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ABSTRACT. In this paper, we study the existence of positive solutions to boundary value problem











u′′ + λf(t, u) = 0, t ∈ (0, 1),

u(0) =

m−2
∑

i=1

αiu(ξi), u′(1) =
∑

m−2

i=1
βiu

′(ξi),

where ξi ∈ (0, 1), 0 < ξ1 < ξ2 < · · · < ξm−2 < 1, αi, βi ∈ [0,∞), λ is positive parameter. By using

Krasnosel’skii’s fixed point theorem, we provide sufficient conditions for the existence of at least one

positive solution to the above boundary value problem.

AMS (MOS) Subject Classification. 34B10, 34B15, 34B18, 39A10.

1. INTRODUCTION

The multipoint boundary value problems (BVPs) for ordinary differential equa-

tions arise in a variety of different areas of applied mathematics and physics.The

study of multipoint BVPs for linear second-order ordinary differential equations was

initiated by Il’in and Moiseev [9]. Since then there has been much current attention

focused on the study of nonlinear multipoint BVPs; see [1, 2, 3, 4, 5, 6, 7, 10, 11, 12,

13, 14, 15, 16, 17, 18, 19].

Recently, Graef and Kong [6] studied the existence of positive solutions of the

BVP










u′′′ = λf(t, u) + e(t), t ∈ (0, 1),

u(0) = u′(p) =

∫ 1

q

w(s)u′′ds = 0,

where λ > 0 is a parameter, 1/2 < p < q < 1 are constants, f : (0, 1) × [0,∞) → R,

e : (0, 1) → R, and w : [q, 1] → [0,∞) are continuous functions, and e ∈ L(0, 1).

They found some sufficient conditions for the existence of positive solutions of a third

order semipositone BVP with a multi-point boundary condition.
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Ma and Castaneda [14] investigated the existence of positive solutions for the

BVP










u′′ + a(t)f(u) = 0, t ∈ (0, 1),

u′(0) =
m−2
∑

i=1

aiu
′(ξi), u(0) =

∑m−2
i=1 biu(ξi),

where ξi ∈ (0, 1), with 0 < ξ1 < ξ2 < · · · < ξm−2 < 1, ai, bi ∈ [0,∞). By using

Krasnosel’skii’s fixed point theorem in cones, they established the existence results

for at least one positive solution to BVP, assuming that 0 <
∑m−2

i=1 ai < 1, 0 <
∑m−2

i=1 bi < 1, and f ∈ C([0,∞), [0,∞)), a ∈ C([0, 1), [0,∞)), where f is either

superlinear or sublinear.

Kong and Kong [11] considered the boundary value problem with nonhomoge-

neous multi-point boundary condition











u′′ + a(t)f(u) = 0, t ∈ (0, 1),

u(0) =

m
∑

i=1

aiu(ti) + λ, u(1) =
∑m

i=1 biu(ti) + µ.

A sufficient condition is found for the existence and uniqueness of a positive solution.

The dependence of the solution on the parameters λ and µ is also studied.

The present work is motivated by the recent paper [4, 6, 11], we intend in this pa-

per to study the existence of at least one positive solution for second-order multipoint

BVP

(1.1)











u′′ + λf(t, u) = 0, t ∈ (0, 1),

u(0) =
m−2
∑

i=1

αiu(ξi), u′(1) =
∑m−2

i=1 βiu
′(ξi),

where ξi ∈ (0, 1), 0 < ξ1 < ξ2 < · · · < ξm−2 < 1, αi, βi ∈ [0,∞), λ is positive

parameter.

We study the semipositone BVP (1.1) and find sufficient conditions under which

BVP (1.1) has a positive solution when λ > 0 is sufficiently small and large, respec-

tively.

The following assumptions will stand throughout this paper:

(H1) αi, βi ∈ [0,∞) for 0 <
∑m−2

i=1 αi < 1 and 0 <
∑m−2

i=1 βi < 1;

(H2) f : [0, 1]× [0,∞) → R is continuous, and there exists M > 0, such that f(t, u) ≥

−M for (t, u) ∈ [0, 1] × [0,∞) ;

(H3) f∞ = ∞;

(H4) f∞ = 0;

(H5) there exist a nonnegative constant µ and a positive constant D such that f(t, u) ≥

µ, for (t, u) ∈ [0, 1] × [D,∞).
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Set

f∞ = lim
x→∞

inf min
t∈[0,1]

f(t, x)

x
, f∞ = lim

x→∞
sup max

t∈[0,1]

f(t, x)

x
.

For boundary value problems, there is little literature that has referred to the

existence of positive solutions when the nonlinearity can take a negative value. In-

spired by the work [4, 6, 11, 14], in this paper, we consider the existence of positive

solutions of the semipositone boundary value problem. Emphasis is put on the fact

that the nonlinear term f may take a negative value. The results here are new, even

in the cases of difference equations and differential equations.

By using Krasnosel’skii’s fixed point theorem, we obtain positive solutions for

a semipositone second-order multi-point boundary value problem. Compared to the

results in [4, 6, 11, 14], our work presented in this paper has the following new features.

Firstly, the conditions we used here differ from those in the majority of papers as we

know. Secondly, the nonlinear term f may take a negative value.Thirdly, the existence

of positive solutions obtained here includes not only for λ > 0 sufficiently small but

also for λ > 0 sufficiently large.

Our main results extend and improve the main results of [4, 6, 11, 14]. Instead

of the constant M by any continuous function M(t) on [0, 1], the conclusions of

Theorems 3.1 and 3.2 still hold.

The rest of paper is arranged as follows. In Section 2, we present some lemmas

in order to prove our main results. In Section 3, we prove the existence of at least

one positive solution for problem (1.1) by using Krasnosel’skii’s fixed point theorem.

2. SOME LEMMAS

Let

E = C[0, 1], γ =
1 −

∑m−2
i=1 αi(1 − ξi)
∑m−2

i=1 αiξi

, K = {u : u ∈ C[0, 1], min
t∈[0,1]

u(t) ≥ γ‖u‖}.

Then E is a Banach space with norm ‖u‖ = maxt∈[0,1] | u(t) |, and K is a cone in E.

Lemma 2.1. If
(

1 −
∑m−2

i=1 αi

) (

1 −
∑m−2

i=1 βi

)

6= 0, then for h ∈ C[0, 1] and h ≥ 0,

(2.1)











u′′ + h(t) = 0, t ∈ (0, 1),

u(0) =
m−2
∑

i=1

αiu(ξi), u′(1) =
∑m−2

i=1 βiu
′(ξi),
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has the unique solution

(2.2)






























u(t) = −

∫ t

0

(t − s)h(s)ds +

(

∫ 1

0
h(s)ds −

∑m−2
i=1 βi

∫ ξi

0
h(s)ds

)

1 −
∑m−2

i=1 βi

t +
1

1 −
∑m−2

i=1 αi


−
m−2
∑

i=1

αi

∫ ξi

0

(ξi − s)h(s)ds +

(

∫ 1

0
h(s)ds −

∑m−2
i=1 βi

∫ ξi

0
h(s)ds

)

1 −
∑m−2

i=1 βi

(

m−2
∑

i=1

αiξi

)



 .

Moreover, if h(t) ≥ 0 on [0, 1] and (H1) is satisfied, then u(t) ≥ 0 on [0, 1].

Lemma 2.2. Assume that (H1) holds. If h ∈ C[0, 1] and h ≥ 0, then the unique

solution u of BVP (2.1) satisfies

min
t∈[0,1]

u(t) ≥ γ‖u‖

where

γ =
1 −

∑m−2
i=1 αi(1 − ξi)
∑m−2

i=1 αiξi

.

Proof. Clearly u′(t) ≤ 0. This implies that

‖u‖ = u(0), min
t∈[0,1]

u(t) = u(1).

It is easy to see that u′(t2) ≤ u′(t1) for any t1, t2 ∈ [0, 1] with t1 ≤ t2. Hence u′(t) is a

decreasing function on [0, 1]. This means that the graph of u(t) is concave down on

(0, 1). For each i ∈ {1, 2, . . . , m − 2}, we have

u(ξi) − u(1)

1 − ξi

≥
u(0) − u(1)

1
,

i.e.,

−ξiu(1) ≥ −u(ξi) + (1 − ξi)u(0),

so that

−
m−2
∑

i=1

αiξiu(1) ≥ −
m−2
∑

i=1

αiu(ξi) +
m−2
∑

i=1

αi(1 − ξi)u(0),

and, with the boundary condition u(0) =
∑m−2

i=1 αiu(ξi), we have

u(1) ≥
1 −

∑m−2
i=1 αi(1 − ξi)
∑m−2

i=1 αiξi

u(0).

This completes the proof.

Lemma 2.3. Assume that (H1) holds, then the problem

(2.3)











u′′ + 1 = 0, t ∈ (0, 1),

u(0) =
m−2
∑

i=1

αiu(ξi), u′(1) =
∑m−2

i=1 βiu
′(ξi),
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has the unique solution

v̄(t) =
−t2

2
+

(

1 −
∑m−2

i=1 βiξi

)

1 −
∑m−2

i=1 βi

t

+
1

1 −
∑m−2

i=1 αi

(

−
1

2

m−2
∑

i=1

αiξ
2
i +

(

1 −
∑m−2

i=1 βiξi

)

1 −
∑m−2

i=1 βi

m−2
∑

i=1

αiξi

)

and v̄(t) < Cγ. Here

C =
1

γ
(

1 −
∑m−2

i=1 αi

)

(

1

1 −
∑m−2

i=1 βi

m−2
∑

i=1

αiξi

)

, t ∈ [0, 1].

The proof of our main result based upon an application of the following fixed

point theorem in a cone.

Theorem 2.4 ([8]). Let E be a Banach space and let K ⊂ E be a cone. Assume

Ω1, Ω2 are open bounded subsets of E with 0 ∈ Ω1, Ω̄1 ⊂ Ω2 and let F : K∩(Ω̄2\Ω1) →

K be a completely continuous operator such that

(a) ‖Fu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Fu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2; or

(b) ‖Fu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Fu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2.

Then F has at least one fixed point in K ∩ (Ω̄2\Ω1).

3. MAIN RESULTS

Theorem 3.1. Assume that (H1)–(H3) hold, then BVP (1.1) has at least one positive

solution for λ > 0 sufficiently small.

Proof. Let v(t) = λMv̄(t), then u(t) is a positive solution of BVP (1.1) if ū(t) =

u(t) + v(t) is a solution of BVP

(3.1)











u′′ + λg(t, u(t)− v(t)) = 0, t ∈ (0, 1),

u(0) =

m−2
∑

i=1

αiu(ξi), u′(1) =
∑m−2

i=1 βiu
′(ξi),

with ū(t) > v(t), t ∈ (0, 1), where

g(t, u) =

{

f(t, u) + M, (t, u) ∈ [0, 1] × [0,∞),

f(t, 0) + M, (t, u) ∈ [0, 1] × [−∞, 0).
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We define the operator F : K → K by

(3.2)






































































(Fu)(t) = −λ

∫ t

0

(t − s)g(s, u(s) − v(s))ds

+

λ

(

∫ 1

0
g(s, u(s)− v(s))ds −

∑m−2
i=1 βi

∫ ξi

0
g(s, u(s)− v(s))ds

)

1 −
∑m−2

i=1 βi

t

+
λ

1 −
∑m−2

i=1 αi

[

−

m−2
∑

i=1

αi

∫ ξi

0

(ξi − s)g(s, u(s) − v(s))ds

+

(

∫ 1

0
g(s, u(s)− v(s))ds −

∑m−2
i=1 βi

∫ ξi

0
g(s, u(s)− v(s))ds

)

1 −
∑m−2

i=1 βi

(m−2
∑

i=1

αiξi

)

]

.

It is easy to prove that the existence of solutions for BVP (3.1) is equivalent to

the existence of solutions of the operator equation Fu = u. By Lemmas 2.1 and

2.2, this shows that F (K) ⊂ K. Moreover, it is easy to verify that F is completely

continuous. Let

M1 = max
0≤t,u≤1

g(t, u), Λ = min
( 1

γM1C
,

1

MC

)

.

For λ > 0 sufficiently small such that λ ∈ (0, Λ], choosing u ∈ K with ‖u‖ = 1, we

get

(Fu)(t) ≤
λ

1 −
∑m−2

i=1 αi

[

∫ 1

0
g(s, u(s)− v(s))ds

1 −
∑m−2

i=1 βi

(m−2
∑

i=1

αiξi

)

]

≤
λM1

1 −
∑m−2

i=1 αi

[

∫ 1

0
ds

1 −
∑m−2

i=1 βi

(m−2
∑

i=1

αiξi

)

]

=
λM1

1 −
∑m−2

i=1 αi

[

1

1 −
∑m−2

i=1 βi

(m−2
∑

i=1

αiξi

)

]

= λM1γC ≤ 1 = ‖u‖.

Thus, if we let Ω1 = {u ∈ K : ‖u‖ < 1}, then we have ‖Fu‖ ≤ ‖u‖, for u ∈ K ∩ ∂Ω1.

We choose a constant N > 0 such that γλN

2

(

1 − 1
2

∑m−2
i=1 βi

)

≥ 1. By the form

of g and condition (H3), we know that g(t, z) is an unbounded continuous function.

Therefore, there exists R̄ > 0, such that
(

1 − λCM
R̄

)

≥ 1
2

and

(3.3)
g(t, z)

z
≥ N, for 0 ≤ t ≤ 1, z(t) ≥

1

2
γR̄.

Let R = max(2, R̄) and ΩR = {u ∈ K : ‖u‖ < R}, for u ∈ K with ‖u‖ = R, we

get

v(t) = λMv̄(t) < λMCγ ≤ λMC
u(t)

‖u‖
=

λMC

R
u(t) ≤

λMC

R̄
u(t).

Since

(3.4) u(t) − v(t) >
(

1 −
λCM

R̄

)

u(t) ≥
1

2
u(t) ≥

1

2
γ‖u‖ =

1

2
γR ≥

1

2
γR̄.
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From (3.3) and (3.4) , we find

g(t, u(t) − v(t)) ≥ N(u(t) − v(t)) >
1

2
γRN.

Hence, we obtain that

(Fu)(0) =
λ

1 −
∑m−2

i=1 αi

[

−
m−2
∑

i=1

αi

∫ ξi

0

(ξi − s)g(s, u(s)− v(s))ds

+

(

∫ 1

0
g(s, u(s)− v(s))ds −

∑m−2
i=1 βi

∫ ξi

0
(ξi − s)g(s, u(s)− v(s))ds

)

1 −
∑m−2

i=1 βi

(m−2
∑

i=1

αiξi

)

]

≥ λ

(
∫ 1

0

g(s, u(s)− v(s))ds −
m−2
∑

i=1

βi

∫ 1

0

(1 − s)g(s, u(s)− v(s))ds

)

≥
λγNR

2

(
∫ 1

0

ds −

m−2
∑

i=1

βi

∫ 1

0

(1 − s)ds

=
λγNR

2

(

1 −
1

2

m−2
∑

i=1

βi

)

≥ R = ‖u‖,

which implies that‖Fu‖ ≥ ‖u‖, for u ∈ K ∩ ∂ΩR.

It follows from Theorem 2.4 that F has a fixed point, therefore we can get BVP

(3.1) has a least one positive solution ū(t) with 1 ≤ ‖ū‖ ≤ R. Combining with Lemma

2.2, we see that

ū(t) ≥ γ‖ū‖ ≥ λMCγ > λMv̄(t) = v(t), t ∈ [0, 1].

Consequently, u(t) = ū(t) − v(t) is a positive solution of BVP (1.1).

Theorem 3.2. Assume that (H1), (H2), (H4) and (H5) hold, then BVP (1.1) has at

least one positive solution for λ > 0 sufficiently large.

Proof. Let R1 = max
(

2D
γ

, 2λMC
)

, η = R1

[

(µ + M)(1 − 1
2

∑m−2
i=1 βi)

]−1

. For λ > 0

sufficiently large such that λ ∈ [η,∞), choosing u ∈ K with ‖u‖ = R1, we get

v(t) = λMv̄(t) < λMCγ ≤ λMC
u(t)

‖u‖
= λMC

u(t)

R1
≤

1

2
u(t)

Since

(3.5) u(t) − v(t) >
(

1 −
λCM

R1

)

u(t) ≥
1

2
u(t) ≥

1

2
γ‖u‖ =

1

2
γR1 ≥ D,

and combining with the condition (H5), we find g(t, u(t)− v(t)) = f(t, u(t)− v(t)) +

M ≥ µ + M .

Because of that, we can get that

(Fu)(0) =
λ

1 −
∑m−2

i=1 αi

[

−
m−2
∑

i=1

αi

∫ ξi

0

(ξi − s)g(s, u(s)− v(s))ds
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+

(

∫ 1

0
g(s, u(s) − v(s))ds −

∑m−2
i=1 βi

∫ ξi

0
(ξi − s)g(s, u(s)− v(s))ds

)

1 −
∑m−2

i=1 βi

(m−2
∑

i=1

αiξi

)

]

≥ λ

(
∫ 1

0

g(s, u(s)− v(s))ds −

m−2
∑

i=1

βi

∫ 1

0

(1 − s)g(s, u(s)− v(s))ds

)

≥ λ(µ + M)

(

1 −
1

2

m−2
∑

i=1

βi

)

≥ R1.

Thus, if we let ΩR1
= {u ∈ K : ‖u‖ < R1}, then we have ‖Fu‖ ≥ ‖u‖, for u ∈

K ∩ ∂ΩR1
.

From (H4), it is easy to see that

lim
x→∞

sup max
t∈[0,1]

g(t, x)

x
= lim

x→∞
sup max

t∈[0,1]

f(t, x) + M

x
= 0.

Thus, let L > 0 be chosen such that

(3.6) g(t, x) ≤ ǫx, for any 0 ≤ t ≤ 1 and x ≥ L,

where ǫ > 0 with λCγǫ ≤ 1. Let R2 = max
(

2R1,
4L
3γ

)

and ΩR2
= {u ∈ K : ‖u‖ <

R2}, for u ∈ K with ‖u‖ = R2, we get

v(t) = λMv̄(t) < λMCγ ≤ λMC
u(t)

‖u‖
= λMC

u(t)

R2
≤

1

4
u(t).

Since

(3.7) u(t) − v(t) >
(

1 −
λCM

R2

)

u(t) ≥
3

4
u(t) ≥

3

4
γ‖u‖ =

3

4
γR2 ≥ L,

from (3.6) and (3.7) , we find g(t, u(t) − v(t)) ≤ ǫ(u(t) − v(t)) ≤ ǫR2.

Therefore, it follows that

(Fu)(t) ≤
λ

1 −
∑m−2

i=1 αi

[

∫ 1

0
g(s, u(s) − v(s))ds

1 −
∑m−2

i=1 βi

(m−2
∑

i=1

αiξi

)

]

≤
λǫR2

1 −
∑m−2

i=1 αi

[

1

1 −
∑m−2

i=1 βi

(m−2
∑

i=1

αiξi

)

]

= λCγǫR2 ≤ R2.

This implies that ‖Fu‖ ≤ ‖u‖, for u ∈ K ∩ ∂ΩR2
.

It follows from Theorem 2.4 that F has a fixed point, we can get that BVP

(3.1) has a least one positive solution ū(t) with R1 ≤ ‖ū‖ ≤ R2. Combining with

Lemma 2.2, we see that

ū(t) ≥ γ‖ū‖ ≥ γR1 ≥ 2λMCγ > λMv̄(t) = v(t), t ∈ [0, 1].

Consequently, u(t) = ū(t) − v(t) is a positive solution of BVP (1.1).
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