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ABSTRACT. This paper is concerned with the existence of positive solutions for boundary value

problems of fractional functional differential equations involving the Caputo fractional derivative.

The proof is based on the monotone iterative technique. As an application, an example is worked

out to demonstrate the main result.
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1. INTRODUCTION

The purpose of this paper is to investigate the following boundary value problem

of fractional functional differential equation with p-Laplacian operator

(1.1)























cDβ[φp(
cDαu(t))] + f(t, u(t− τ), u(t + θ)) = 0, t ∈ (0, 1),

cDαu(0) = 0,

au(t) − bu′(t) = η(t), t ∈ [−τ, 0],

cu(t) + du′(t) = ξ(t), t ∈ [1, 1 + θ],

where 1 < α ≤ 2, 0 < β ≤ 1, cDα and cDβ are the Caputo fractional derivatives,

0 < τ, θ < 1, a, d ≥ 0, b, c > 0 are real constants satisfying b > 2−α
α−1

a and φp(x) is a

p-Laplacian operator defined by φp(x) = |x|p−2x, p > 1, φq = φp
−1, 1

p
+ 1

q
= 1.

We will suppose that the following assumptions are satisfied:

(A1) f ∈ C([0, 1] × [0, +∞) × [0, +∞), R+), f(t, u, v) > 0 for all (t, u, v) ∈ [0, 1] ×
[0, +∞) × [0, +∞).

(A2) η ∈ C([−τ, 0], [0,∞)), ξ ∈ C([1, 1 + θ], [0,∞)) and η(0) = ξ(1) = 0.

Recently, the study of nonlinear fractional boundary value problems has gained

much attention because of their applications in various research areas of applied sci-

ences and engineering. In particular, many authors have investigated the existence

results of positive solutions of nonlinear boundary value problems for fractional dif-

ferential equations. (See [1, 2, 8, 9, 10, 11, 12] and the references therein.) But there

are relatively few works available for the existence of positive solutions for fractional
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functional differential equations. For instance, in [5], Li et al. considered the following

boundary value problem of fractional functional Sturm-Liouville differential equation

(1.2)











Dαu(t) + a(t)f(t, ut) = 0, t ∈ (0, 1),

−au(t) + bu′(t) = η(t), t ∈ [−τ, 0],

cu(t) + du′(t) = ξ(t), t ∈ [1, 1 + θ],

where 1 < α ≤ 2 and Dα is the Caputo fractional derivative. By means of the Guo

Krasnoselskii fixed point theorem, they obtained the existence of positive solutions

for the fractional functional BVP (1.2).

In [4], by means of fixed point theorems on cones, Zhao et al. investigated the

following fractional functional boundary value problem

(1.3)























Dαu(t) + r(t)f(ut) = 0, t ∈ (0, 1), q ∈ (n − 1, n],

ui(0) = 0, 0 ≤ i ≤ n − 3,

αu(n−2)(t) − βu(n−1)(t) = η(t), t ∈ [−τ, 0],

γu(n−2)(t) + δu(n−1)(t) = ξ(t), t ∈ [1, 1 + θ].

In [3], by using the Guo Krasnoselskii fixed point theorem on cones, Li et al.

established the positive solutions for the following fractional functional differential

equation

(1.4)























Dβ[p(t)Dαu(t)] + f(t, u(t− τ), u(t + θ)) = 0, t ∈ (0, 1),

Dαu(0) = Dαu(1) = (Dαu(0))′′ = 0,

au(t) − bu′(t) = η(t), t ∈ [−τ, 0],

cu(t) + du′(t) = ξ(t), t ∈ [1, 1 + θ],

where 1 < α ≤ 2, 2 < β ≤ 3, Dα and Dβ are the Caputo fractional derivatives.

We notice that all the results in the papers mentioned above are obtained by

means of fixed point theorems on cones. Motivated by these papers, but taking

completely different technique from [3, 4, 5], we will consider the functional fractional

boundary value problem (1.1). Here, we will use the monotone iterative technique

to establish the existence results of positive solutions for the fractional BVP (1.1).

We not only get the existence results of positive solutions, but also construct two

iterative schemes for approximating the solutions. Furthermore, the technique does

not require the existence of upper and lower solutions. To the author’s knowledge,

few works were done in the literature concerning the existence of positive solutions

for boundary value problems of fractional functional differential equations with p-

Laplacian operator by means of the monotone iterative method. Therefore, the aim

of this paper is to fill this gap.

The plan of this paper is as follows. In section 2, we give some definitions and

lemmas that are used throughout the paper. In section 3, we establish our main
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results by using the monotone iterative technique. Finally, in section 4, an example

is worked out to demonstrate the applicability of our main result.

2. PRELIMINARIES

In this section, we present some definitions and lemmas which are useful for the

proof of our main result.

Definition 2.1 ([6, 7]). The Riemann Liouville fractional integral of order α ∈ R
+

for a continuous function h : (0,∞) → R is defined by

Iαh(t) =
1

Γ(α)

∫ t

0

(t − s)α−1h(s)ds,(2.1)

where Γ(.) is the Euler Gamma function, provided that the integral exists.

Definition 2.2 ([6, 7]). If h ∈ Cn[0, 1], then the Caputo fractional derivative of order

α is defined by

cDαh(t) =
1

Γ(n − α)

∫ t

0

(t − s)n−α−1h(n)(s)ds = In−αh(n)(t), n − 1 < α < n,(2.2)

where n = [α] + 1 and [α] denotes the integer part of the real number α.

Remark 2.3. If α = n ∈ N0, then the Caputo derivative coincides with a conventional

n-th order derivative of the function h(t).

Lemma 2.4 ([6, 7]). Let n = [α]+1 for α /∈ N and n = α for α ∈ N. If y(t) ∈ Cn[0, 1],

then

(IαcDαy)(t) = y(t) −
n−1
∑

i=0

yi(0)

i!
ti.

Lemma 2.5 ([6, 7]). Let α > 0 and n = [α] + 1 for α /∈ N and n = α for α ∈ N. If

h(t) ∈ C[0, 1], then the homogeneous fractional differential equation

cDαh(t) = 0

has a solution

h(t) = c1 + c2t + c3t
2 + · · · + cnt

n−1,

where ci ∈ R, (i = 1, 2, . . . , n).

Lemma 2.6 ([3]). If 1 < α ≤ 2 and f ∈ C([0, 1] × [0, +∞) × [0, +∞), R+), then the

boundary value problem for fractional functional differential equation

(2.3)











cDαu(t) + f(t, u(t − τ), u(t + θ)) = 0, t ∈ (0, 1),

au(t) − bu′(t) = η(t), t ∈ [−τ, 0],

cu(t) + du′(t) = ξ(t), t ∈ [1, 1 + θ]
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is equivalent to the integral equation

u(t) =



















u(−τ, t), t ∈ [−τ, 0],
∫ 1

0
G(t, s)f(s, u(s− τ), u(s + θ))ds, t ∈ [0, 1],

u(θ, t), t ∈ [1, 1 + θ].

(2.4)

Here

u(−τ, t) = e(a/b)t
(1

b

∫ 0

t

e−(a/b)sη(s)ds + u(0)
)

, t ∈ [−τ, 0],(2.5)

u(θ, t) =







e−(c/d)t(1
d

∫ t

1
e(c/d)sξ(s)ds + ec/du(1)), t ∈ [1, 1 + θ], d 6= 0,

ξ(t)
c

, t ∈ [1, 1 + θ], d = 0,
(2.6)

and

G(t, s) =
1

Γ(α)







−(t − s)(α−1) + b+at
ρ

(c(1 − s)(α−1) + d(α − 1)(1 − s)(α−2)), s ≤ t,

b+at
ρ

(c(1 − s)(α−1) + d(α − 1)(1 − s)(α−2)), t ≤ s,

(2.7)

where ρ = bc + ac + ad.

Lemma 2.7. If 1 < α ≤ 2, 0 < β ≤ 1 and f ∈ C([0, 1] × [0, +∞) × [0, +∞), R+),

then the boundary value problem for fractional functional differential equation

(2.8)























cDβ[φp(
cDαu(t))] + f(t, u(t− τ), u(t + θ)) = 0, t ∈ (0, 1),

cDαu(0) = 0,

au(t) − bu′(t) = η(t), t ∈ [−τ, 0],

cu(t) + du′(t) = ξ(t), t ∈ [1, 1 + θ]

is equivalent to the integral equation

u(t) =



















u(−τ, t), t ∈ [−τ, 0],
∫ 1

0
G(t, s)φq(I

βf(s, u(s − τ), u(s + θ)))ds, t ∈ [0, 1],

u(θ, t), t ∈ [1, 1 + θ],

(2.9)

where u(−τ, t), u(θ, t) and G(t, s) are defined by (2.5)–(2.7) respectively.

Proof. For any f ∈ C([0, 1] × [0, +∞) × [0, +∞), R+), by Lemma 2.4, we have

φp(
cDαu(t)) = −Iβf(t, u(t− τ), u(t + θ)) + c0, c0 ∈ R.

Using the boundary condition cDαu(0) = 0, we get c0 = 0. Hence, we obtain

cDαu(t) + φq(I
βf(t, u(t− τ), u(t + θ))) = 0.(2.10)
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By means of Lemma 2.6, a solution of (2.10) with the boundary conditions of (2.8)

can be expressed as

u(t) =



















u(−τ, t), t ∈ [−τ, 0],
∫ 1

0
G(t, s)φq(I

βf(s, u(s − τ), u(s + θ)))ds, t ∈ [0, 1],

u(θ, t), t ∈ [1, 1 + θ],

(2.11)

in which u(−τ, t), u(θ, t) and G(t, s) are given by (2.5)-(2.7) respectively.

Now, we will present the properties of the Green’s function:

Lemma 2.8 ([5]). The function G(t, s) given by (2.7) verifies the following properties:

(i) G(t, s) is continuous on [0, 1] × [0, 1).

(ii) For b > 2−α
α−1

a, we get G(t, s) > 0 for t, s ∈ (0, 1).

(iii) G(t, s) ≤ G(s, s) for t, s ∈ (0, 1).

Throughout this paper, let x0(t) be a solution of the BVP (1.1) with f ≡ 0, then

it satisfies

x0(t) =



















x0(−τ, t), t ∈ [−τ, 0],

0, t ∈ [0, 1],

x0(θ, t), t ∈ [1, 1 + θ],

(2.12)

where

x0(−τ, t) =
e(a/b)t

b

∫ 0

t

e−(a/b)sη(s)ds, t ∈ [−τ, 0]

and

x0(θ, t) =







e−(c/d)t 1
d

∫ t

1
e(c/d)sξ(s)ds, t ∈ [1, 1 + θ], d 6= 0,

ξ(t)
c

, t ∈ [1, 1 + θ], d = 0.

Assume that u(t) is a solution of the BVP (1.1) and x(t) = u(t) − x0(t). Since

x(t) ≡ u(t) for 0 ≤ t ≤ 1, x(t) verifies

x(t) =











x(−τ, t), t ∈ [−τ, 0],
∫ 1

0
G(t, s)φq(I

βf(s, (x + x0)(s − τ), (x + x0)(s + θ)))ds, t ∈ [0, 1],

x(θ, t), t ∈ [1, 1 + θ],

(2.13)

where

(x + x0)(s − τ) = x(s − τ) + x0(s − τ),

(x + x0)(s + θ) = x(s + θ) + x0(s + θ),

x(−τ, t) = e(a/b)tx(0), t ∈ [−τ, 0]
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and

x(θ, t) =







e−(c/d)(t−1)x(1), t ∈ [1, 1 + θ], d 6= 0,

0, t ∈ [1, 1 + θ], d = 0.

Let B = C[−τ, 1 + θ] be endowed with the norm ‖x‖= max
t∈[−τ,1+θ]

|x(t)|, then it is clear

that B is a Banach space. Define a cone K ⊂ B as follows:

K = {x ∈ B : x(t) ≥ 0 for any t ∈ [−τ, 1 + θ]} .

Consider the operator T : K → K

Tx(t) =











eat/b
∫ 1

0
G(0, s)φq(I

βf(s, (x + x0)(s − τ), (x + x0)(s + θ)))ds, t ∈ [−τ, 0],
∫ 1

0
G(t, s)φq(I

βf(s, (x + x0)(s − τ), (x + x0)(s + θ)))ds, t ∈ [0, 1],

Ax(t), t ∈ [1, 1 + θ],

(2.14)

in which

Ax(t) =



















e−(c/d)(t−1)
∫ 1

0
G(1, s)φq(I

βf(s, (x + x0)(s − τ), (x + x0)(s + θ)))ds,

t ∈ [1, 1 + θ], d 6= 0;

0, t ∈ [1, 1 + θ], d = 0.

It is easy to see that u is a positive solution of the BVP (1.1) if and only if

x = u − x0 is a nontrivial fixed point of T , where x0 is given by (2.12).

Lemma 2.9. Assume that (A1) and (A2) hold. Then T : K → K is completely

continuous.

Proof. From the definition of T , it is obvious that Tx(t) ≥ 0 for t ∈ [−τ, 1 + θ], i.e.,

Tx ∈ K, ∀x ∈ K. Also, using the Arzela Ascoli theorem and the standard arguments,

one can easily show that T : K → K is completely continuous operator.

Remark 2.10. Note that for any t ∈ [−τ, 0] and t ∈ [1, 1 + θ], Tx(t) ≤ Tx(0) and

Tx(t) ≤ Tx(1) hold respectively. So,

‖Tx‖ = ‖Tx‖[0,1] = max
t∈[0,1]

|Tx(t)|.

To guarantee the existence of positive solutions, we will assume the following

condition:

• (H1) There exists δ > 0 such that 0 ≤ u1 ≤ u2 ≤ δ + ‖x0‖[−τ,0], 0 ≤ v1 ≤ v2 ≤
δ + ‖x0‖[1,1+θ] and t ∈ [0, 1] imply f(t, u1, v1) ≤ f(t, u2, v2).

Lemma 2.11. Suppose that (A1), (A2) and (H1) hold. Then for any x1, x2 ∈ Kδ

with x1(t) ≤ x2(t), t ∈ [−τ, 1 + θ] implies (Tx1)(t) ≤ (Tx2)(t).
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Proof. Let x1, x2 ∈ Kδ. Then, for any v ∈ [0, 1], we have

0 ≤ (x1 + x0)(v − τ) ≤ (x2 + x0)(v − τ) ≤ ‖x2‖ + ‖x0‖[−τ,0] ≤ δ + ‖x0‖[−τ,0],

0 ≤ (x1 + x0)(v + θ) ≤ (x2 + x0)(v + θ) ≤ ‖x2‖ + ‖x0‖[1,1+θ] ≤ δ + ‖x0‖[1,1+θ].

(2.15)

It follows from (2.15) and (H1) that

f(v, (x1+x0)(v−τ), (x1+x0)(v+θ)) ≤ f(v, (x2+x0)(v−τ), (x2+x0)(v+θ)), v ∈ [0, 1],

thus we have

Iβf(v, (x1 + x0)(v − τ), (x1 + x0)(v + θ)) ≤ Iβf(v, (x2 + x0)(v − τ), (x2 + x0)(v + θ)).

Since φq is increasing on R, we derive that

φq(I
βf(v, (x1+x0)(v−τ), (x1+x0)(v+θ))) ≤ φq(I

βf(v, (x2+x0)(v−τ), (x2+x0)(v+θ))),

so, we obtain

(Ax1)(t) − (Ax2)(t)

=















e−
c(t−1)

d

∫ 1

0
G(1, s)

(

φq(I
βf(s, (x1 + x0)(s − τ), (x1 + x0)(s + θ)))

−φq(I
βf(s, (x2 + x0)(s − τ), (x2 + x0)(s + θ)))

)

ds, t ∈ [1, 1 + θ], d 6= 0,

0, t ∈ [1, 1 + θ], d = 0.

(2.16)

Hence for any t ∈ [−τ, 1 + θ], by (2.14) and (2.16) we have

(Tx1)(t) − (Tx2)(t)

=











































e
at

b

∫ 1

0

G(0, s)
(

φq(I
βf(s, (x1 + x0)(s − τ), (x1 + x0)(s + θ)))

−φq(I
βf(s, (x2 + x0)(s − τ), (x2 + x0)(s + θ)))

)

ds, t ∈ [−τ, 0],
∫ 1

0
G(t, s)

(

φq(I
βf(s, (x1 + x0)(s − τ), (x1 + x0)(s + θ)))

−φq(I
βf(s, (x2 + x0)(s − τ), (x2 + x0)(s + θ)))

)

ds, t ∈ [0, 1],

(Ax1)(t) − (Ax2)(t), t ∈ [1, 1 + θ]

≤ 0.

Therefore, (Tx1)(t) ≤ (Tx2)(t) is satisfied for t ∈ [−τ, 1+ θ]. The proof is completed.

3. MAIN RESULT

In this section, we obtain the existence of positive solutions and its monotone

iterative scheme for the fractional BVP (1.1).
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For convenience, let us denote

A =
a + b

ρ[Γ(β + 1)]q−1Γ(α)

∫ 1

0

(c(1 − s)α−1 + d(α − 1)(1 − s)α−2)sβ(q−1)ds.

Theorem 3.1. Assume that (A1), (A2) and (H1) hold. Suppose also that there exists

δ > 0 such that

max
t∈[0,1]

f(t, δ + ‖x0‖[−τ,0], δ + ‖x0‖[1,1+θ]) ≤ φp(
δ

A
).

Then the BVP (1.1) has two positive solutions w∗(t)+x0(t) and v∗(t)+x0(t) satisfying

0 ≤ w∗ ≤ δ, lim
n→∞

wn = lim
n→∞

T nw0 = w∗,

where

w0(t) =























































δeat/b

A[Γ(β + 1)]q−1

∫ 1

0

G(0, s)sβ(q−1)ds, t ∈ [−τ, 0],

δ

A[Γ(β + 1)]q−1

∫ 1

0

G(t, s)sβ(q−1)ds, t ∈ [0, 1],

δe−(c/d)(t−1)

A[Γ(β + 1)]q−1

∫ 1

0

G(1, s)sβ(q−1)ds, t ∈ [1, 1 + θ], d 6= 0,

0, t ∈ [1, 1 + θ], d = 0,

(3.1)

and

0 ≤ v∗ ≤ δ, lim
n→∞

vn = lim
n→∞

T nv0 = v∗,

where v0(t) = 0, −τ ≤ t ≤ 1 + θ.

Proof. Let x ∈ Kδ. Then for any t ∈ [0, 1] we have

0 ≤ (x + x0)(t − τ) ≤ ‖x‖ + ‖x0‖[−τ,0] ≤ δ + ‖x0‖[−τ,0],

0 ≤ (x + x0)(t + θ) ≤ ‖x‖ + ‖x0‖[1,1+θ] ≤ δ + ‖x0‖[1,1+θ].
(3.2)

From (3.2), it follows that

0 < f(t, (x + x0)(t − τ), (x + x0)(t + θ)) ≤ f(t, δ + ‖x0‖[−τ,0], δ + ‖x0‖[1,1+θ]) ≤ φp(
δ

A
),

(3.3)
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thus we have

‖Tx‖ = max
t∈[−τ,1+θ]

|Tx(t)|

= max
t∈[0,1]

|Tx(t)|

= max
t∈[0,1]

∣

∣

∣

∣

∫ 1

0

G(t, s)φq(
1

Γ(β)

∫ s

0

(s − z)β−1f(z, (x + x0)(z − τ), (x + x0)(z + θ))dz)ds

∣

∣

∣

∣

≤
∫ 1

0

G(s, s)φq(
1

Γ(β)

∫ s

0

(s − z)β−1f(z, (x + x0)(z − τ), (x + x0)(z + θ))dz)ds

≤ δ

A[Γ(β + 1)]q−1

∫ 1

0

G(s, s)sβ(q−1)ds ≤ δ.

Hence, we get TKδ ⊂ Kδ. Let

w0(t) =























































δeat/b

A[Γ(β + 1)]q−1

∫ 1

0

G(0, s)sβ(q−1)ds, t ∈ [−τ, 0],

δ

A[Γ(β + 1)]q−1

∫ 1

0

G(t, s)sβ(q−1)ds, t ∈ [0, 1],

δe−(c/d)(t−1)

A[Γ(β + 1)]q−1

∫ 1

0

G(1, s)sβ(q−1)ds, t ∈ [1, 1 + θ], d 6= 0,

0, t ∈ [1, 1 + θ], d = 0,

(3.4)

then ‖w0‖ ≤ δ and w0(t) ∈ Kδ. Let w1 = Tw0, then w1 ∈ Kδ. We denote

wn+1 = Twn = T n+1w0 (n = 0, 1, 2, . . . ).(3.5)

Since TKδ ⊂ Kδ, we get wn ∈ Kδ (n = 0, 1, 2, . . . ). By Lemma 2.9, T is compact, we

assert that {wn}∞n=1 has a convergent subsequence {wnk
}∞k=1 and there exists w∗ ∈ Kδ

such that wnk
−→ w∗. From the definition of T , (3.4) and (3.5), we have

w1(t) = (Tw0)(t)

=































































eat/b
∫ 1

0
G(0, s)φq(I

βf(s, (w0 + x0)(s − τ), (w0 + x0)(s + θ)))ds,

t ∈ [−τ, 0];
∫ 1

0
G(t, s)φq(I

βf(s, (w0 + x0)(s − τ), (w0 + x0)(s + θ)))ds,

t ∈ [0, 1];

e−(c/d)(t−1)
∫ 1

0
G(1, s)φq(I

βf(s, (w0 + x0)(s − τ), (w0 + x0)(s + θ)))ds,

t ∈ [1, 1 + θ], d 6= 0;

0, t ∈ [1, 1 + θ], d = 0
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≤























































δeat/b

A[Γ(β + 1)]q−1

∫ 1

0

G(0, s)sβ(q−1)ds, t ∈ [−τ, 0],

δ

A[Γ(β + 1)]q−1

∫ 1

0

G(t, s)sβ(q−1)ds, t ∈ [0, 1],

δe−c(t−1)/d

A[Γ(β + 1)]q−1

∫ 1

0

G(1, s)sβ(q−1)ds, t ∈ [1, 1 + θ], d 6= 0,

0, t ∈ [1, 1 + θ], d = 0

= w0(t), t ∈ [−τ, 1 + θ].

Hence, w1(t) ≤ w0(t). By means of Lemma 2.11, we obtain Tw1(t) ≤ Tw0(t), i.e.,

w2(t) ≤ w1(t), t ∈ [−τ, 1 + θ]. Thus, we have

wn+1(t) ≤ wn(t), t ∈ [−τ, 1 + θ], (n = 0, 1, 2, . . . ).

Therefore, wn −→ w∗. Let n −→ ∞ in (3.5). Then we get Tw∗ = w∗ since T

is continuous. Evidently, w∗ is a fixed point of the operator T , that is y1(t) =

w∗(t) + x0(t) is a positive solution of the BVP (1.1).

Let v0(t) = 0, t ∈ [−τ, 1 + θ], then v0(t) ∈ Kδ. Let v1 = Tv0, then v1 ∈ Kδ, we

denote

vn+1 = Tvn = T n+1v0 (n = 0, 1, 2, . . . ).

Similar to {wn}∞n=1, we claim that {vn}∞n=1 has a convergent subsequence {vnk
}∞k=1

and there exists v∗ ∈ Kδ such that vnk
−→ v∗, which means vnk

(t) −→ v∗(t), k → ∞,

t ∈ [−τ, 1 + θ]. Since v1 = Tv0 = T0 ∈ Kδ, we have

v1(t) = Tv0(t) = (T0)(t) ≥ 0,

that is

v2(t) = (Tv1)(t) ≥ (T0)(t) = v1(t), t ∈ [−τ, 1 + θ].

By induction, it is obvious that

vn+1(t) ≥ vn(t), t ∈ [−τ, 1 + θ] (n = 0, 1, 2, . . . ),

so, we have vn −→ v∗ in norm ‖ . ‖ and Tv∗ = v∗. Therefore, T has fixed points w∗

and v∗, which means that y1(t) = w∗(t) + x0(t) and y2(t) = v∗(t) + x0(t) are positive

solutions of the fractional BVP (1.1). The proof is completed.

Remark 3.2. It is obvious that w∗ + x0 and v∗ + x0 are the maximal and minimal

solutions of the BVP (1.1). If they coincide then (1.1) has a unique positive solution

in Kδ.
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Corollary 3.3. Assume that (A1), (A2) and (H1) hold. Suppose also that there exist

0 < δ1 < δ2 < · · · < δn such that

max
t∈[0,1]

f(t, δk + ‖x0‖[−τ,0], δk + ‖x0‖[1,1+θ]) ≤ φp

(

δk

A

)

.

Then the BVP (1.1) has 2n positive solutions w∗
k(t)+x0(t) and v∗

k(t)+x0(t) satisfying

0 ≤ w∗
k ≤ δk, lim

n→∞
wkn

= lim
n→∞

T nwk0 = w∗
k,

where

wk0(t) =











































δke
at/b

A[Γ(β + 1)]q−1

∫ 1

0

G(0, s)sβ(q−1)ds, t ∈ [−τ, 0],

δk

A[Γ(β + 1)]q−1

∫ 1

0

G(t, s)sβ(q−1)ds, t ∈ [0, 1],

δke
−c(t−1)/d

A[Γ(β + 1)]q−1

∫ 1

0

G(1, s)sβ(q−1)ds, t ∈ [1, 1 + θ], d 6= 0,

0, t ∈ [1, 1 + θ], d = 0,

(3.6)

and

0 ≤ v∗
k ≤ δk, lim

n→∞
vkn

= lim
n→∞

T nvk0 = v∗
k,

where vk0(t) = 0,−τ ≤ t ≤ 1 + θ.

4. AN EXAMPLE

Consider the following fractional functional boundary-value problem:

(4.1)























D1/2(φ2(D
3/2u(t))) + f(t, u(t − 1

6
), u(t + 1

7
)) = 0, t ∈ (0, 1),

D3/2u(0) = 0,

u′(t) = sin(πt), t ∈ [−1
6
, 0],

u(t) = e1−t − 1, t ∈ [1, 8
7
],

where

f(t, u, v) = t + 1 +
1

40
(u + v), (t, u, v) ∈

[

−1

6
,
8

7

]

× [0,∞) × [0,∞),

and a = d = 0, b = c = 1, p = 2, q = 2, α = 3
2
, β = 1

2
, τ = 1

6
, θ = 1

7
. Notice

that η(t) = − sin(πt), and ξ(t) = e1−t − 1 are nonnegative functions satisfying η(0) =

ξ(1) = 0. By easy calculation, we evaluate x0(t) = 2
π

sin2(π
2
t), for t ∈ [−1

6
, 0] and

x0(t) = e1−t − 1 for t ∈ [1, 8
7
], so ‖x0‖[− 1

6
,0] = 2

π
sin2( π

12
), ‖x0‖[1, 8

7
] = 0. Choosing

δ = 20, we get A = 1
2
. Moreover, it is obvious that f(t, u, v) satisfies

(1) f(t, u1, v1) ≤ f(t, u2, v2) for any 0 ≤ t ≤ 1, 0 ≤ u1 ≤ u2 ≤ 20 + 2
π

sin2( π
12

),

0 ≤ v1 ≤ v2 ≤ 20;

(2) max0≤t≤1 f(t, δ+‖x0‖[− 1
6
,0], δ+‖x0‖[1, 8

7
]) = f(1, 20+ 2

π
sin2( π

12
), 20) ≤ φ2(

δ
A
) ≡ 40.
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Thus, by means of Theorem 3.1, the BVP (4.1) has two positive solutions w∗+x0

and v∗ + x0. For n = 0, 1, 2, . . . , the two iterative schemes are as follows:

w0(t) =



















δ, −1
6
≤ t ≤ 0,

(1 − t2)δ, 0 ≤ t ≤ 1,

0, 1 ≤ t ≤ 8
7
,

wn+1(t)

=







































2
π

∫ 1

0
(1 − s)1/2[

∫ s

0
(s − τ)−1/2(τ + 1 + 1

40
[(wn + x0)(τ − 1

6
) + (wn + x0)(τ + 1

7
)])dτ ]ds,

t ∈ [−1
6
, 0];

1√
π

∫ 1

0
G(t, s)[

∫ s

0
(s − τ)−1/2(τ + 1 + 1

40
[(wn + x0)(τ − 1

6
) + (wn + x0)(τ + 1

7
)])dτ ]ds,

t ∈ [0, 1];

0, t ∈ [1, 8
7
],

v0(t) = 0,

vn+1(t)

=







































2
π

∫ 1

0
(1 − s)1/2[

∫ s

0
(s − τ)−1/2(τ + 1 + 1

40
[(vn + x0)(τ − 1

6
) + (vn + x0)(τ + 1

7
)])dτ ]ds,

t ∈ [−1
6
, 0];

1√
π

∫ 1

0
G(t, s)[

∫ s

0
(s − τ)−1/2(τ + 1 + 1

40
[(vn + x0)(τ − 1

6
) + (vn + x0)(τ + 1

7
)])dτ ]ds,

t ∈ [0, 1];

0, t ∈ [1, 8
7
],

in which

G(t, s) =
2√
π







−
√

t − s +
√

1 − s, s ≤ t,
√

1 − s, t ≤ s.
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