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ABSTRACT. We enlarge the range of critical exponent β of the communication rate for uncondi-
tional flocking in the model proposed by Motsch, S. and Tadmor, E. [J. Statist. Phys., 141 (2011),
923–947], and describe an asymmetric stochastic model which emphasizes the asymmetric inter-
action between agents and employs the multiplicative white noise for the stochastic forces acting
on ith-agent. For the case of asymmetric communication rate, we present sufficient conditions to
guarantee the strong stochastic flocking to occur and show the almost sure exponential convergence
toward constant equilibrium state through the control of the parameters and initial data. Our results
are illustrated through the numerical simulations.
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1. INTRODUCTION

Emergent collection behaviors such as flocking, consensus, and synchronization

are ubiquitous phenomena that often found in a group of autonomous agents such as

species of fishes, birds, bacteria, etc. [1, 3, 4, 5, 7, 11]. The terminology 11flocking”

represents phenomena in which self-propelled particles using only limited environ-

mental information and simple rules organize into an ordered motion. In recent

years, many models have been introduced to appraise the emergent behavior of self-

organized systems. The starting point for our discussion is the pioneering work of

F. Cucker, S. Smale [5, 6], S. Y. Ha [7, 8], S. Motsch and E. Tadmor [11], which led

to many subsequent studies.

1.1. Motsch-Tadmor model. In the recent paper, Motsch and Tadmor [11] intro-

duced a new model for self-organized dynamics which addressed several drawbacks of

the celebrated CS model. They argued that if a small group of individuals are located

far away from a much larger group of individuals, the internal dynamics in the small

Received March 30, 2015 1056-2176 $15.00 c©Dynamic Publishers, Inc.



504 Y. LIU AND X. XUE

group is almost halted since the number of individuals is large. Their model can be

written as dxi = vidt

dvi = α
∑N

j 6=i aij(vj − vi)dt
(1.1)

where α is a positive constant and the coefficients aij, given by,

aij =
φ(|xj − xi|)∑N
k=1 φ(|xk − xi|)

> 0,

while φ(r) = (1 + r)−2β, β > 0 is the influence function. The system (1.1) can be

rewritten in the form dxi = vidt

dvi = α(vi − vi)dt
(1.2)

where vi =
∑N

j=1 aijvj,
∑N

j=1 aij = 1.

They developed a new framework to analyze the phenomenon of flocking for

a rather general class of dynamical systems of the form. The paper utilized the

concept of active sets which enable to define the notion of a neighborhood of the

an agent and were able to find explicit criteria for the unconditional emergence of a

flock. In particular, they derived a sufficient condition for flocking of their proposed

model: flocking occurs independent of the initial configuration, when the interaction

function φ decayed sufficiently slowly so that its tail is not square integrable (i.e.∫∞
φ2(r)dr =∞).

1.2. The stochastic CS models. Recently several mathematical models for flock-

ing were introduced and analyzed [5, 6, 20, 21, 22]. Among them, their main interest

in their papers is the work of Cucker and Smale [5, 6]. But the general CS model does

not take into account any interactions between the particles system and the environ-

ment. One possible way of modeling such interactions is to add noises terms to the

deterministic dynamical system. Therefore after Cucker and Smale’s seminal works,

several extension of the CS model with general communication rates and external

forces have been addressed in many papers [4, 7, 8]. In [7] and [8] the main interest

is to investigate how additive white noises (1.3) and multiplicative white noises (1.4)

affect the long-time dynamics of the CS flocking model. These two kinds of stochastic

CS models read as:dxi = vidt, t > 0

dvi = λ
N

∑N
j=1 ψji(vj − vi)dt+

√
DdWi, 1 ≤ i ≤ N.

(1.3)
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and dxi = vidt, t > 0

dvi = λ
N

∑N
j=1 ψji(vj − vi)dt+Dgi(v)dWt, 1 ≤ i ≤ N.

(1.4)

where λ is a positive coupling strength and D is a non-negative noise strength. In

system (1.3), the noise term dWi is i.i.d. and d-dimensional white noise characterized

by mean zero and the following covariance relation: for 1 ≤ α, β ≤ d, 1 ≤ i, j ≤ N ,

E(dWα
i (t)) = 0, V (dWα

i (t)dW β
j (t∗)) = δαβδijδ(t− t∗).

While in system (1.4), W (t) is the one-dimensional Brownian motion. The white

noise dW (t) is characterized by mean zero and its covariance relation,

E(dW (t)) = 0, V (dW (t)dW (t∗)) = δ(t− t∗).

where δij is the Dirac delta function, and

gi(v) = vi − ve, ve : a constant state in Rd.

Flocking in above two systems were studied in two setups: a constant communication

rate ψ = 1 and a radially symmetric rate ψ(|xi − xj|2). For additive white noises

in the system (1.3), when the communicate rate between the particles was assumed

to be constant, the system exhibited a flocking behavior that is independent of the

initial configuration and in the radially symmetric communication rate case the sys-

tem showed that the relative fluctuations of the particle velocity around the mean

velocity have a uniformly bounded variance in time by adding a lower bound assump-

tion, but there existed an unconditional strong flocking in the above two cases of

communication rates for multiplicative white noises in the system (1.4).

1.3. An asymmetric stochastic model. However for the biological groups such as

birds, fishes, ants, etc., the asymmetric communication weight is more realistic. In-

spired by the above papers, we present an asymmetric stochastic model. Our model

emphasizes the asymmetric interaction between agents and employs multiplicative

white noises for the stochastic forces acting on ith-agent. We not only modify draw-

back produced by symmetric interaction between agents but also consider the inter-

actions with their neighboring environment such as fluids, external forcing, stochastic

noises, etc. Let (xi(t), vi(t)) ∈ R2d represent the position and velocity of particle i,

so we present model which can be written as follow:dxi = vidt,

dvi = α
∑N

j=1 aij(vj − vi)dt+DvidWt,
(1.5)

subject to deterministic initial data

(xi, vi)(0) = (xi0, vi0), i = 1, 2, . . . , N.
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Here aij 6= aji, lack the symmetry property, and DvidWt show the influence between

agents and environment with multiplicative white noises.

The purpose of this paper is to study the time-asymptotic flocking for this model.

Our starting point is to revisit the definition of strong flocking which was established

in the previous context once. The rest of the paper is organized as follows. In section 2

we first improve the flocking estimates for general symmetric communication rates

in [11] and then introduce an asymmetric stochastic model. For the asymmetric

communication rate between agents, we explicitly obtain all statistical quantities

about the random dynamical system which leads to time-asymptotic strong flocking.

[See Definition 2.7]. The main result is summarized in Theorem 2.13. In the end of

Sec. 2, we prove that the mean velocity of each agent is convergent when t → +∞.

Numerical simulations for the cases studied in this work are shown and discussed

in section 3. We end section 4 with concluding remarks. For reader’s convenience,

we shall briefly introduce the mathematical definition of Brownian motions and the

relation between white noise and Brownian motions.

Definition 1.1. Let (Ω,F , P ) be a probability space with a filtration {Ft}t≥0. A

(standard) one-dimensional Brownian motions is a real-valued continuous {Ft}-adapted

process {Wt(ω)}t≥0 with the following properties:

1. W0 = 0 a.s.;

2. for 0 ≤ s < t < ∞, the increment Wt(ω) −Ws(ω) is normally distributed with

mean zero and variance t− s;
3. for 0 ≤ s < t <∞, the increment Wt(ω)−Ws(ω) is independent of {Fs}.

Definition 1.2. The stochastic process Xt(ω) is white noise process to satisfy the

following properties:

1. Xt1(ω) and Xt2(ω) are independent if t1 6= t2;

2. {Xt(ω)} is stationary, i.e. the (joint) distribution of {Xt1+t(ω), . . . , Xtk+t(ω)}
does not depend on t;

3. E(Xt(ω)) = 0 for all t.

From above definitions, we known that so-called white noise is formally regard

as the derivative of a Brownian motion Wt(ω), i.e. Xt(ω) = dWt(ω). For notational

convenience, we omit variable “ω”. For any random variable, Xt(ω) means Xt as

long as there is no confusion. In this paper, Rd represents Euclidean spaces, 〈·, ·〉
represents inner product, and | · | represents Euclidean norm.

2. THE MOTSCH-TADMOR MODEL WITH NOISES

2.1. Critical exponent for unconditional flocking without noise. In this sec-

tion, we want to improve the flocking estimate for general symmetric communication
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rates in [11] and prove that there will exist unconditional flocking for slowly decaying

influence function as long as
∫∞

φ(r)dr = ∞ compared to
∫∞

φ2(r)dr = ∞ in [11].

In other words we amplify communication rate φ(·) with parameter β from 1
4

to 1
2
.

Definition 2.1. Let (xi(t), vi(t))i=1,2,...,N be a given particles system, and let Ax(t)

and Av(t) denote its diameters in position and velocity phase spaces, that is

Ax(t) = max
1≤i 6=j≤N

|xj(t)− xi(t)|,

Av(t) = max
1≤i 6=j≤N

|vj(t)− vi(t)|.

Lemma 2.2. Let (xi, vi) be a solution of the dynamical system (1.1). Then,

〈vi − vj, vi − vj〉 ≤
(

1− φ(Ax(t))

N

)
A2
v(t).

Proof. Using system (1.1) we have

vi − vj =
N∑
p=1

aipvp − vj =
N∑
p=1

aip(vp − vj)

=
N∑
p=1

aip(vp −
N∑
q=1

ajqvq) =
N∑
p=1

aip

(
N∑
q=1

ajqvp −
N∑
q=1

ajqvq

)

=
N∑
p=1

aip

N∑
q=1

ajq(vp − vq).

Hence

〈vi − vj, vi − vj〉 = 〈vi − vj,
N∑

p,q=1

aipajq(vp − vq)〉

=
N∑

p,q=1

aipajq〈vi − vj, vp − vq〉

=
N∑
p=1

aip

N∑
q 6=p

ajq〈vi − vj, vp − vq〉.

Since
N∑
j=1

aij = 1, aij =
φ(|xj − xi|)∑N
k=1 φ(|xk − xi|)

≥ φ(Ax(t))

N
.

We get

〈vi − vj, vi − vj〉 =
N∑
p=1

aip

N∑
q 6=p

ajq〈vi − vj, vp − vq〉

=
N∑
p=1

aip(1− ajp)〈vi − vj, vp − vq〉
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≤
(

1− φ(Ax(t))

N

)
A2
v(t).

Lemma 2.3. Let (xi, vi) be a solution of the dynamical system (1.1). Then the

diameters of this solution Ax(t) and Av(t) satisfy, d
dt
Ax(t) ≤ Av(t),

d
dt
Av(t) ≤ − α

N
φ(Ax(t))Av(t).

(2.1)

Proof. We fix our attention to two trajectories xp(t) and xq(t), where p and q will be

determined later.

d

dt
|xp − xq|2 = 2〈xp − xq, ẋp − ẋq〉 ≤ 2|xp − xq| · |vp − vq|,

which implies

d

dt
|xp − xq| ≤ Av(t).

Let |xp − xq| = Ax(t), therefore we get

d

dt
Ax(t) ≤ Av(t).

Next, we turn to study the corresponding to relative speeds in velocity phase space,

and use Lemma 2.2 we have

d

dt
|vp − vq|2 = 2α〈vp − vq, vp − vq〉 − 2α|vp − vq|2

= 2α
N∑
j=1

N∑
i=1

apjaqi〈vp − vq, vj − vi〉 − 2α|vp − vq|2

≤ 2αA2
v(t)

N∑
j=1

apj(1− aqj)− 2α|vp − vq|2

≤ 2αA2
v(t)

(
1− φ(Ax(t))

N

)
− 2α|vp − vq|2.

In particular, if we choose p and q such that |vp − vq| = Av(t), that is

d

dt
Av(t) ≤ −

α

N
φ(Ax(t))Av(t).

Theorem 2.4. Consider the diameters Ax(t) and Av(t) governed by the inequalities

(2.1) in the system (1.1), where φ(r) = (1 + r)−2β, β > 0 is its influence function

such that

Av(0) <
α

N

∫ ∞
Ax(0)

φ(r)dr.(2.2)
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Then the underlying dynamical system (1.1) exhibits a flocking behavior, that is

sup
0≤t<+∞

Ax(t) < +∞ and lim
t→+∞

Av(t) = 0.

In particular, if φ(r) has a diverging tail,∫ ∞
Ax(0)

φ(r)dr =∞.

Then there is unconditional flocking.

Proof. Let

ξ(Ax, Av)(t) = Av(t) +
α

N

∫ Ax(t)

Ax(0)

φ(s)ds.

The energy function ξ is decreasing along the trajectory (Ax, Av),

d

dt
ξ(Ax, Av) =

d

dt
Av +

α

N
φ(Ax(t)) ·

d

dt
Ax

≤ − α
N
φ(Ax(t))Av(t) +

α

N
φ(Ax(t))Av(t) = 0,

and we deduce that,

Av(t)− Av(0) ≤ − α
N

∫ Ax(t)

Ax(0)

φ(s)ds.

By our assumption (2.2), there exists A∗ > Ax(0), such that

Av(0) =
α

N

∫ A∗

Ax(0)

φ(s)ds,

and the above inequality now reads,

Av(t) ≤
α

N

∫ A∗

Ax(0)

φ(s)ds− α

N

∫ Ax(t)

Ax(0)

φ(s)ds =
α

N

∫ A∗

Ax(t)

φ(s)ds.

Since Av(t) ≥ 0, we conclude that we have a flock with a uniformly bounded diameter,

Ax(t) ≤ A∗ for all t ≥ 0.

Hence we obtain

d

dt
Av(t) ≤ −

α

N
φ∗Av(t) = − α

N
φ(A∗)Av(t), φ∗ := min

0≤r≤A∗
φ(r) = φ(A∗),

and Gronwall inequality proves that Av(t) converges exponentially fast to zero. So if∫ ∞
Ax(0)

φ(r)dr =∞.

there is unconditional flocking.

Remark 2.5. There was an example in [6] showed that when β > 1
2

convergence

is guaranteed under some condition on initial positions and velocities of agents only.

Next we will present a model incorporated with multiplicative white noises and will

find that there exists an unconditional flocking for all β ≥ 0.
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2.2. The Motsch-Tadmor model with noises. Now we present an asymmetric

stochastic flocking model in which we assume that particles interact with the envi-

ronment via stochastic noise and the normalization of pairwise interaction between

agents in terms of relative influence has the consequence of loss of symmetry. Let

(xi(t), vi(t)) ∈ R2d represent the position and velocity of particle i. The asymmetric

stochastic dynamics is then governed by the following process:dxi = vidt,

dvi = α
∑N

j=1 aij(vj − vi)dt+DvidWt

(2.3)

where α is a nonnegative constant and the coefficients aij, given by,

aij =
φ(|xj − xi|)∑N
k=1 φ(|xk − xi|)

,

lack the symmetry property, aij 6= aji. In this model, we employ multiplicative white

noises for the stochastic forces acting on ith-agent,

DvidWt,

where D is a non-negative constant proportional to noise strength and Wt is the one-

dimensional Brownian motion. The white noise dWt is characterized by mean zero

and its covariance relation,

E(dWt) = 0, V (dWtdWt∗) = δ(t− t∗)

where δ is the Dirac delta function, and subject to deterministic initial data

(xi, vi)(0) = (xi0, vi0), i = 1, 2, . . . , N.

Remark 2.6. When noise terms are turned off, i.e. D = 0, the above definition

exactly coincides with the definition of asymptotic flocking in the deterministic case.

In this section, we discuss the tools to study the flocking behavior for a rather

general class of dynamical systems of the form. The model (2.3) can be written as,

(2.4)

dxi = vidt,

dvi = α(vi − vi)dt+DvidWt.

where vi =
∑N

j=1 aijvj,
∑N

j=1 aij = 1.

Definition 2.7. The stochastic system (2.3) has an asymptotic strong stochastic

flocking if and only if the position-velocity process (xi, vi), i = 1, 2, . . . , N , satisfy the

following two conditions: for 1 ≤ i, j ≤ N ,

(1) the differences of all pairwise velocity processes go to zero asymptotically,

lim
t→+∞

|vi(t)− vj(t)| = 0. a.s.
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(2) the diameter of a group is uniformly bounded in time t,

sup
0≤t<+∞

|xi(t)− xj(t)| < +∞. a.s.

Remark 2.8. The system (xi(t), vi(t))i=1,2,...,N is said to converge to a flock if the

following two conditions hold,

sup
0≤t<+∞

Ax(t) < +∞ and lim
t→+∞

Av(t) = 0. a.s.

Next we will give the main results in our paper.

2.2.1. A two-particle system. We give here a more detailed analysis of the case of two

agents on a line and the system read as

(2.5)


dx1 = v1dt, dx2 = v2dt,

dv1 = αa12(v2 − v1)dt+Dv1dWt,

dv2 = αa21(v1 − v2)dt+Dv2dWt.

We define x = x1 − x2 and v = v1 − v2. Then x and v satisfy

(2.6)

dx = vdt,

dv = −α(a12 + a21)vdt+DvdWt.

Theorem 2.9. Assume that α < 0 (repulsive coupling) and D2 > −2αmax{a12, a21},
let (x, v) be the solution to the system (2.6). Then

lim
t→+∞

|v(t)| = 0. a.s.

Proof. We apply Itô’s formula to obtain

|v(t)| = |v0|e−
1
2

R t
0 (D2+α(a12+a21))ds+DWt .

Since D2 > −2αmax{a12, a21}, there exists c1 > 0 to satisfy

D2 + α(a12 + a21) > D2 + 2αmax{a12, a21} ≥ c1 > 0.

We use

lim sup
t→∞

|W (t)|√
2t log log t

= 1. a.s.

So there exist constants c2 and T (D) such that

−1

2
c1t+DWt ≤ −c2t, (t ≥ T (D)).

Thus we have

|v(t)| = |v0|e−
1
2

R t
0 (D2+α(a12+a21))ds+DWt

≤ |v0|e(− 1
2
c1t+DWt)

≤ |v0|e−c2t, (t ≥ T (D)).
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That is

lim
t→+∞

|v(t)| = 0. a.s.

Remark 2.10. Even if there exists the repulsive coupling(α < 0), we still have flock-

ing as long as repulsive coupling is sufficiently weak, or the noise strength is sufficiently

strong in the stochastic asymmetric model with multiplicative white noises.

2.2.2. Multiple particles system. In the following, we study the asymmetric stochastic

system for general multi-agent system and find the dynamics of our proposed model

experience unconditional flocking with the influence of multiplicative white noises.

Lemma 2.11. Let (xi, vi) be the solution to the system (2.3). Then (Ax(t), Av(t))

satisfy dA2
x(t) ≤ 2 · Ax(t) · Av(t)dt,

dA2
v(t) ≤ (−2α · φ(Ax(t))

N
+D2)A2

v(t)dt+ 2DA2
v(t)dWt.

Proof. Fix i and j which will be determined later.

(1) We use Itô’s formula dt ·dt = 0, dt ·dWt = 0, dWt ·dWt = dt and Cauchy-Schwartz

inequality to obtain

d|xi(t)− xj(t)|2 = 2〈xi − xj, dxi − dxj〉+
1

2
· 2〈dxi − dxj, dxi − dxj〉

= 2〈xi − xj, vi − vj〉dt+ 〈vi − vj, vi − vj〉dt · dt

= 2〈xi − xj, vi − vj〉dt

≤ 2 · |xi − xj| · |vi − vj|dt

≤ 2Ax(t) · Av(t)dt.

Since i and j are arbitrary, we have

dA2
x(t) ≤ 2 · Ax(t) · Av(t)dt.

(2) We choose i and j randomly,

(*) d|vi − vj|2 = 2〈vi − vj, dvi − dvj〉+
1

2
· 2〈dvi − dvj, dvi − dvj〉.

The second term on the right-hand of the formula (∗) can be treated, and use

Itô’s formula dt · dt = 0, dt · dWt = 0 and dWt · dWt = dt to find

〈dvi − dvj, dvi − dvj〉

= 〈α(vi − vi)dt+DvidWt − α(vj − vj)dt−DvjdWt, α(vi − vi)dt+DvidWt

− α(vj − vj)dt−DvjdWt〉

= 〈α(vi − vi − vj + vj)dt+D(vi − vj)dWt, α(vi − vi − vj + vj)dt+D(vi − vj)dWt〉
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= α2〈vi − vi − vj + vj, vi − vi − vj + vj〉dt · dt

+ 2αD〈vi − vi − vj + vj, vi − vj〉dt · dWt +D2〈vi − vj, vi − vj〉dWt · dWt

= D2|vi − vj|2dt.

The first term on the right-hand of the formula (∗) is indicated below

2〈vi − vj, dvi − dvj〉

= 2〈vi − vj, α(vi − vi)dt+DvidWt − α(vj − vj)dt−DvjdWt〉

= 2[〈vi − vj, α(vi − vj)〉dt− α〈vi − vj, vi − vj〉dt+ 〈vi − vj, D(vi − vj)dWt〉]

= 2α〈vi − vj, vi − vj〉dt− 2α|vi − vj|2dt+ 2D|vi − vj|2dWt.

Using Lemma 2.2 we get

2α〈vi − vj, vi − vj〉dt = 2α
N∑
p=1

aip

N∑
q 6=p

ajq〈vi − vj, vp − vq〉dt

= 2α
N∑
p=1

aip(1− ajp)〈vi − vj, vp − vq〉dt

≤ 2α

(
1− φ(Ax(t))

N

)
A2
v(t)dt.

So

d|vi − vj|2 = 2〈vi − vj, dvi − dvj〉+ 〈dvi − dvj, dvi − dvj〉

≤ 2αA2
v(t)

(
1− φ(Ax(t))

N

)
dt− 2α|vi − vj|2dt

+ 2D|vi − vj|2dWt +D2|vi − vj|2dt.

In particular, if we choose i and j such that |vi − vj| = Av(t), we obtain

dA2
v(t) ≤ 2αA2

v(t)

(
1− φ(Ax(t))

N

)
dt− 2αA2

v(t)dt+ 2DA2
v(t)dWt +D2A2

v(t)dt

= −2α
φ(Ax(t))

N
A2
v(t)dt+D2A2

v(t)dt+ 2DA2
v(t)dWt

=

(
−2α

φ(Ax(t))

N
+D2

)
A2
v(t)dt+ 2DA2

v(t)dWt.

Lemma 2.12. Let (xi, vi) be the solution of the system (2.3) with bounded initial

data, then

A2
v(t) ≤ A2

v(0)e
R t
0 −(2α

φ(Ax(s))
N

+D2)ds+2DWt .(2.7)
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Proof. Without loss of generality, let i and j be two indices of agents maximizing the

distance between velocities at time t, (i.e. such that |vi − vj| = Av(t)).

d|vi − vj|2 = 2〈vi − vj, dvi − dvj〉+
1

2
· 2〈dvi − dvj, dvi − dvj〉

= 2α〈vi − vj, vi − vj〉dt− 2α|vi − vj|2dt

+ 2D|vi − vj|2dWt +D2|vi − vj|2dt.

So we obtain

(2.8) dA2
v(t) · dA2

v(t) = d|vi − vj|2 · d|vi − vj|2 = 4D2|vi − vj|4 = 4D2A4
v(t)dt.

We use Lemma 2.11 and the above equation (2.8) to find

dlnA2
v(t) =

1

A2
v(t)
· dA2

v(t)−
1

2A4
v(t)

dA2
v(t) · dA2

v(t)

≤ 1

A2
v(t)

[(
−2α

φ(Ax(t))

N
+D2

)
A2
v(t)dt+ 2DA2

v(t)dWt

]
− 1

2A4
v(t)
· 4D2A4

v(t)dt

=

(
−2α

φ(Ax(t))

N
+D2

)
dt+ 2DdWt − 2D2dt

= −
(

2α
φ(Ax(t))

N
+D2

)
dt+ 2DdWt.

We integrate the above relation to find the below desired result

A2
v(t) ≤ A2

v(0) · e−
R t
0 (2α

φ(Ax(s))
N

+D2)ds+2DWt .

In the next theorem, we can see that there is an unconditional flocking behavior of

particles for the stochastic model with the asymmetric communication rate function

and multiplicative white noises.

Theorem 2.13. Let (xi, vi) be the solution of the system (2.3). Then strong stochastic

flocking occurs asymptotically: for 1 ≤ i, j ≤ N , we have

(1) the differences of all pairwise velocity processes go to zero asymptotically,

lim
t→+∞

|vi(t)− vj(t)| = 0. a.s.

(2) the diameter of a group is uniformly bounded in time t,

sup
0≤t<+∞

|xi(t)− xj(t)| < +∞. a.s.

Proof. (1) We use Lemma 2.12 to find

|vi − vj| ≤ Av(t)

≤ Av(0)e
R t
0 −(α

φ(Ax(s))
N

+D2

2
)ds+DWt
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= Av(0)e
R t
0 −α

φ(Ax(s))
N

ds−D
2

2
t+DWt .

Since

lim sup
t→∞

|W (t)|√
2t log log t

= 1. a.s.(2.9)

We choose T sufficiently large so that

(2.10) −D
2

2
t+DWt ≤ −

D2

4
t, t ≥ T.

So we have

lim
t→+∞

|vi(t)− vj(t)| = 0. a.s.

(2) Since

dAx(t) ≤ Av(t)dt.

We integrate the above relation for t ≥ T to find

Ax(t) ≤ Ax(T ) +

∫ t

T

Av(τ)dτ .

We use Lemma 2.12 and the inequality (2.10) to find

Ax(t) ≤ Ax(T ) +

∫ t

T

Av(τ)dτ

≤ Ax(T ) +

∫ t

T

Av(0)e−
R τ
0 (α

φ(Ax(s))
N

+D2

2
)ds+DWτdτ

= Ax(T ) +

∫ t

T

Av(0)e−
R τ
0 α

φ(Ax(s))
N

ds−D
2

2
τ+DWτdτ

≤ Ax(T ) +

∫ t

T

Av(0)e−
R τ
0 α

φ(Ax(s))
N

ds·e−
D2

4
τdτ

≤ Ax(T ) +

∫ t

T

Av(0)e−
D2

4
τdτ

≤ Ax(T ) +
4

D2
· Av(0) · e−

D2

4
T .

Hence, we have

max
0≤t<+∞

Ax(t) ≤ max{max
0≤t≤T

Ax(t),max
t≥T

Ax(t)} < +∞. a.s.

That is

sup
0≤t<+∞

|xi(t)− xj(t)| < +∞. a.s.

Remark 2.14. The unconditional flocking behavior is verified due to multiplicative

white noises for the asymmetric stochastic system in Theorem 2.13. But the issue that

whether there exist an unconditional flocking in the asymmetric stochastic system

with additive white noises is not known yet.
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Lemma 2.15. Assume that 2β ≤ 1. Let the diameter Av(t) of the system (2.3)

governed by the inequality (2.7). Then∫ +∞

0

E(Av(s))ds < +∞.

Proof. We now use Theorem 2.13 and the property of stochastic differential equation

solution to obtain

sup
0≤t<+∞

E(Ax(t)) < +∞.

So there exists a random variable X(ω) that is independent of t so that

sup
0≤t<+∞

Ax(t) < X(ω) and E(X(ω)) < +∞.

Since e−
D2

2
t+DWt is martingale, it has a constant expectation, i.e.,

E(e−
D2

2
t+DWt) = e−

D2

2
·0+DW0 = 1.

We use the inequality (2.7) and the independence of {Wt, t ≥ 0} to obtain

Av(t) ≤ Av(0)e
R t
0 −(α

φ(Ax(s))
N

+D2

2
)ds+DWt

= Av(0)e−
R t
0 α

φ(Ax(s))
N

ds−D
2

2
t+DWt

= Av(0)e−
R t
0 α

φ(Ax(s))
N

ds · e−
D2

2
t+DWt .

Hence

E(Av(t)) ≤ Av(0)E(e−
R t
0 α

φ(Ax(s))
N

ds) · E(e−
D2

2
t+DWt)

= Av(0)E(e−
R t
0 α

φ(Ax(s))
N

ds)

≤ Av(0)E(e−α
φ(X(ω))

N
t).(2.11)

However,

E(e−α
φ(X(ω))

N
s) =

∫
Ω

e−α
φ(X(ω))

N
sdP (ω)

=
∞∑
n=0

∫
{ω:n≤X(ω)<n+1}

e−α
φ(X(ω))

N
sdP (ω)

≤
∞∑
n=0

e
− α
N
· s

(2+n)2β P (n ≤ X(ω) < n+ 1).

Then∫ t

0

E(e−α
φ(X(ω))

N
s)ds ≤

∞∑
n=0

∫ t

0

e
− αs

N(2+n)2β ds · P (n ≤ X(ω) < n+ 1)

=
∞∑
n=0

N

α
(2 + n)2β[1− e−

αt

N(2+n)2β ] · P (n ≤ X(ω) < n+ 1)
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≤
∞∑
n=0

N

α
(2 + n)2βP (n ≤ X(ω) < n+ 1)

≤
∞∑
n=0

N

α
(2 + n)P (n ≤ X(ω) < n+ 1)

=
2N

α

∞∑
n=0

P (n ≤ X(ω) < n+ 1) +
N

α

∞∑
n=0

nP (n ≤ X(ω) < n+ 1)

≤ N

α
(2 + E(X(ω))).

We deduce that ∫ +∞

0

E(e−α
φ(X(ω))

N
s)ds < +∞.

This implies∫ +∞

0

E(Av(s))ds ≤ Av(0)

∫ +∞

0

E(e−α
φ(X(ω))

N
s)ds < +∞.

Remark 2.16. By the dominated convergence theorem, we get lim
t→+∞

E(e−α
φ(X(ω))

N
t) =

0 from the formula (2.11), that is lim
t→+∞

E(Av(t)) = 0. This is true for all β ≥ 0.

Theorem 2.17. Let 2β ≤ 1 and vi be the solution of the system (2.3). Then for all

1 ≤ i ≤ N , E(vi(t)) is convergent when t→ +∞.

Proof. We note that the strong solution to (2.3) satisfy Itô’s integral representations:

vi =

∫ t

0

α
N∑
j=1

aij(vj − vi)ds+

∫ t

0

DvidWs.

Since E(
∫ t

0
f(s)dWs) = 0, we obtain

E(vi) = E

(∫ t

0

α

N∑
j=1

aij(vj − vi)ds

)
+ E

(∫ t

0

DvidWs

)

= E

(∫ t

0

α
N∑
j=1

aij(vj − vi)ds

)

=

∫ t

0

E

(
α

N∑
j=1

aij(vj − vi)

)
ds.

Therefore for arbitrary t1 < t2, we have

|E(vi(t1))− E(vi(t2))| = |
∫ t2

t1

E(α
N∑
j=1

aij(vj − vi))ds|

≤
∫ t2

t1

|E(α
N∑
j=1

aij(vj − vi))|ds
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≤ α

∫ t2

t1

E(Av(s))ds.

By Lemma 2.15 we get∫ t2

t1

E(Av(s))ds→ 0, (t1, t2 → +∞).

So {E(vi(t))}t≥0 is Cauchy sequence. That is E(vi(t)) is convergent when t → +∞.

3. Numerical examples

In this section we show the result of numerical simulations of the dynamics system

(2.3) and compare them with analytical results in Sec. 2. In all the simulations, we

take the parameter N = 20, β = 0.2. Let (xi, vi) ∈ R2 represent the locations and

velocities of all agents.

First we choose the different parameter D and the same parameter α: α = 3.2;

D1 = 0.1, D2 = 0.01. We respectively plot the relation between the time t and the

location xi in Fig. 1 and the relation between the time t and the mean velocity E(vi)

in Fig. 2. We find a clear difference between these two cases of Fig. 2. In the case

of α = 3.2 and D = 0.1, the mean velocities were perturbed strongly compared to

the other case of α = 3.2 and D = 0.01. While in Figs. 3 and 4 we use the different

parameter α and same parameter D: α1 = 0.8, α2 = 3.2; D = 0.01. In Fig. 3 and

Fig. 4 we have plotted the location xi and the mean velocity E(vi) versus the time

t for the case of α = 0.8, D = 0.01 and α = 3.2, D = 0.01 respectively. The curves

show that the mean velocity attain consensus faster as the parameter α increases.

In particular, Fig. 5 shows the relative velocities of all agents and it is seen that all

particles will attain the same velocity after enough time passing. The first case of

Fig. 5 shows the influences of the different parameter α on the flocking behavior;

we found that the agents flock faster and faster as α increases. In the second case

of Fig. 5, our goal is to explore the effect of the noise strength D on the flocking

behavior; it shows that the relative velocities were perturbed bigger and bigger as the

parameter D increases. All numerical results agree with the analytical results given

by Theorem 2.13 and Theorem 2.17.

4. Conclusion

A mathematical theory on the flocking serves the foundation for several ubiqui-

tous multi-agent in biology, ecology, sensor networks and economics, as well as social

behavior like language emergence and evolution. In this paper, We enlarged the

range of critical exponent β of the communication rate for unconditional flocking in

the model proposed by Motsch, S. and Tadmor, E. [J. Statist. Phys., 141 (2011),
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(a) (b)

Figure 1. (a) All the realizations of the trajectories of the positions

with α = 3.2; D1 = 0.1. (b) All the realizations of the trajectories of

the positions with α = 3.2;D2 = 0.01.

(a) (b)

Figure 2. (a) The trajectories of the mean speeds of the 20 particles

with α = 3.2; D1 = 0.1. (b) The trajectories of the mean speeds of the

20 particles with α = 3.2; D2 = 0.01.

923–947] and have investigated the emergent flocking behavior of a new asymmetric

stochastic model via multiplicative white noises which take the formdxi = vidt,

dvi = α(vi − vi)dt+DvidWt.

where α is a nonnegative constant and vi =
∑N

j=1 aijvj,
∑N

j=1 aij = 1.

Here we focused our attention on the asymmetry in the improved model where the

interactions between agents is governed by the relative distances, which are no longer

symmetric and where agents and surroundings interacted with multiplicative white
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(a) (b)

Figure 3. (a) All the realizations of the trajectories of the positions

with α1 = 0.8; D = 0.01. (b) All the realizations of the trajectories of

the positions with α2 = 3.2; D = 0.01.

(a) (b)

Figure 4. (a) The trajectories of the mean speeds of the 20 particles

with α1 = 0.8; D = 0.01. (b) The trajectories of the mean speeds of

the 20 particles with α2 = 3.2; D = 0.01.

noises. In particular, we got a conclusion that the system (2.3) with the asymmetric

communication rate between agents satisfied the strong stochastic flocking estimate

due to multiplicative white noises. In the end of Sec. 2 we showed that the mean

velocity of each agent was convergent when t → +∞. For numerical simulations

our study concluded with several numerical results. In the first case we explored the

influence of the different parameters α and D to flocking behavior of the system and

found that flocking behavior is faster and faster with the parameter α increasing and

the velocities were perturbed bigger and bigger as the parameter D increases. The

second case showed that all particles will attain the same velocity as time passing.
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(a)

(b)

Figure 5. (a) The trajectories of the relative speeds of the 20 particles

with α1 = 0.4, α2 = 0.8, α3 = 1.6, α4 = 3.2; D = 0.01. (b) The

trajectories of the relative speeds of the 20 particles with D1 = 0.01,

D2 = 0.1, D3 = 1; α = 0.4

All numerical results agree with the analytical results given by Theorem 2.13 and

Theorem 2.17.



522 Y. LIU AND X. XUE

REFERENCES

[1] J. A. Carrillo, M. Fornasier, J. Rosado, G. Toscani, Asymptotic flocking dynamics for the
kinetic Cucker-Smale model, SIAM J. Math. Anal., 42(1):218–236, 2010.

[2] J. A. Carrillo, M. R. D. D’Orsogna, V. Panferov, Double milling in self-propelled swarms from
kinetic theory, Kinet. Relat. Models, 2(2):363–378, 2009.

[3] F. Cucker, C. Huepe, Flocking with informed agents, MathS in Action, 1(1):1–25, 2008.
[4] F. Cucker, E. Mordecki, Flocking in noisy environments, J. Math. Pures Appl., 89(3):278–296,

2008.
[5] F. Cucker, S. Smale, On the mathmatics of emergence, Jpn. J. Math., 2:197–227, 2007.
[6] F. Cucker, S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52(5):852–

862, 2007.
[7] S. -Y. Ha, K. Lee, D. Levy, Emergence of time-asymptotic flocking in a stochastic Cucker-Smale

system, Commun. Math. Sci., 7(2):453–469, 2009.
[8] S.-M. Ahn, S. -Y. Ha, Stochastic flocking dynamics of the Cucker-Smale model with multi-

plicative white noises, J. Math. Phys., 51(10):103301, 2010.
[9] S. -Y. Ha, J. -G. Liu, A simple proof of Cucker-Smale flocking dynamics and mean field limit,

Commun. Math. Sci., 7:297–325, 2009.
[10] S. -Y. Ha, M. Slemrod, Flocking dynamics of singularly perturbed oscillator chain and the

Cucker-Smale system, J. Dynam. Differential Equations, 22(2):325–330, 2010.
[11] S. Motsch, E. Tadmor, A new model for self-organized dynamics and its flocking behavior, J.

Stat. Phys., 144(5):923–947, 2011.
[12] I. Aoki, A simulation study on the schooling mechanism in fish, Jpn. Soc. Sci. Fish.,

48(8):1081–1088, 1982.
[13] B. Birnir, An ODE model of the motion of pelagic fish, J. Stat. Phys., 128:535–568, 2007.
[14] M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, I. Cisbani, V. Lecomte, A. Orlandi,

G. Parisi, A. Procaccini, et al. Interaction ruling animal collective behavior depends on
topological rather than metric distance: evidence from a field study, Proc. Natl. Acad. Sci.,
105(4):1232–1256, 2008.

[15] S. Camazine, J. J. Deneubourg, N. R. Franks, J. Sneyd, G. Theraulaz, E. Bonabeau, Self-
organization in Biological Systems, Princeton University Press, Princeton, 2001.

[16] H. Levine, W. -J. Rappel, Self-oranizition in systems of self-propelled particles, Phys. Rev. E.,
63:017101, 2000.

[17] P. Degond, S. Motsch, Continuum limit of self-driven particles with orientation interaction,
Math. Models Methods Appl. Sci., 18(1):1193–1215, 2008.

[18] P. Degond, S. Motsch, Large scale dynamics of the persistent turning walker model of fish
behavior, J. Stat. Phys., 131(6):989–1021, 2008.

[19] V. Grimm, S. F. Railsback, Individual-Based modeling and ecology, Princeton University
Press, Princeton, 2005.

[20] J. Shen, Cucker-Smale flocking under hierarchical leadership, SIAM J. Appl. Math., 68(3):694–
719, 2008.

[21] P. Degond, S. Motsch, Macroscopic limit of self-driven particles with orientation interaction,
C. R. Math. Acad. Sci., Paris, 345(10):555–560, 2007.

[22] P. Degond, S. Motsch, Large-scale dynamics of the Persistent Turing Walker model of fish
behavior, J. Stat. Phys., 131:989–1022, 2008.

[23] B. Oksendal, Stochastic Differential Equations: A Introduction with Applications, Spring,
Berlin, 1995.


