vector ~w is called angular velocity vector of motion. If

we consider any orthogonal trihedron as {~e1, ~e2, ~e3}, we can write their derivative

formulas as follows:

(2.2)
d~ei

ds
= ~w ∧ ~ei, i = 1, 2, 3

where ∧ is Lorentzian vectorial product, [1].

Let us take a time-like surface as ~y = ~y(u, v). Denote by
{

~t, ~N, ~B
}

the moving

Frenet-Serret frame along the time-like curve (c) on ~y = ~y(u, v). Another orthogonal

frame on ~y = ~y(u, v) is the Darboux trihedron as
{

~t,~g, ~N
}

. For an arbitrary time-like

curve (c) on time-like surface, the orientation of the Darboux trihedron is written as

(2.3) ~N ∧ ~t = −~g, ~t ∧ ~g = − ~N, ~g ∧ ~N = ~t

and the Darboux vector of this trihedron is written as

(2.4) ~w =
~t

Tg

+
~g

Rn

−
~N

Rg

where ~t.~t = −1 ~g.~g = 1 ~N. ~N = 1 and 1

Tg
, 1

Rn
and 1

Rg
are geodesic torsion, normal

curvature and geodesic curvature, respectively. Also,the Darboux derivative formulae
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can be written as follows:

(2.5)
d~t

ds
= ~w ∧ ~t,

d~g

ds
= ~w ∧ ~g,

d ~N

ds
= ~w ∧ ~N

[1].

3. THE DARBOUX VECTOR FOR THE DARBOUX TRIHEDRON

OF A TIME-LIKE CURVE

Let us express the parameter curves u = const. as (c1) and v = const. as (c2)

which are constant on a time-like surface y = y(u, v). But, these curves are intersect

under the angle θ (not perpendicular). Let any time-like curve that is passing through

a point P on the surface be (c). Let us take time-like curves which are passing through

the same point P as (c1) and (c2). Let the unit tangent vectors of curves (c), (c1)

and (c2) and at the point P be ~t,~t1and ~t2, respectively. From [1], the edges of the

Darboux trihedrons of parameter curves are

(3.1) ~N ∧ ~t1 = −~g1, ~t1 ∧ ~g1 = − ~N, ~g1 ∧ ~N = ~t1.

Here, three Darboux trihedrons are written as below:
{

~t,~g, ~N
}

,
{

~t1, ~g1, ~N
}

,
{

~t2, ~g2, ~N
}

.

Let s, s1 and s2 be the arc-elements of the curves (c), (c1) and (c2), respectively. Thus,

we can write

(3.2) ~t1 =
~ru

‖~ru‖
=

~ru√
E

, ~t2 =
~rv

‖~rv‖
=

~rv√
G

, ~t = ~ru

du

ds
+ ~rv

dv

ds

Moreover, because of the parameter curves are intersect under the angle θ we have

(3.3) ~t1.~t2 = −chθ

Then, the normal vector of time-like surface is

(3.4) ~N =
~t1 ∧ ~t2

∥

∥~t1 ∧ ~t2
∥

∥

=
~t1 ∧ ~t2

shθ

Other than, considering the first two formulae of (3.2) in the third term,

(3.5) ~t = ~ru

du

ds
+ ~rv

dv

ds
= ~t1

√
E

du

ds
+ ~t2

√
G

dv

ds

is written, [1].

On the other hand, let us consider the hyperbolic angle between ~t and ~t1 as α,

and if we take inner product both sides of (3.5) with ~t1 and ~t2 then

(3.6) ~t.~t1 = −chα = −
√

E
du

ds
− chθ

√
G

dv

ds

(3.7) ~t.~t2 = −ch(θ − α) = −chθ
√

E
du

ds
−
√

G
dv

ds
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are obtained. Thus, from (3.6) and (3.7)

(3.8)
sh(θ − α)

shθ
=

√
E

du

ds

shα

shθ
=

√
G

dv

ds

are written. Finally, if we put (3.8) into (3.5), we have the following equation between

the tangent vectors of the curves (c), (c1) and (c2) as

(3.9) ~t =
sh(θ − α)

shθ
~t1 +

shα

shθ
~t2

Here, we shall denote the arc elements ds, ds1 and ds2 of the parameter curves which

are belongs to time-like surface y = y(u, v), and then we express as follows:

(3.10) ds2 = Edu2 + 2Fdudv + Gdv2

ds2

1
= Edu2

ds2

2
= Gdv2

Thus, considering (3.8) and (3.10), we have

(3.11)
sh(θ − α)

shθ
=

√
E

du

ds
=

ds1

ds

shα

shθ
=

√
G

dv

ds
=

ds2

ds

Corollary 3.1. The third elements ~g, ~g1 and ~g2 of the Darboux trihedrons
{

~t,~g, ~N
}

,
{

~t1, ~g1, ~N
}

and
{

~t2, ~g2, ~N
}

are linear dependent.

Proof. If we substitute the equation (3.9) in the first equality of (2.3) and consider

the Darboux trihedrons of (c1) and (c2) we have

(3.12) ~g =
sh(θ − α)

shθ
~g1 +

shα

shθ
~g2

Thus, we get the expression.

Theorem 3.1. The Darboux trihedrons
{

~t1, ~g1, ~N
}

and
{

~t2, ~g2, ~N
}

of the parameters

curves (c1) and (c2) of the time-like surface are written by Darboux instantaneous

vectors as follows:

(3.13)
∂~ti

∂sj

= ~wi ∧ ~ti,
∂~gi

∂sj

= ~wi ∧ ~ti
∂ ~N

∂sj

= ~wi ∧ ~N, (i, j = 1, 2)

Proof. If we consider the Darboux trihedrons
{

~t1, ~g1, ~N
}

and
{

~t2, ~g2, ~N
}

, we see that

the normal vector ~N is coincide. Then, considering (3.4)

~g1 = ~t1 ∧ ~N = ~t1 ∧
(

~t1 ∧ ~t2

shθ

)

=
~t2(~t

2

1
) − ~t1(~t1.~t2)

shθ
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(3.14) ~g1 =
~t1chθ − ~t2

shθ

~g2 = ~t2 ∧ ~N = ~t2 ∧
(

~t1 ∧ ~t2

shθ

)

=
~t2(~t1.~t2) − ~t1(~t

2

2
)

shθ

(3.15) ~g2 =
−~t2chθ + ~t1

shθ

are obtained. From (2.2), we write

(3.16)
∂~t1

∂s1

= ~w1 ∧ ~t1,
∂~g1

∂s1

= ~w1 ∧ ~g1,
∂ ~N

∂s1

= ~w1 ∧ ~N

(3.17)
∂~t2

∂s2

= ~w2 ∧ ~t2,
∂ ~g2

∂s2

= ~w2 ∧ ~g2,
∂ ~N

∂s2

= ~w2 ∧ ~N

If (3.14) is substituted in the third equality (3.16), we get

∂ ~g1

∂s1

=

∂

[

~t1chθ − ~t2

shθ

]

∂s1

=
1

shθ

(

∂~t1

∂s1

chθ − ∂~t2

∂s1

)

(3.18)

=
1

shθ

[

( ~w1 ∧ ~t1)chθ − ∂~t2

∂s1

]

(3.19)
∂~g1

∂s1

= ~w1 ∧ ~g1 = ~w1 ∧
[

~t1chθ − ~t2

shθ

]

=
1

shθ
[(~w1 ∧ ~t1)chθ − ( ~w1 ∧ ~t2).

Then, from (3.18) and (3.19), we have

(3.20)
∂~t2

∂s1

= ~w1 ∧ ~t2.

Thus, the derivative of ~t2 with respect to s1 is written by the Lorentzian vectorial

product of ~w1 and ~t2. Similarly, it is easy to see that the other vectors can be written

by the same method.

Corollary 3.2. By using the vectors ~t1,~t2 and ~N , we can express ~w, ~w1 and ~w2 as

follows:

~w =
~t

Tg

+
~g

Rn

−
~N

Rg

(3.21)

=
~t1

shθ

[

sh(θ − α)

Tg

+
ch(θ − α)

Rn

]

+
~t2

shθ

[

shα

Tg

− chα)

Rn

]

−
~N

Rg

(3.22) ~w1 = ~t1

[

1

Tg1

+
chθ

shθRn1

]

−
~t2

shθRn1

−
~N

Rg1

(3.23) ~w2 =
1

shθRn2

~t1 +

(

1

Tg2

− ch(θ)

shθRn2

)

~t2 +
~N

Rg2
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where 1

Tg
, 1

Rn
and 1

Rg
are geodesic torsion, normal curvature and geodesic curvature,

respectively.

From (2.4), we can write the Darboux vectors of the
{

~t,~g, ~N
}

,
{

~t1, ~g1, ~N
}

and
{

~t2, ~g2, ~N
}

as

(3.24) ~w =
~t

Tg

+
~g

Rn

−
~N

Rg

,

~w1 =
~t1

Tg1

+
~g1

Rn1

−
~N

Rg1

,

~w2 =
~t2

Tg2

+
~g

Rn2

−
~N

Rg2

.

Then, if we consider the equations (3.9), (3.14) and (3.15) according to the vectors

~t1 and ~t2, and substitute in (3.24), we get (3.21), (3.22) and (3.23).

Theorem 3.2. If we consider the tangent vectors ~t1 and ~t2 of the parameter curves

(c1) and (c2) on the time-like surface, then we obtain the following relations:

(3.25) i) ~t1
∂~t2

∂s1

= −~t2
∂~t1

∂s1

=

(√
E

)

v
+ chθ

(√
G

)

u√
EG

,

(3.26) ii) ~t2
∂~t1

∂s2

= −~t1
∂~t2

∂s2

=

(√
G

)

u
+ chθ

(√
E

)

v√
EG

.

Proof. i) From (3.2), ~t1 = ~ru
√

E
and ~t2 = ~rv

√

G
are written. And also, we know that

(3.27) ~t1~t2 = −chθ ⇒ ~ru~rv = −chθ
√

E
√

G,

(3.28) E =
(√

E
)2

= (~ru)
2 ⇒

√
E

(√
E

)

v
= ~ruv~ru,

(3.29) G =
(√

G
)2

= (~rv)
2 ⇒

√
G

(√
G

)

u
= ~rvu~rv.

By taking differential from ~t1 = ~ru
√

E
and ~t2 = ~rv

√

G
, we obtain

∂~t1

∂v
=

~ruv

(√
E

)

−
(√

E
)

v
~ru

E
,

∂~t2

∂u
=

~ruv

(√
G

)

−
(√

G
)

u
~rv

G
.

Thus, we write

(3.30) ~t2
∂~t1

∂v
=

~rv√
G





~ruv

(√
E

)

−
(√

E
)

v
~ru

E



 =

(√
G

)

u
+ chθ

(√
E

)

v√
E

,
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(3.31) ~t1
∂~t2

∂u
=

~ru√
E





~ruv

(√
G

)

−
(√

G
)

u
~rv

G



 =

(√
E

)

v
+ chθ

(√
G

)

u√
G

.

On the other hand, we have

(3.32)
∂~t1

∂s1

=
∂~t1

∂v

∂v

∂s1

=
1√
G

∂~t1

∂v
(ds2 =

√
Gdu) ⇒ ∂v

∂s2

=
1√
G

,

(3.33)
∂~t2

∂s1

=
∂~t1

∂u

∂u

∂s1

=
1√
E

∂~t2

∂u
(ds1 =

√
Edu) ⇒ ∂u

∂s1

=
1√
E

.

Thus, taking inner product of (3.32) and (3.33) by the vector ~t2 and the vector ~t1,

and considering (3.30) and (3.31), we have (3.26) and (3.25). The other cases can be

seen easily.

Result 3.1. If we take differential from ~t1~t2 = −chθ with respect to u and v, we

get

(3.34) ~t1
∂~t2

∂v
= −~t2

∂~t1

∂v
= −

(√
G

)

u
+ chθ

(√
E

)

v√
E

,

(3.35) ~t1
∂~t2

∂u
=

(√
E

)

v
+ chθ

(√
G

)

u√
G

.

Thus, we have

∂

∂v

(

~t1
∂~t2

∂u

)

− ∂

∂u

(

~t1
∂~t2

∂v

)

=
∂

∂v





(√
E

)

v
+ chθ

(√
G

)

u√
G





+
∂

∂u





(√
G

)

u
+ chθ

(√
E

)

v√
E



 .(3.36)

Theorem 3.3. The following geodesic curvature equalities are satisfied for the pa-

rameter curves (c1) and (c2)

(3.37)
1

Rg1

= − 1

shθ
√

EG

(

chθ
(√

G
)

u
+

(√
E

)

v

)

(3.38)
1

Rg2

= − 1

shθ
√

EG

((√
G

)

u
+ shθ

(√
E

)

v

)

.
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Proof. i) From (3.25) and (3.20), we write

~t1
∂~t2

∂s1

=





(√
E

)

v
+ chθ

(√
G

)

u√
EG





∂~t2

∂s1

= ~w1 ∧ ~t2.

From here, we have
(√

E
)

v
+ chθ

(√
G

)

u√
EG

= ~t1( ~w1 ∧ ~t2) = ~w1(~t2 ∧ ~t1) = −shθ ~w1.

Then, from (3.24), if we take inner product both of side ~w1 with −shθ ~N we obtain

−shθ ~N ~w1 =
shθ ~N2

(Rg)1

⇒ ~N ~w1 = − 1

(Rg)1

.

Thus,
1

(Rg)1

=
−1

shθ
√

EG

(

chθ
(√

G
)

u
+

(√
E

)

v

)

is obtained. Similarly, (ii) can be proofed.

Theorem 3.4. Let us consider any curve (c) on the time-like surface and the arc

elements of curves (c), (c1) and (c2) as s, s1 and s2, respectively. Let the Darboux

instantaneous rotation vectors of (c1) and (c2) be ~w1 and ~w2, and if the hyperbolic

angle between the tangent ~t of curve (c) and ~t1 is α, then

(3.39)

(

sh(θ − α)

shθ
~w1 +

shα

shθ
~w2

)

∧ ~t1 = ~A ∧ ~t1

(3.40)
d~t1

ds
= ~A ∧ ~t1,

d~t2

ds
= ~A ∧ ~t2,

d ~N

ds
= ~A ∧ ~N

are satisfied.

Proof. If we consider (3.11) and (3.13), then

d~t1

ds
=

∂~t1

∂s1

ds1

∂s
+

∂~t1

∂s2

ds2

∂s
=

sh(θ − α)

shθ

(

~w1 ∧ ~t1
)

+
shα

shθ

(

~w2 ∧ ~t1
)

=

(

sh(θ − α)

shθ
~w1 +

shα

shθ
~w2

)

∧ ~t1 = ~A ∧ ~t1.

is obtained. Similarly, the others are satisfied.

Result 3.2. The following equality

(3.41) ~t2
d~t1

ds
= −~t1

d~t2

ds
= shθ ~A ~N

is valid.
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Theorem 3.5. Let us consider the curves (c), (c1) and (c2) which are intersect a

point P on time-like surface. Let the Darboux instantaneous rotation vectors of these

curves at the point P be ~w, ~w1 and ~w2, respectively. Then the following equality is

satisfied

(3.42) ~w =
sh(θ − α)

shθ
~w1 +

shα

shθ
~w2 + ~N

dα

ds
.

Proof. From (3.9)

(3.43) ~t =
sh(θ − α)

shθ
~t1 +

shα

shθ
~t2,

can be written. Then, by taking derivatives with respect to s from equation (3.43),

we obtain

(3.44)
d~t

ds
=

sh(θ − α)

shθ

d~t1

ds
+

shα

shθ

d~t2

ds
−

(

ch(θ − α)

shθ
~t1 −

chα

shθ
~t2

)

dα

ds
.

On the other hand, considering the Darboux trihedrons
{

~t1, ~g1, ~N
}

and
{

~t2, ~g2, ~N
}

,

we write

(3.45) ~t1 = ~g1 ∧ ~N, ~t2 = ~g2 ∧ ~N.

From (3.14) and (3.15), if ~g1 and ~g2 are substituted in (3.45) we obtain

(3.46) ~t1 =
1

shθ

(

chθ~t1 − ~t2
)

∧ ~N,

~t2 =
1

shθ

(

−chθ~t2 + ~t1
)

∧ ~N.

And then, substituting the equations (3.46) in (3.44), we have

d~t

ds
=

sh(θ − α)

shθ

d~t1

ds
+

shα

shθ

d~t2

ds
−

(ch(θ − α)

sh2θ

(

chθ~t1 − ~t2
)

∧ ~N

− chα

sh2θ

(

~t1 − ~t2chθ
)

∧ ~N
)dα

ds

According to the Theorem 3.4,

d~t1

ds
= ~A ∧ ~t1,

d~t2

ds
= ~A ∧ ~t2, ~A =

sh(θ − α)

shθ
~w1 +

shα

shθ
~w2

are known. And, by using the trigonometric expression, we find

d~t

ds
=

sh(θ − α)

shθ
~A ∧ ~t1 +

shα

shθ
~A ∧ ~t2 −

dα

ds

(

sh(θ − α)

shθ
~t1 +

shα

shθ
~t2

)

∧ ~N

= ~A ∧
(

sh(θ − α)

shθ
~t1 +

shα

shθ
~t2

)

− dα

ds

(

sh(θ − α)

shθ
~t1 +

shα

shθ
~t2

)

∧ ~N

= ~A ∧ ~t +
(

~N ∧ ~t
) dα

ds

=

(

~A + ~N
dα

ds

)

∧ ~t.
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Thus,

(3.47)
d~t

ds
= ~b ∧ ~t

(3.48) ~b = ~A + ~N
dα

ds

are written. After that,

(3.49) ~A = ~b − ~N
dα

ds

is obtained. By writing (3.49) in the third expression of (3.40) we obtain

(3.50)
d ~N

ds
= ~A ∧ ~N =

(

~b − ~N
dα

ds

)

∧ ~N = ~b ∧ ~N.

Since ~w is Darboux vector, we have

(3.51)
d~t

ds
= ~w ∧ ~t,

d ~N

ds
= ~w ∧ ~N.

Then, considering (2.5), (3.47), (3.50) and (3.51)

d~t

ds
= ~w ∧ ~t = ~b ∧ ~t ⇒ ~b ∧ ~t − ~w ∧ ~t =

(

~b − ~w
)

∧ ~t

(3.52) ⇒
(

~b − ~w
)

= λ~t,

(3.53)
d ~N

ds
= ~w ∧ ~N = ~b ∧ ~N ⇒ ~b ∧ ~N − ~w ∧ ~N =

(

~b − ~w
)

∧ ~N,

are written. At the end, if we make equal (3.52) to (3.53), we have
(

~b − ~w
)

= λ~t = µ ~N ⇒ λ = µ = 0.

Finally, ~b − ~w = ~0 can be written. Thus, we get the theorem.

Corollary 3.3 (General Form of Euler Formula). Taking dot product both of the

(3.42) with ~g, we have following equation among the timelike curves (c), (c1) and

(c2):

(3.54)
1

Rn

=
shαsh(θ − α)

shθ

[

1

Tg1

− 1

Tg2

]

+
1

shθ

[

chαsh(θ − α)

Rn1

− shαch(θ − α)

Rn2

]

,

where 1

Tgi

, 1

Rni

(i = 1, 2) and 1

Rn
are geodesic torsion, normal curvatures of the param-

eter curves and the normal curve, respectively.

Corollary 3.4 (General Form of O. Bonnet). Taking dot product both of the (3.42)

with ~t, we have following equation among the timelike curves (c), (c1) and (c2):

(3.55)
1

Tg

=
sh(θ − α)

shθ

[

chα

Tg1

+
shα

Rn2

]

+
shα

shθ

[

ch(θ − α)

Tg2

− sh(θ − α)

Rn2

]

,
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where 1

Tgi

, 1

Rni

(i = 1, 2) and 1

Tg
are geodesic torsions, normal curvatures of the pa-

rameter curves and the normal torsion of normal curve, respectively.

Corollary 3.5 (Liouville Formula). Taking dot product both of the (3.42) with ~N , we

have following equation among the timelike curves (c), (c1) and (c2):

(3.56)
1

Rg

=
1

Rg1

sh(θ − α)

shθ
+

1

Rg2

shα

shθ
+

dα

ds
,

where 1

Rgi

and 1

Rg
(i = 1, 2) are geodesic curvatures of the parameter curves and the

normal curve, respectively. Now, we give some special cases of the formulae (3.54)

and (3.55).

Corollary 3.6. If we take 1

Tg1

= 1

Tg2

= 0 (i.e. the parameter curves are curvature

lines) in (3.55) we have

(3.57)
1

Tg

=
shαsh(θ − α)

shθ

[

1

Rn1

− 1

Rn2

]

,

where 1

Tg
and 1

Rni

(i = 1, 2) are geodesic torsion of normal curve and normal curvature

of parameter curves, respectively.

Result 3.3: If we take 1

Tg1

= 1

Tg2

= 0 (i.e. the parameter curves are curvature

lines) in (3.54) we have

(3.58)
1

Rn

=
1

shθ

[

chαsh(θ − α)

Rn1

− shαch(θ − α)

Rn2

]

,

where 1

Rni

(i = 1, 2) and 1

Rn
are normal curvatures of parameter curves and normal

curve, respectively.

Result 3.4: If we take 1

Rn1

= 1

Rn2

= 0 (i.e. the parameter curves are asymptotic)

in (3.54) we have

(3.59)
1

Rn

=
shαsh(θ − α)

shθ

[

1

Tg1

− 1

Tg2

]

,

where 1

Tgi

(i = 1, 2) and 1

Rn
are geodesic torsions of parameter curves and normal

curvature of normal curve, respectively.
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