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ABSTRACT. We consider a fractional version of some 2nth order Dirichlet problem. In the paper

a sufficient condition for the existence of solution to the aforementioned problem is proved. The

proved is based on some variational methods and application of a fractional counterpart of the du

Bois-Reymond lemma for the order α ∈
(

n − 1

2
, n

)

(see [1]).
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1. INTRODUCTION

In the paper we consider the following fractional boundary problem

(1.1)

D1
(

. . .D1
(

D
α−(n−1)
b− Dα

a+x (t) − In−α
b− Fx1

(

Dα−1
a+ x (t) , . . . , D

α−(n−1)
a+ x (t) , x (t) , t

))

+ . . .+ (−1)n−1In−α
b− Fxn−1

(

Dα−1
a+ x (t) , . . . , D

α−(n−1)
a+ x (t) , x (t) , t

))

= (−1)n−1Fxn

(

Dα−1
a+ x (t) , . . . , D

α−(n−1)
a+ x (t) , x (t) , t

)

for a.e. t ∈ [a, b]

(1.2)
(

DiIn−α
a+ x

)

(a) = 0 and
(

Ia−iDα
a+x
)

(b) = 0 for i = 0, . . . , n− 1

where α ∈
(

n− 1
2
, n
)

, n = 2, . . ., F = F (x1, . . . xn, t) : (Rm)n×[a, b] → R
m and Dβ

a+x,

D
β

b−x, I
β

b−x denote respectively: the left-sided, the right-sided Riemann-Liouville frac-

tional derivative and the right-sided fractional integral of order β of a function x. The

above problem can be viewed as a fractional counterpart of the classical Dirichlet

problem of order 2n (for α = n we can identify Dα
a+x with classical derivative Dnx

and Dα
b−x with (−1)n

Dnx) of the form

(

. . .
(

x(n+1) − Fx1

(

x(n−1), . . . , x′, x, t
))′

+ · · ·+ (−1)n−1Fxn−1

(

x(n−1), . . . , x′, x, t
)

)′

= (−1)n−1Fxn

(

x(n−1), . . . , x′, x, t
)

for a.e. t ∈ [a, b]

x(i) (a) = 0 and x(i) (b) = 0 for i = 0, . . . , n− 1.
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In the classical case, for n = 2 we get the following 4 − th order problem

(x′′′ − Fx1
(x′, x, t))

′
= −Fx2

(x′, x, t) ,

x (a) = x′ (a) = x (b) = x′ (b) = 0.

In particular, for F (x1, x2, t) := 1
2
q (t)x2

2 + ϕ (t)x2, where q and ϕ are given, we get

a beam equation of the form

x(4) + q (t) x+ ϕ (t) = 0

with boundary conditions x (a) = x′ (a) = x (b) = x′ (b) = 0.

The main result of the paper is a theorem on the existence of solutions to (1.1)–

(1.2). To prove it we use a variational method relying on the showing that a func-

tional of action possesses at least one minimum, which point generates solutions to

a considered problem (see [3, 4] for the details). It should be emphasized that the

above method can not guarantee that the functions x(n+1), . . . , x(2n) and Fx1
, . . . Fxn−1

are differentiable, only the functions in brackets on the right-hand side of (1.1) are

differentiable, therefore equation (1.1) is given in such a complicated form.

In the proof of the fact that the aforementioned functional of action attains its

minimum we use the following

Proposition 1.1 (see [3]). If X is a reflexive Banach space and the functional L :

X → R is coercive and sequentially weakly lower semicontinuous, then it possesses at

least one minimum at x0 ∈ X.

Let us remind that a functional L defined on a Banach space X is coercive if

L (x) → ∞ whenever ‖x‖ → ∞, and L is sequentially weakly lower semicontinuous

at x0 ∈ X if lim infn→∞L (xn) ≥ L (x0) for any sequence {xn} ⊂ X such that xn ⇀ x0

weakly in X.

To prove that a minimum point x̄ gives as a solution it is sufficient to guarantee

that L possesses the Lagrange variation at x̄ and to apply a fractional version of du

Bois-Reymond lemma proved in the paper [1].

Let α > 0, ϕ ∈ L1([a, b],Rm). To begin with, we shall remind some facts concern-

ing the notions of fractional integral and derivatives. We define a left-sided Riemann-

Liouville fractional integral of ϕ on the interval [a, b] as a function Iα
a+ϕ given by

(Iα
a+ϕ)(t) :=

1

Γ(α)

∫ t

a

ϕ(τ)

(t− τ)1−α
dτ, t ∈ [a, b] a.e.

and a right-sided Riemann-Liouville fractional integral of ϕ on the interval [a, b] —

Iα
b−ϕ given by

(Iα
b−ϕ)(t) :=

1

Γ(α)

∫ b

t

ϕ(τ)

(τ − t)1−α
dτ, t ∈ [a, b] a.e.

We posit that I0
a+ϕ = I0

b−ϕ = ϕ.
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Remark 1.2. Let us notice that if ϕ ∈ L1 ([a, b] ,Rm) then for α = n ∈ N we have

In
a+ϕ (t) =

1

(n− 1)!

∫ t

a

ϕ (s)

(t− s)1−n
ds =

∫ t

a

∫ t1

a

. . .

∫ tn−1

a

ϕ (s) ds dtn−1 · · · dt1,

for t ∈ [a, b]. The above formula is known as the Cauchy formula. In this way the

definition of Iα
a+ϕ is a natural generalization of the Cauchy formula for non-integer α

(since Γ (n) = (n− 1)!). In what follows we shall use the symbol In to denote Iα
a+ for

α = n

For 1 ≤ p <∞ let us introduce the following notations

Iα
a+ (Lp) := {Iα

a+ϕ : ϕ ∈ Lp([a, b],Rm)},

Iα
b− (Lp) := {Iα

b−ϕ : ϕ ∈ Lp([a, b],Rm)}.

We have the following properties of fractional integral

Proposition 1.3 (see [1] and references therein). (a) If α > 0 and 1 ≤ p < ∞,

then Iα
a+ϕ ∈ Lp([a, b],Rm) for any ϕ ∈ Lp([a, b],Rm).

(b) If α > 0, 1 ≤ p ≤ ∞ and α > 1
p
, then for any ϕ ∈ Lp([a, b],Rm) the function

Iα
a+ϕ is continuous on [a, b].

Proposition 1.4. If ϕ ∈ Lp([a, b],Rm) with 1 ≤ p ≤ ∞ then

(

Iα
a+I

β
a+ϕ

)

(t) = I
α+β
a+ ϕ (t)

(

Iα
b−I

β

b−ϕ
)

(t) = I
α+β

b− ϕ (t)

for a.e. t ∈ [a, b] and α, β > 0. If moreover α + β > 1 then the above equalities hold

true at any t ∈ [a, b].

Now, let us remind the definition of the fractional derivative. Let α ∈ (n− 1, n),

n ∈ N, x ∈ L1([a, b],Rm). We say that x possesses a left-sided Riemann-Liouville

derivative Dα
a+x of order α on the interval [a, b], if the function In−α

a+ x is absolutely

continuous on [a, b], moreover

(Dα
a+x)(t) :=

(

DnIn−α
a+

)

x (t) =
1

Γ(n− α)

dn

dtn

∫ t

a

x(τ)

(t− τ)1−n+α
dτ, t ∈ [a, b] a.e.

We say that x possesses a right-sided Riemann-Liouville derivative Dα
b−x of order α

on the interval [a, b], if the function In−α
b− x is absolutely continuous on [a, b]; by this

derivative we mean the function (−1)n
Dn(In−α

b− x), i.e.

(Dα
b−x)(t) :=

1

Γ(n− α)
(−1)n d

n

dtn

∫ b

t

x(τ)

(τ − t)1−(n−α)
dτ, t ∈ [a, b] a.e.

We have the following connection between fractional derivative and fractional integral
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Proposition 1.5 (see [2]). If α > 0 and x ∈ Lp ([a, b] ,Rm) with 1 ≤ p ≤ ∞ then

(

Dα
a+I

α
a+x
)

(t) = x (t) and
(

Dα
b−I

α
b−x
)

(t) = x (t)

for t ∈ [a, b] a.e. Moreover, we have that

(1.4)
(

Iα
a+D

α
a+x
)

(t) = x (t)

for t ∈ [a, b] a.e. provided x ∈ Iα
a+ (Lp) and

(1.5)
(

Iα
b−D

α
b−x
)

(t) = x (t)

for t ∈ [a, b] a.e. provided x ∈ Iα
b− (Lp). What is more, if we additionally assume that

α > 1
p
, then (1.4) and (1.5) hold true for every t ∈ [a, b].

Proposition 1.6 (see [2]). Let k ∈ N and α ≥ 0. If the fractional derivatives Dα
a+x

and Dα+k
a+ x exist, then

DkDα
a+x = Dk+α

a+ x.

Finally, we have

Proposition 1.7. Let α ∈ (n− 1, n), n = 2, 3, . . ., 1 ≤ p <∞, p > 1
α
. If x ∈ Iα

a+ (Lp)

then:

1. x ∈ I i
a+ (Lp), for i = 1, 2, . . . , n − 1, in particular x is absolutely continuous

together with classical derivatives up to order n− 2 and Dn−1x ∈ Lp.

2. (Dix) (t) =
(

Iα−i
a+ Dα

a+x
)

(t) for t ∈ [a, b] and i = 0, . . . , n−2 and for a.e. t ∈ [a, b]

if i = n− 1.

3. There exists Dα−i
a+ x and Dα−i

a+ x = I iDα
a+x ∈ I i

a+ (Lp), for i = 1, . . . , n− 1.

Proof.

(ad 1) If x ∈ Iα
a+ (Lp) then x (t) =

(

Iα
a+ϕ

)

(t) for t ∈ [a, b] (thanks to Proposition 1.3
(

Iα
a+ϕ

)

is continuous, therefore x can be identified with its continuous repre-

sentant) and for some ϕ ∈ Lp (in fact ϕ = Dα
a+x). We have that α > 1, thus

applying Proposition 1.4 we get that

x (t) =
(

Iα
a+ϕ

)

(t) =
(

I iIα−i
a+ ϕ

)

(t) =
(

I iψ
)

(t) ,

for t ∈ [a, b], where ψ = Iα−i
a+ ϕ = Iα−i

a+

(

Dα
a+x
)

∈ Lp, for i = 1, . . . , n− 1.

(ad 2) It follows from the fact that

x (t) =
(

I iψ
)

(t) =
(

I i
(

Iα−i
a+ Dα

a+x
))

(t)

for t ∈ [a, b] and i = 1, . . . , n− 1.

(ad 3) Thanks to Proposition 1.4 we have

(

In−i−(α−i)x
)

(t) =
(

In−α
a+ x

)

(t) =
(

In−α
a+ Iα

a+ϕ
)

(t) = (Inϕ) (t) ,
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for t ∈ [a, b] (where x = Iα
a+ϕ) therefore there exists Dα−i

a+ x for i = 1 . . . , n − 1

and

(

Dα−i
a+ x

)

(t) =
(

Dn−iI
n−i−(α−i)
a+ x

)

(t) =
(

Dn−iInϕ
)

(t) =
(

I iϕ
)

(t) =
(

I iDα
a+x
)

(t)

for t ∈ [a, b].

Next, for α ∈ (n− 1, n), n ∈ N, by ACα
a+ ([a, b] ,Rm) (simply ACα

a+) let us denote

the set of all functions x : [a, b] → R
m such that there are constants cn−1, . . . , c0 ∈ R

m

and a function ϕ ∈ L1([a, b],Rm) such that

(1.6) x (t) =
n−1
∑

i=0

ci

Γ (α− n + i+ 1)
(t− a)α−n+i + Iα

a+ϕ, t ∈ [a, b] a.e.

Similarly by ACα
b− ([a, b] ,Rm) (simply ACα

b−) we denote the set of all functions x :

[a, b] → R
m such that there are constants dn−1, . . . , d0 ∈ R

m and a function ψ ∈
L1([a, b],Rm) such that

(1.7) x (t) =
n−1
∑

i=0

di

Γ (α− n+ i+ 1)
(b− t)α−n+i + Iα

b−ϕ, t ∈ [a, b] a.e.

Finally, by AC
α,p
a+ and by AC

α,p

b− with 1 ≤ p ≤ ∞ we denote the set of all func-

tions satisfying (1.6) and (1.7) respectively with a function ϕ ∈ Lp([a, b],Rm), ψ ∈
Lp([a, b],Rm) resp.

With the aid of above sets it is easy to formulate a necessary and sufficient

condition for the existence of fractional derivative. Namely, we have

Theorem 1.8 (see [1]). Let α ∈ (n− 1, n), n ∈ N, then a function x possesses

a left-sided Riemann-Liouville derivative Dα
a+x on the interval [a, b] if and only if

x ∈ ACα
a+ ([a, b] ,Rm). Moreover,

(

Da
a+x
)

(t) = ϕ (t) , for t ∈ [a, b] a.e.

and
(

DiIn−α
a+ x

)

(a) = ci

for i = 0, . . . , n − 1, where x is of the form (1.6). Similarly a function x possesses

a right-sided Riemann-Liouville derivative Dα
b−x on the interval [a, b] if and only if

x ∈ ACα
b− ([a, b] ,Rm). Moreover,

(

Da
b−x
)

(t) = ψ (t) , for t ∈ [a, b] a.e.

and
(

DiIn−α
b− x

)

(b) = (−1)idi

for i = 0, . . . , n− 1, where x is of the form (1.7).
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The sets AC
α,p
a+ ([a, b] ,Rm) and AC

α,p

b− ([a, b] ,Rm) are linear spaces, moreover

these spaces equipped with the norms

(1.8) ‖x‖+ =
n−1
∑

i=0

∣

∣

(

DiIn−α
a+ x

)

(a)
∣

∣ +
∥

∥Da
a+x
∥

∥

Lp ,

(1.9) ‖x‖− =

n−1
∑

i=0

∣

∣

(

DiIn−α
b− x

)

(b)
∣

∣+
∥

∥Da
b−x
∥

∥

Lp

are Banach spaces.

Note that the spaces ACα,2
a+ ([a, b] ,Rm) and ACα,2

b− ([a, b] ,Rm) equipped with the

following inner products

〈x, y〉+ =
n−1
∑

i=0

〈(

DiIn−α
a+ x

)

(a) ,
(

DiIn−α
a+ y

)

(a)
〉

+

∫ b

a

〈

Da
a+x (t)Da

a+y (t)
〉

dt,

〈x, y〉− =
n−1
∑

i=0

〈(

DiIn−α
b− x

)

(b) ,
(

DiIn−α
b− y

)

(b)
〉

+

∫ b

a

〈

Da
b−x (t)Da

b−y (t)
〉

dt

are Hilbert spaces (the norms defined by the above inner products are equivalent to

the norms given by (1.8) and (1.9)).

Moreover, we have the following simple characterization of the weak convergence

in ACα,2
a+ (and analogously, in the space ACα,2

b− ).

Proposition 1.9. A sequence {xk} ⊂ AC
α,2
a+ tends to x0 ∈ AC

α,2
a+ weakly in AC

α,2
a+

(we shall write xk ⇀ x0 to denote it) if and only if
〈(

DiIn−α
a+ xn

)

(a) , c
〉

Rm →
〈(

DiIn−α
a+ x0

)

(a) , c
〉

Rm

and
∫ b

a
Da

a+xn (t)ϕ (t) dt →
∫ b

a
Da

a+x0 (t)ϕ (t) dt for any c ∈ R
m, i = 0, 1, . . . , n − 1

and any ϕ ∈ L2.

2. THE SPACE OF SOLUTIONS

Let α ∈ (n− 1, n), with n = 2, . . .. Let us consider the following boundary

problem

(2.1)

D1
(

. . .D1
(

D
α−(n−1)
b− Dα

a+x (t) − In−α
b− Fx1

(

Dα−1
a+ x (t) , . . . , D

α−(n−1)
a+ x (t) , x (t) , t

))

+ . . .+ (−1)n−1In−α
b− Fxn−1

(

Dα−1
a+ x (t) , . . . , D

α−(n−1)
a+ x (t) , x (t) , t

))

= (−1)n−1Fxn

(

Dα−1
a+ x (t) , . . . , D

α−(n−1)
a+ x (t) , x (t) , t

)

for a.e. t ∈ [a, b]

(2.2)
(

DiIn−α
a+ x

)

(a) = 0 and
(

Ia−iDα
a+x
)

(b) = 0 for i = 0, . . . , n− 1

where F : (Rm)n × [a, b] → R
m.
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We seek solutions to (2.1)–(2.2) in the space

Hα
0 ([a, b] ,Rm) = Hα

0

=
{

x ∈ AC
α,2
a+ :

(

DiIn−α
a+ x

)

(a) = 0 and
(

Ia−iDα
a+x
)

(b) = 0 for i = 0, . . . , n− 1
}

.

Remark 2.1. If x ∈ Hα
0 then x ∈ Iα

a+ (L2), consequently for x ∈ Hα
0 all conclusions

of Proposition 1.3 are true.

We have the following

Lemma 2.2 (Fractional Poincaré Inequality). If α ∈
(

n− 1
2
, n
)

, n ∈ N, then

(
∫ b

a

|x (t)|2 dt
)

1

2

≤ Cα

(
∫ b

a

∣

∣

(

Dα
a+x
)

(t)
∣

∣

2
dt

)

1

2

for x ∈ Iα
a+ (L2), where Cα := (b−a)α

Γ(α)
√

2α−1
.

Proof. First, let us notice that since α > 1
2

therefore the function (a, t) ∋ s 7→
(t− s)α−1 belongs to the space L2 ([a, t] ,R). The application of Proposition 1.5 and

the Hölder inequality lead to

|x (t)| ≤
∣

∣

(

Iα
a+D

α
a+x
)

(t)
∣

∣ =
1

Γ (α)

∫ t

a

∣

∣

(

Dα
a+x
)

(s)
∣

∣

(t− s)1−α
ds

≤ 1

Γ (α)

(
∫ t

a

(t− s)2(α−1)
ds

)

1

2

(
∫ t

a

∣

∣

(

Dα
a+x
)

(s)
∣

∣

2
ds

)

1

2

≤ (b− a)α− 1

2

Γ (α)
√

2α− 1

(
∫ b

a

∣

∣

(

Dα
a+x
)

(s)
∣

∣

2
ds

)

1

2

.

Consequently

(
∫ b

a

|x (t)|2 dt
)

1

2

≤
√

(b− a) esssup
t∈[a,b]

|x (t)|2

≤ (b− a)α

Γ (α)
√

2α− 1

(
∫ b

a

∣

∣

(

Dα
a+x
)

(s)
∣

∣

2
dt

)

1

2

.

Remark 2.3. Let us note that if x ∈ Ik (L2) with k ∈ N then using the similar

argumentation as in the proof of Fractional Poincaré Inequality it can be proved that

(2.3)

(
∫ b

a

|x (t)|2 dt
)

1

2

≤ Ck

(
∫ b

a

∣

∣x(k) (t)
∣

∣

2
dt

)

1

2

,

where Ck = (b−a)k

(k−1)!
√

2k−1

As a consequence of Remark 2.3 and Propositions 1.6 and 1.7 we have the fol-

lowing
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Lemma 2.4. If x ∈ Iα
a+ (L2), where α ∈ (n− 1, n), n ∈ N, then

(
∫ b

a

∣

∣Dα−i
a+ x (t)

∣

∣

2
dt

)

1

2

≤ Ci

(
∫ b

a

∣

∣Dα
a+x (t)

∣

∣

2
dt

)

1

2

for i = 1, . . . , n− 1.

Remark 2.5. The constants Ci and Cα may not be optimal. For instance in the

classical Poincaré Inequality for the space H1
0 and the interval [0, π] its is proved that

the optimal constant equals 1 (see [3]). It should be emphasize that the constants are

given explicite.

3. THE MAIN RESULT

In this section we present a general assumptions and then formulate and prove

the main result of the paper.

In what follows we shall assume that:

(A1) The function F is a Carathodory function i.e. the function

[a, b] ∋ t 7→ F (x1, . . . , xn, t)

is measurable for (x1, . . . , xn) ∈ (Rm)n and the function

(Rm)n ∋ (x1, . . . , xn) 7→ F (x1, . . . , xn, t)

is continuous for a.e. t ∈ [a, b].

(A2)

F (x1, . . . , xn, t) ≤
n
∑

i=1

ai

2
|xi|2 +

n
∑

i=1

bi |xi| + γ (t) ,

for xi ∈ R
m, a.e. t ∈ [a, b], where ai > 0, bi ∈ R, for i = 0, 1, . . . , n − 1 and

γ ∈ L1 ([a, b] ,R).

(A3) The coefficients ai > 0, bi ∈ R, i = 0, 1, . . . , n− 1 satisfy the following relation

1 − anC
2
α −

n−1
∑

i=1

aiC
2
i > 0,

where Ci, i = 0, 1, . . . , n− 1 and Cα are given in the Poincaré Inequalities (see

Remark 2.5).

(A4) The function F possesses partial derivatives Fxi
, for a.e. t ∈ [a, b] and every

xi ∈ R
m, i = 0, 1, . . . , n− 1 and every Fxi

is a Carathodory function.

(A5) For any r > 0 there is a function γr ∈ L1 ([a, b] ,R) such that

|F (x1, . . . , xn, t)| ≤ γr (t)

|Fxi
(x1, . . . , xn, t)| ≤ γr (t)

for a.e. t ∈ [a, b] and every xi ∈ R
m such that |xi| ≤ r, i = 0, 1, . . . , n− 1.
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The proof of the main theorem on the existence of solution to (2.1)–(2.2) is based

on some variational methods. Namely we define a functional L : Hα
0 → R of the form

L (x) =
1

2

∫ b

a

∣

∣Dα
a+x (t)

∣

∣

2
dt−

∫ b

a

F
(

Dα−1
a+ x (t) , . . . , D

α−(n−1)
a+ x (t) , x (t) , t

)

dt

and then we prove that L possesses a minimum point x ∈ Hα
0 . Finally, application of

a fractional version of the fundamental lemma gives us a solution. For the convenience

of the reader we formulate the aforementioned lemma

Lemma 3.1 (Fundamental Lemma (see [1])). If α ∈
(

n− 1
2
, n
)

< n, n = 2, . . .,

α0, α1, β1, . . . , βn−1 ∈ L2([a, b],Rm) and

∫ b

a

(α1(t)(D
α
a+h)(t)dt−

n−1
∑

i=1

∫ b

a

βi(t)(D
α−i
a+ h)(t)dt−

∫ b

a

α0(t)h(t)dt = 0

for any h ∈ Hα
0 , then there exists the derivative D

α−(n−1)
b− α1, the functions

D
α−(n−1)
b− α1 − In−α

b− β1

D1(D
α−(n−1)
b− α1 − In−α

b− β1) + In−α
b− β2

D1(D1(D
α−(n−1)
b− α1 − In−α

b− β1) + In−α
b− β2) − In−α

b− β3

...

D1(. . .D1(D
α−(n−1)
b− α1 − In−α

b− β1) + . . .+ (−1)n−2In−α
b− βn−2) + (−1)n−1In−α

b− βn−1

are absolutely continuous and

D1
(

. . .D1
(

D
α−(n−1)
b− α1 − In−α

b− β1

)

+ . . .+ (−1)n−1In−α
b− βn−1)

)

= (−1)n−1a0

a.e. on [a, b] (the operator D1 acts (n− 1) times).

In the proof of the main theorem we use the following consequences of the weak

convergence in the space Iα
a+ (L2).

Lemma 3.2. Suppose that α ∈
(

n− 1
2
, n
)

, n = 2, . . ., p > 1. If {xk} ⊂ Iα
a+ (L2)

and xk ⇀ x0 ∈ Iα
a+ (L2) weakly in Iα

a+ (L2), then xk ⇉ x0 and Dα−i
a+ xk ⇉ Dα−i

a+ x0

uniformly on [a, b] for i = 1, . . . , n− 1.

Proof. Fix i ∈ {1, . . . , n− 1}. To begin with we will prove that {xk} and
{

Dα−i
a+ xk

}

are relatively compact in the topology of the space C ([a, b] ,Rm) of continuous func-

tion with the standard supremum norm (note that in virtue of Proposition 1.7 x,

Dα−i
a+ x ∈ I i

a+ (L2) ⊂ C ([a, b] ,Rm)). Since {xk} is weakly convergent, therefore it is

bounded, consequently taking into account the same argumentation as in the proof

of Lemma 2.2 we get

|xk (t)| ≤ C ‖xk‖+ = c,
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for t ∈ [a, b] and k ∈ N, where C > 0. Next, thanks to Proposition 1.7 (3) and the

Hölder inequality, we get for a ≤ t1 ≤ t2 ≤ b and k ∈ N that

∣

∣

(

Dα−i
a+ xk

)

(t1) −
(

Dα−i
a+ xk

)

(t2)
∣

∣ =
∣

∣

(

I iDα
a+xk

)

(t1) −
(

I iDα
a+xk

)

(t2)
∣

∣

=
1

(i− 1)!

∣

∣

∣

∣

∣

∫ t1

a

(

Dα
a+xk

)

(s)

(t1 − s)1−i
ds−

∫ t2

a

(

Dα
a+xk

)

(s)

(t2 − s)1−i
ds

∣

∣

∣

∣

∣

≤ 1

(i− 1)!

∫ t1

a

∣

∣

(

Dα
a+xk

)

(s)
∣

∣

∣

∣

∣
(t1 − s)i−1 − (t2 − s)i−1

∣

∣

∣
ds

+
1

(i− 1)!

∫ t2

t1

∣

∣

(

Dα
a+xk

)

(s)
∣

∣

(t2 − s)1−i
ds

≤ 1

(i− 1)!

(
∫ t1

a

∣

∣

(

Dα
a+xk

)

(s)
∣

∣

2
ds

)

1

2

(
∫ t1

a

∣

∣

∣
(t2 − s)2i−2 − (t1 − s)2i−2

∣

∣

∣
ds

)

1

2

+
1

(i− 1)!

(
∫ t2

t1

∣

∣

(

Dα
a+xk

)

(s)
∣

∣

2
ds

)

1

2

(
∫ t2

t1

(t2 − s)2i−2
ds

)

1

2

≤ ‖xk‖+

1

(i− 1)!
√

2i− 1

((

(t2 − a)2i−1 − (t1 − a)2i−1 − (t2 − t1)
2i−1
))

1

2

+ ‖xk‖+

1

(i− 1)!
√

2i− 1
(t2 − t1)

i− 1

2

≤ c̄

√

∣

∣

∣
(t1 − a)2i−1 − (t2 − a)2i−1

∣

∣

∣
+ 2c̄ (t2 − t1)

i− 1

2 .

Consequently, the sequence
{

Dα−i
a+ xk

}

is equicontinuous. In a similar fashion it can

be proved that the sequence
{

Dα−i
a+ xk

}

is equibounded. Using Arzelà-Ascoli theorem

we get that
{

Dα−i
a+ xk

}

is relatively compact. In the same way, applying equality

xk = Iα
a+D

a
a+xk, we get that {xk} is also relatively compact. It is easy to notice

that xk ⇀ x0 weakly in C ([a, b] ,Rm) therefore each subsequence of {xk} must be

convergent in C ([a, b] ,Rm) to x0 which means that xk → x0 in C ([a, b] ,Rm).

Moreover, since

sup
t∈[a,b]

∣

∣Dα−i
a+ x (t)

∣

∣ ≤ c ‖x‖+

for x ∈ Iα
a+ (L2) therefore the operator T : Iα

a+ (L2) ∋ x 7→ Dα−i
a+ x (t) ∈ C ([a, b] ,Rm) is

linear and continuous and, as a consequence, Dα−i
a+ xk ⇀ Dα−i

a+ x0 weakly in C ([a, b] ,Rm).

Thus, Dα−i
a+ xk → Dα−i

a+ x0 in C ([a, b] ,Rm).

Now, we can prove the main result of the paper.

Theorem 3.3. Assume (A1)–(A5) then problem (2.1)–(2.2) possesses at least one

solution which minimizes functional L.
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Proof. Let x ∈ Hα
0 , then by (A2) and applying Hölder and Poincaré inequalities we

get

L (x) =
1

2

∫ b

a

∣

∣Dα
a+x (t)

∣

∣

2
dt−

∫ b

a

F
(

Dα−1
a+ x (t) , . . . , D

α−(n−1)
a+ x (t) , x (t) , t

)

dt

≥ 1

2
‖x‖2

+ − an

2

∫ b

a

|x (t)|2 dt−
n−1
∑

i=1

ai

2

∫ b

a

∣

∣Dα−i
a+ x (t)

∣

∣

2
dt

− bn

∫ b

a

|x (t)| dt−
n−1
∑

i=1

bi

∫ b

a

∣

∣Dα−i
a+ x (t)

∣

∣ dt−
∫ b

a

γ (t) dt

≥ 1

2
‖x‖2

+ − an

2
C2

α

∫ b

a

∣

∣Dα
a+x (t)

∣

∣

2
dt−

n−1
∑

i=1

ai

2
C2

i

∫ b

a

∣

∣Dα
a+x (t)

∣

∣

2
dt

− bn
√
b− a

(
∫ b

a

|x (t)|2 dt
)

1

2

−
n−1
∑

i=1

bi
√
b− a

(
∫ b

a

∣

∣Dα−i
a+ x (t)

∣

∣

2
dt

)

1

2

− ‖γ‖L1

≥ 1

2

(

1 − anC
2
α −

n−1
∑

i=1

aiC
2
i

)

‖x‖2
+ −

√

(b− a)

(

Cαbn +

n−1
∑

i=1

Cibi

)

‖x‖+ − ‖γ‖L2 .

Consequently, by (A3) L is coercive. Let xk ⇀ x0 weakly in Hα
0 . From Lemma 3.2

it follows that xk ⇉ x and Dα−i
a+ xk ⇉ Dα−i

a+ x0 thus by the dominated convergence

theorem (we use here assumption (A5)) we get that

lim
k→∞

∫ b

a

F
(

Dα−1
a+ xk (t) , . . . , D

α−(n−1)
a+ xk (t) , xk (t) , t

)

dt

=

∫ b

a

F
(

Dα−1
a+ x0 (t) , . . . , D

α−(n−1)
a+ x0 (t) , x0 (t) , t

)

dt.

Moreover, since the function x 7→ ‖x‖+ is weakly lower semicontinuous therefore we

have

liminf
k→∞

J (xk) = liminf
k→∞

1

2
‖xk‖2

++ lim
k→∞

∫ b

a

F
(

Dα−1
a+ xk (t) , . . . , D

α−(n−1)
a+ xk (t) , xk (t) , t

)

≥ 1

2
‖x0‖2

+ +

∫ b

a

F
(

Dα−1
a+ x0 (t) , . . . , D

α−(n−1)
a+ x0 (t) , x0 (t) , t

)

dt = J (x0) ,

thus the functional L is sequentially weakly lower semicontinuous and in virtue of

Proposition 1.1 we have that it possesses minimum at a point x̄ ∈ Hα
0 .

Thanks to (A4) and (A5) we have that the Lagrange variation ΦL (x, h) of L
exists at any point x ∈ Hα

0 and at any direction h ∈ Hα
0 , thus using Fermat lemma

we get that
∫ b

a

(

Dα
a+x̄
)

(t)
(

Dα
a+h
)

(t) dt

−
n−1
∑

i=1

∫ b

a

Fxi

(

Dα−1
a+ x̄ (t) , . . . , D

α−(n−1)
a+ x̄ (t) , x̄ (t) , t

)

Dα−i
a+ h (t) dt
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=

∫ b

a

Fxn

(

Dα−1
a+ x̄ (t) , . . . , D

α−(n−1)
a+ x̄ (t) , x̄ (t) , t

)

h (t) dt

for h ∈ Hα
0 . Applying fundamental lemma 3.1 we obtain that there existsD

α−(n−1)
b− Dα

a+x̄

and

D1
(

· · ·D1
(

D
α−(n−1)
b− Dα

a+x̄− In−α
b− Fx1

(

Dα−1
a+ x̄ (t) , . . . , D

α−(n−1)
a+ x̄ (t) , x̄ (t) , t

))

· · ·+ (−1)n−1In−α
b− Fxn−1

(

Dα−1
a+ x̄ (t) , . . . , D

α−(n−1)
a+ x̄ (t) , x̄ (t) , t

))

= (−1)n−1Fxn

(

Dα−1
a+ x̄ (t) , . . . , D

α−(n−1)
a+ x̄ (t) , x̄ (t) , t

)

The boundary conditions (2.2) are satisfied thanks to the fact that x̄ ∈ Hα
0 .
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