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ABSTRACT. We consider a parametric nonlinear Dirichlet problem driven by the p-Laplacian

and with a Carathéodory reaction which is (p− 1)-superlinear near ±∞ (but without satisfying the

Ambrosetti-Rabinowitz condition) and (p − 1)-sublinear near zero. We show that for all values of

the parameter λ > 0, the problem has at least three nontrivial solutions (two of constant sign). If we

alter the geometry near the origin by introducing a “concave” nonlinearity (problem with combined

nonlinearities), we show the existence of at least five nontrivial solutions (four of constant sign and

the fifth nodal), when the parameter λ > 0 is small. Also, we produce extremal constant sign

solutions u∗

λ
∈ int C+ and v∗

λ
∈ −int C+. We investigate the monotonicity and continuity properties

of the map λ 7−→ u∗

λ
.
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1. Introduction

Let Ω ⊆ R
N be a bounded domain with a C2-boundary ∂Ω. In this paper we

study the following parametric nonlinear Dirichlet problem:

(Pλ)

{
−∆pu(z) = λf(z, u(z)) in Ω,

u|∂Ω = 0.

Here ∆p denotes the p-Laplace differential operator defined by

∆pu = div
(
|∇u|p−2∇u

)
∀u ∈ W

1,p
0 (Ω),

where 1 < p < +∞. Also λ > 0 is a parameter and f(z, ζ) is a Carathéodory reaction

(i.e., for all ζ ∈ R, the function z 7−→ f(z, ζ) is measurable and for almost all z ∈ Ω,

the function ζ 7−→ f(z, ζ) is continuous). We assume that f(z, ·) is (p−1)-superlinear

near ±∞ and (p−1)-sublinear near zero. However, to express the superlinearity near

±∞, we do not employ the usual in such cases Ambrosetti-Rabinowitz condition.

Problem (Pλ) with p = 2 (semilinear equation) was investigated by Miyagaki-

Souto [26], who established the existence of at least one nontrivial weak solution
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for all λ > 0. Subsequently, their result was extended to p-Laplacian equations by

Li-Yang [25]. The aim of this work is to improve the aforementioned papers. More

precisely, under more general conditions on the reaction, we show that for every λ > 0

problem (Pλ) admits at least three nontrivial solutions, two of which have constant

sign (one positive and the other negative). By changing the hypotheses on the reaction

near zero (hence we have a new geometry for the problem), we can produce extremal

constant sign solutions (i.e., the smallest positive and the biggest negative solutions)

and using them, we can generate a nodal (sign-changing) solution. Finally, in the

semilinear case (i.e., p = 2), if by u∗
λ we denote the smallest positive solution, then

we provide conditions for the map λ 7−→ u∗
λ to be continuous and monotone. Finally

for other boundary value problems with the so called resonance, we refer to Gasiński

[11] and Gasiński-Papageorgiou [12, 13, 14].

Our approach is variational based on the critical point theory, combined with

suitable truncations and comparison techniques and Morse theory (critical groups).

In the next section, for easy reference, we recall the main mathematical tools which

we will use in the sequel.

2. Mathematical Background

Let X be a Banach space and let X∗ be its topological dual. By 〈·, ·〉 we denote

the duality brackets for the pair (X∗, X). Given ϕ ∈ C1(X), we say that ϕ satisfies

the Cerami condition, if the following is true:

“Every sequence {un}n>1 ⊆ X, such that
{
ϕ(un)

}
n>1

⊆ R is bounded and
(
1 + ‖un‖X

)
ϕ′(un) −→ 0 in X∗,

admits a strongly convergent subsequence.”

This compactness type condition on the functional ϕ, leads to a deformation

theorem from which one derives the minimax theory for the critical values of ϕ. One

of the main results in that theory is the so called mountain pass theorem due to

Ambrosetti-Rabinowitz [3]. Here we state the result in a slightly more general form

(see e.g., Gasiński-Papageorgiou [15]).

Theorem 2.1. If X is a Banach space, ϕ ∈ C1(X) satisfies the Cerami condition,

u0, u1 ∈ X, ‖u1 − u0‖ > ̺ > 0,

max
{
ϕ(u0), ϕ(u1)

}
< inf

{
ϕ(u) : ‖u − u0‖ = ̺

}
= η̺,

and

c = inf
γ∈Γ

max
t∈[0,1]

ϕ
(
γ(t)

)
,

where

Γ =
{
γ ∈ C

(
[0, 1]; X

)
: γ(0) = u0, γ(1) = u1

}
,
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then c > η̺ and c is a critical value of ϕ.

In the study of problem (Pλ), we will use the Sobolev space W
1,p
0 (Ω) and the

Banach space

C1
0 (Ω) =

{
u ∈ C1(Ω) : u|∂Ω = 0

}
.

By ‖ ·‖ we denote the norm of W
1,p
0 (Ω). By virtue of the Poincaré inequality, we have

‖u‖ = ‖∇u‖p ∀u ∈ W
1,p
0 (Ω).

Also, we will exploit the fact that C1
0(Ω) is an ordered Banach space with positive

cone

C+ =
{
u ∈ C1

0 (Ω) : u(z) > 0 for all z ∈ Ω
}

.

This cone has a nonempty interior given by

int C+ =

{
u ∈ C+ : u(z) > 0 for all z ∈ Ω,

∂u

∂n

∣∣
∂Ω

< 0

}
,

with n(·) being the outward unit normal on ∂Ω.

In what follows, by λ̂1 we denote the first eigenvalue of
(
− ∆p, W

1,p
0 (Ω)

)
. We

know that λ̂1 is positive, isolated, simple and admits the following variational char-

acterization

(2.1) λ̂1 = inf

{
‖∇u‖p

p

‖u‖p
p

: u ∈ W
1,p
0 (Ω), u 6= 0

}
.

In this expression the infimum is realized on the corresponding one-dimensional

eigenspace. Also, it is clear that the elements of this eigenspace do not change sign.

Let û1 be the Lp-normalized (that is, ‖û1‖p = 1) positive eigenfunction corresponding

to λ̂1 > 0. The nonlinear regularity theory and the nonlinear maximum principle (see

e.g., Gasiński-Papageorgiou [15, pp. 737–738]), imply that û1 ∈ int C+.

Let A : W
1,p
0 (Ω) −→ W−1,p′(Ω) (where 1

p
+ 1

p′
= 1) be the nonlinear map defined

by

(2.2) 〈A(u), y〉 =

∫

Ω

|∇u|p−2(∇u,∇y)RNdz ∀u, y ∈ W
1,p
0 (Ω).

Proposition 2.2. The map A : W
1,p
0 (Ω) −→ W−1,p′(Ω) defined above is bounded (i.e.,

maps bounded sets into bounded ones), demicontinuous, strictly monotone (hence

maximal monotone too) and of type (S)+ (i.e., if un −→ u weakly in W
1,p
0 (Ω) and

lim supn→+∞〈A(un), un − u〉 6 0, then un −→ u in W
1,p
0 (Ω)).

Let X be a Banach space and let (Y1, Y2) be a topological pair such that Y2 ⊆

Y1 ⊆ X. For every integer k > 0 by Hk(Y1, Y2) we denote the k-th singular homology

group with coefficients in a field F of characteristic zero for the pair (Y1, Y2) (for

example F = R). We know that each group Hk(Y1, Y2) is an fact an F-vector space.

Recall that Hk(Y1, Y2) = 0 for all integers k > 0.
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Given ϕ ∈ C1(X) and c ∈ R, we introduce the following sets:

ϕc =
{
x ∈ X : ϕ(x) 6 c

}
,

Kϕ =
{
x ∈ X : ϕ′(x) = 0

}
,

Kc
ϕ =

{
x ∈ Kϕ : ϕ(x) = c

}
.

The critical groups of ϕ at an isolated element u ∈ Kc
ϕ are defined by

Ck(ϕ, u) = Hk

(
ϕc ∩ U, ϕc ∩ U \ {x}

)
∀k > 0,

with U being a neighbourhood of u ∈ X, such that Kϕ ∩ϕc ∩U = {u}. The excision

property of singular homology, implies that the above definition of critical groups is

independent of the particular choice of the neighbourhood U .

Suppose that ϕ satisfies the Cerami condition and inf ϕ(Kϕ) > −∞. Let c <

inf ϕ(Kϕ). Then the critical groups of ϕ at infinity are defined by

Ck(ϕ,∞) = Hk(X, ϕc) ∀k > 0.

The second deformation theorem (see e.g., Gasiński-Papageorgiou [15, Theorem 5.1.33,

p. 628]), implies that the above definition is independent of the particular choice of

the level c < inf ϕ(Kϕ).

Suppose that Kϕ is finite. We introduce the following quantities:

M(t, u) =
∑

k>0

rank Ck(ϕ, u)tk ∀t ∈ R, u ∈ Kϕ

and

P (t,∞) =
∑

k>0

dim Ck(ϕ,∞)tk ∀t ∈ R.

The Morse relation says that

(2.3)
∑

u∈Kϕ

M(t, u) = P (t,∞) + (1 + t)Q(t),

where

Q(t) =
∑

k>0

βkt
k

is a formal series in t ∈ R with nonnegative integer coefficients.

Finally, let us fix some notation. For ζ ∈ R, we set ζ± = max{±ζ, 0} and for

u ∈ W
1,p
0 (Ω), we define u±(·) = u(·)±. We have

u± ∈ W
1,p
0 (Ω), |u| = u+ + u−, u = u+ − u−.

By | · |N we denote the Lebesgue measure on R
N . Also, if h : Ω × R −→ R is a

measurable function (for example a Carathéodory function), then we set

Nh(u)(·) = h
(
·, u(·)

)
∀u ∈ W

1,p
0 (Ω)

(the Nemytski map corresponding to h). Note that z 7−→ Nh(u)(z) is measurable.
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3. Multiple Solutions for λ > 0

In this section we prove a three nontrivial solutions theorem valid for all λ > 0.

The hypotheses on the function f(z, ζ) are the following:

H1 : f : Ω×R −→ R is a Carathéodory function, such that f(z, 0) = 0 for almost all

z ∈ Ω and

(i): there exist a function a ∈ L∞(Ω)+ and r ∈ (p, p∗), where

p∗ =

{
Np

N−p
if p < N,

+∞ if N 6 p

such that

|f(z, ζ)| 6 a(z)(1 + |ζ |r−1) for almost all z ∈ Ω, all ζ ∈ R;

(ii): if

F (z, ζ) =

∫ ζ

0

f(z, s) ds,

then

lim
ζ→±∞

F (z, ζ)

|ζ |p
= +∞

uniformly for almost all z ∈ Ω;

(iii): if

ξ(z, ζ) = f(z, ζ)ζ − pF (z, ζ),

then there exists β ∈ L1(Ω)+ such that

ξ(z, ζ) 6 ξ(z, y) + β(z) for almost all z ∈ Ω, all 0 6 ζ 6 y or y 6 ζ 6 0;

(iv): we have

lim
ζ→0

f(z, ζ)

|ζ |p−2ζ
= 0

uniformly for almost all z ∈ Ω.

Remark 3.1. Clearly hypotheses H1(ii) and (iii) imply that

lim
ζ→±∞

f(z, ζ)

|ζ |p−2ζ
= +∞ uniformly for almost all z ∈ Ω,

hence f(z, ·) is (p−1)-superlinear near ±∞. Hypothesis H1(iii) is a quasimonotonicity

condition on ξ(z, ·). It is satisfied if, for example, we can find M1 > 0 such that for

almost all z ∈ Ω

ζ 7−→
f(z, ζ)

ζp−1
is nondecreasing on [M1, +∞),

ζ 7−→
f(z, ζ)

|ζ |p−2ζ
is nonincreasing on (−∞,−M1]
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(see Li-Yang [25]). Conditions H1(ii) and (iii) replace the Ambrosetti-Rabinowitz

condition which says that there exist q > p and M2 > 0 such that

f(z, ζ)ζ > qF (z, ζ) > 0 for almost all z ∈ Ω, all |ζ | > M2

and

ess inf
Ω

F (·,±M2) > 0.

A direct integration, leads to the following unilateral growth estimate

c1|ζ |
q
6 F (z, ζ) for almost all z ∈ Ω, all |ζ | > M2,

for some c1 > 0.

Hypotheses H1(ii) and (iii) incorporate in our framework superlinear reactions

with “slower” growth near ±∞ which fail to satisfy the Ambrosetti-Rabinowitz con-

dition (see Example 3.2 below)

Example 3.2. The following functionals satisfy hypotheses H1. For the sake of

simplicity, we drop the z-dependence:

f1(ζ) = |ζ |q−2ζ with p < q < p∗,

f2(ζ) = |ζ |p−2ζ ln(1 + |ζ |).

Note that f2 fails to satisfy the Ambrosetti-Rabinowitz condition.

First we will produce solutions of constant sign. To this end, we introduce the

positive and negative truncations of f(z, ·). So, we introduce the Carathéodory func-

tions:

f±(z, ζ) = f(z,±ζ±) ∀(z, ζ) ∈ Ω × R.

We set

F±(z, ζ) =

∫ ζ

0

f±(z, s) ds

and consider the C1-functionals ϕ±
λ : W

1,p
0 (Ω) −→ R defined by

ϕ±
λ (u) =

1

p
‖∇u‖p

p − λ

∫

Ω

F±(z, u(z)) dz ∀u ∈ W
1,p
0 (Ω).

Proposition 3.3. If hypotheses H1 hold and λ > 0, then the functionals ϕ±
λ satisfy

the Cerami condition.

Proof. We do the proof for the functional ϕ+
λ , the proof for ϕ−

λ being similar.

Let {un}n>1 ⊆ W
1,p
0 (Ω) be a sequence such that {ϕ+

λ (un)}n>1 ⊆ R is bounded

and

(1 + ‖un‖)(ϕ
+
λ )′(un) −→ 0 in W−1,p′(Ω) as n → +∞.

We have

(3.1)

∣∣∣∣〈A(un), h〉 − λ

∫

Ω

f+(z, un)h dz

∣∣∣∣ 6
εn‖h‖

1 + ‖un‖
∀h ∈ W

1,p
0 (Ω),
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with εn ց 0.

In (3.1) first we choose h = −u−
n ∈ W

1,p
0 (Ω). Then

‖∇u−
n ‖

p
p 6 εn ∀n > 1,

so

(3.2) u−
n −→ 0 in W

1,p
0 (Ω).

The boundedness of the sequence {ϕ+
λ (un)}n>1 ⊆ R and (3.2) imply that

(3.3)

∣∣∣∣‖∇u+
n ‖

p
p − λ

∫

Ω

pF (z, u+
n ) dz

∣∣∣∣ 6 M3 ∀n > 1,

for some M3 > 0. Also, if in (3.1) we choose h = u+
n ∈ W

1,p
0 (Ω), then

(3.4) −‖∇u+
n ‖

p
p + λ

∫

Ω

f(z, u+
n )u+

n dz 6 εn ∀n > 1.

From (3.3) and (3.4), it follows that

(3.5) λ

∫

Ω

ξ(z, u+
n ) dz 6 M4 ∀n > 1,

for some M4 > 0.

Claim. The sequence {u+
n }n>1 ⊆ W

1,p
0 (Ω) is bounded.

We argue by contradiction. So, suppose that the Claim is not true. By passing

to a subsequence if necessary, we may assume that

(3.6) ‖u+
n ‖ = ‖∇u+

n ‖p −→ +∞ as n → +∞.

Let yn = u+
n

‖u+
n ‖

for n > 1. Then ‖yn‖ = 1, yn > 0 for all n > 1 and so, passing to

a subsequence if necessary, we may assume that

yn −→ y weakly in W
1,p
0 (Ω),(3.7)

yn −→ y in Lr(Ω), y > 0.(3.8)

If y 6= 0, then setting Ω0 = Ω \ y−1(0), we have |Ω0|N > 0 and

u+
n (z) −→ +∞ as n → +∞, ∀z ∈ Ω0.

Then hypothesis H1(ii) implies that

F (z, u+
n (z))

‖u+
n ‖

p
=

F (z, u+
n (z))

u+
n (z)p

yn(z)p −→ +∞ as n → +∞ ∀z ∈ Ω0.

By virtue of Fatou’s lemma (see H1(ii)), we have

(3.9)

∫

Ω

F (z, u+
n (z))

‖u+
n ‖

p
dz −→ +∞ as n → +∞.

From (3.3) we have

(3.10) λ

∫

Ω

p
F (z, u+

n )

‖u+
n ‖

p
dz 6 M5 ∀n > 1,
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for some M5 > 0. Comparing (3.9) and (3.10), we reach a contradiction. This proves

that y ≡ 0. We fix k > 0 and set ŷn = (2kp)
1

p yn. From (3.7) and hypothesis H1(i) it

follows that

(3.11)

∫

Ω

F (z, ŷn(z)) dz −→ 0 as n → +∞.

Also, from (3.6) we see that we can find an integer n0 > 1 such that

(3.12) 0 < (2kp)
1

p
1

‖u+
n ‖

< 1 ∀n > n0.

Let tn ∈ [0, 1] be such that

ϕ+
λ (tnu+

n ) = max
t∈[0,1]

ϕ+
λ (tu+

n ).

From (3.11) and (3.12) we see that we can find an integer n1 > n0 such that

ϕ+
λ (tnu

+
n ) > ϕ+

λ (ŷn) = 2k − λ

∫

Ω

F (z, ŷn) dz > k ∀n > n1 > n0.

Since k > 0 is arbitrary, it follows that

(3.13) ϕ+
λ (tnu+

n ) −→ +∞ as n → +∞.

Note that the sequence {ϕ+
λ (u+

n )}n>1 is bounded (see (3.2) and recall that the sequence

{ϕ+
λ (un)}n>1 is bounded). Also ϕ+

λ (0) = 0. So, from (3.13) we infer that tn ∈ (0, 1)

for all n > 1 and so we have

d

dt
ϕ+

λ (tu+
n )

∣∣
t=tn

= 0,

so

〈A(tnu
+
n ), u+

n 〉 − λ

∫

Ω

f(z, tnu+
n )u+

n dz = 0,

thus

(3.14) ‖∇(tnu
+
n )‖p

p = λ

∫

Ω

f(z, tnu+
n )(tnu

+
n ) dz ∀n > 1.

We have 0 6 tnu+
n 6 u+

n for all n > 1 and so hypothesis H1(iii) implies that

λ

∫

Ω

ξ(z, tnu
+
n ) dz 6 λ

∫

Ω

ξ(z, u+
n ) dz + λ‖β‖1 ∀n > 1,

so

λ

∫

Ω

ξ(z, tnu+
n ) dz 6 M6 ∀n > 1,

with M6 = M4 + λ‖β‖1 (see (3.5)). Thus

‖∇(tnu
+
n )‖p

p − λ

∫

Ω

pF (z, tnu+
n ) dz 6 M6 ∀n > 1

(see (3.14)) and we get

(3.15) ϕ+
λ (tnu

+
n ) 6

M6

p
∀n > 1.
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Comparing (3.13) and (3.15), we reach a contradiction. Therefore the sequence

{u+
n }n>1 ⊆ W

1,p
0 (Ω) is bounded. This fact and (3.2) imply that the sequence {un}n>1 ⊆

W
1,p
0 (Ω) is bounded. This proves the Claim.

By virtue of the Claim, passing to a subsequence if necessary, we may assume

that

un −→ u weakly in W
1,p
0 (Ω),(3.16)

un −→ u in Lr(Ω).(3.17)

In (3.1) we choose h = un − u ∈ W
1,p
0 (Ω), pass to the limit as n → +∞ and use

(3.16). Then

lim
n→+∞

〈A(un), un − u〉 = 0,

so

un −→ u in W
1,p
0 (Ω)

(see (3.16) and Proposition 2.2) and thus ϕ+
λ satisfies the Cerami condition.

Similarly we show that ϕ−
λ also satisfies the Cerami condition.

Let ϕλ : W
1,p
0 (Ω) −→ R be the energy functional for problem (Pλ), namely

ϕλ(u) =
1

p
‖∇u‖p

p − λ

∫

Ω

F (z, u(z)) dz ∀u ∈ W
1,p
0 (Ω).

Evidently ϕλ ∈ C1(W 1,p
0 (Ω)).

Minor changes in the proof of Proposition 3.3 lead to the following result.

Proposition 3.4. If hypotheses H1 hold and λ > 0, then the energy functional ϕλ

satisfies the Cerami condition.

In the next two propositions, we will verify the mountain pass geometry for the

functionals ϕ±
λ , λ > 0.

Proposition 3.5. If hypotheses H1 hold and λ > 0, then u = 0 is a local minimizer

for the functionals ϕ±
λ and ϕλ.

Proof. We do the proof for ϕ+
λ , the proofs for ϕ+

λ and ϕλ being similar.

By virtue of hypothesis H1(iv), we see that given ε > 0, we can find δ = δ(ε, λ) >

0 such that

(3.18) λF (z, ζ) 6
ε

p
|ζ |p for almost all z ∈ Ω, all |ζ | 6 δ.

So, if u ∈ C1
0 (Ω) with ‖u‖C1

0
(Ω) 6 δ, then

ϕ+
λ (u) =

1

p
‖∇u‖p

p − λ

∫

Ω

F (z, u+) dz >
1

p
‖∇u‖p

p −
ε

p
‖u‖p

p
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>
1

p

(
1 −

ε

λ̂1(p)

)
‖u‖p

(see (3.18)), so u = 0 is a local C1
0(Ω)-minimizer of ϕ+

λ and so it is also a local

W
1,p
0 (Ω)-minimizer of ϕ+

λ (see Garćıa Azorero-Manfredi-Peral Alonso [10]).

Similarly for the functionals ϕ−
λ and ϕλ.

The next result is a straightforward consequence of hypothesis H1(ii).

Proposition 3.6. If hypotheses H1 hold, λ > 0 and u ∈ int C+, then ϕ±
λ (tu) −→ −∞

as t → ±∞.

Now we are ready to produce two nontrivial solutions of constant sign.

Proposition 3.7. If hypotheses H1 hold and λ > 0, then problem (Pλ) admits at least

two solutions of constant sign

u0 ∈ int C+ and v0 ∈ −int C+.

Proof. Proposition 3.5 implies that we can find ̺ ∈ (0, 1) small such that

(3.19) ϕ+
λ (0) = 0 < inf{ϕ+

λ (u) : ‖u‖ = ̺} = η+
λ,̺

(see Aizicovici-Papageorgiou-Staicu [1, Proposition 29] or Gasiński-Papageorgiou [16,

proof of Theorem 3.4]). Combining (3.19) with Propositions 3.3 and 3.6, we see that

we can apply Theorem 2.1 (the mountain pass theorem). So, we can find u0 ∈ W
1,p
0 (Ω)

such that

(3.20) η+
λ,̺ 6 ϕ+

λ (u0) and (ϕ+
λ )′(u0) = 0.

From (3.19) and the inequality in (3.20), it follows that u0 6= 0. From the equality in

(3.20), we have

(3.21) A(u0) = λNf+
(u0).

On (3.21) we act with −u−
0 ∈ W

1,p
0 (Ω) and obtain

‖∇u−
0 ‖

p
p = 0,

so

u0 > 0, u0 6= 0.

Then (3.21) becomes

A(u0) = λNf (u0),

so

(3.22)

{
−∆pu0(z) = λf(z, u0(z)) in Ω,

u0|∂Ω = 0.
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The nonlinear regularity theory (see e.g., Gasiński-Papageorgiou [15, pp. 737–738])

implies that u0 ∈ C+ \ {0}.

Note that hypotheses H1(i) and (iv) imply that given ̺ > 0, we can find ξ̺ =

ξ̺(λ) > 0 such that

λf(z, ζ)ζ + ξp|ζ |
p
> 0 for almost all z ∈ Ω, all |ζ | 6 ̺.

Let ̺ = ‖u0‖∞ and let ξ̺ = ξ̺(λ) > 0 be as above. From (3.22) we have

−∆pu0(z) + ξ̺u0(z)p−1 = λf(z, u0(z)) + ξ̺u0(z)p−1
> 0,

almost everywhere in Ω, so

∆pu0(z) 6 ξpu0(z)p−1 almost everywhere in Ω.

Invoking the nonlinear maximum principle (see e.g., Gasiński-Papageorgiou [15, p. 738]),

we have that u0 ∈ int C+.

Similarly, working with the functional ϕ−
λ , we produce a second constant sign

solution v0 ∈ −int C+.

In fact, we can produce extremal constant sign solutions for problem (Pλ), that

is the smallest positive solution and the biggest negative solution of (Pλ).

We introduce the following solution sets:

S+
λ =

{
u ∈ W

1,p
0 (Ω) : u is a positive solution of (Pλ)

}
,

S−
λ =

{
u ∈ W

1,p
0 (Ω) : u is a negative solution of (Pλ)

}
.

From Proposition 3.7 and its proof, we have

∅ 6= S+
λ ⊆ int C+ and ∅ 6= S−

λ ⊆ −int C+.

Moreover, from Filippakis-Kristaly-Papageorgiou [9], we know that S+
λ is downward

directed (that is, if u1, u2 ⊆ S+
λ , then there exists u ∈ S+

λ such that u 6 u1, u 6 u2)

and S−
λ is upward directed (that is, if v1, v2 ⊆ S−

λ , then there exists v ∈ S−
λ such that

v1 6 v, v2 6 v; see also Gasiński-Papageorgiou [16]).

Proposition 3.8. If hypotheses H1 hold and λ > 0, then problem (Pλ) admits the

smallest positive solution uλ ∈ int C+ and a biggest negative solution vλ ∈ −int C+.

Proof. Since S+
λ is downward directed and we are looking for the minimal positive

solution, without any loss of generality, we may assume that

(3.23) ‖u‖∞ 6 M7 ∀u ∈ S+
λ ,

for some M7 > 0. From Dunford-Schwartz [8, p. 336], we know that we can find a

sequence {un}n>1 ⊆ S+
λ such that

inf S+
λ = inf

n>1
un.
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We have

(3.24) A(un) = λNf (un), un > 0 ∀n > 1,

so the sequence {un}n>1 ⊆ W
1,p
0 (Ω) is bounded (see (3.23)).

So, we may assume that

un −→ uλ weakly in W
1,p
0 (Ω),(3.25)

un −→ uλ in Lr(Ω).(3.26)

On (3.24) we act with un−u ∈ W
1,p
0 (Ω), pass to the limit as n → +∞ and use (3.25).

Then

lim
n→+∞

〈A(un), un − uλ〉 = 0,

so

(3.27) un −→ uλ in W
1,p
0 (Ω)

(see Proposition 2.2).

In (3.24) we pass to the limit as n → +∞ and use (3.27). Then

A(uλ) = λNf (uλ),

so

(3.28) uλ is a solution of (Pλ), uλ > 0.

We show that uλ 6= 0. We argue by contradiction. So, suppose that uλ = 0. Then

un −→ 0 in W
1,p
0 (Ω)

(see (3.27)).

Let yn = un

‖un‖
for n > 1. Then ‖yn‖ = 1 for all n > 1 and so, passing to a

subsequence if necessary, we may assume that

yn −→ y weakly in W
1,p
0 (Ω),(3.29)

yn −→ y in Lr(Ω).(3.30)

From (3.24), we have

(3.31) A(yn) =
λNf(un)

‖un‖p−1
∀n > 1.

Hypotheses H1(i) and (iv) imply that

|f(z, ζ)| 6 c1(|ζ |
p−1 + |ζ |r−1) for almost all z ∈ Ω, all ζ ∈ R,

for some c1 > 0, so

the sequence

{
Nf (un)

‖un‖p−1

}

n>1

⊆ Lp′(Ω) is bounded

(see (3.23)).
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So, by passing to a subsequence if necessary and using hypothesis H1(iv), we

have

(3.32)
Nf (un)

‖un‖p−1
−→ 0 weakly in Lp′(Ω).

On (3.31) we act with yn − y ∈ W
1,p
0 (Ω), pass to the limit as n → +∞ and use (3.29)

and (3.32). Then

lim
n→+∞

〈A(yn), yn − y〉 = 0,

so

(3.33) yn −→ y in W
1,p
0 (Ω), ‖y‖ = 1.

So, if in (3.31) we pass to the limit as n → +∞ and use (3.32), (3.33), we obtain

A(y) = 0,

so

y = 0,

which contradicts (3.33).

Therefore uλ 6= 0 and so

uλ ∈ S+
λ

(see (3.28)) and uλ = inf S+
λ .

Similarly, working this time with S−
λ , we produce the biggest negative solution

vλ ∈ −int C+ of (Pλ).

Next using tools from Morse theory (critical groups), we will produce a third

nontrivial solution of S+
λ but we are not able to provide sign information for this

third solution.

First we compute the critical groups of ϕλ at infinity. Our proposition extends

a similar result proved by Wang [28] (for p = 2) and Liu [24] (for 1 < p < +∞), for

reactions satisfying the Ambrosetti-Rabinowitz condition.

Proposition 3.9. If hypotheses H1 hold and λ > 0, then

Ck(ϕλ,∞) = 0 ∀k > 0.

Proof. By virtue of hypotheses H1(i), (ii) given any η > 0, we can find c2 = c2(η) > 0

such that

(3.34) F (z, ζ) >
η

p
|ζ |p − c2 for almost all z ∈ Ω, all ζ ∈ R.

Let u ∈ ∂B1 = {y ∈ W
1,p
0 (Ω) : ‖y‖ = 1} and t > 0. Then

ϕλ(tu) =
tp

p
‖∇u‖p

p − λ

∫

Ω

F (z, tu) dz
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6
tp

p
‖∇u‖p

p −
tp

p
ηλ‖u‖p

p + c2λ|Ω|N

=
tp

p

(
1 − ηλ‖u‖p

p

)
+ c2λ|Ω|N(3.35)

(see (3.34) and use the fact that u ∈ ∂B1). So, if η > 1
λ‖u‖p

p
, then from (3.35) we see

that

(3.36) ϕλ(tu) −→ −∞ as t → +∞.

By virtue of hypothesis H1(iii), we have

0 = ξ(z, 0) 6 ξ(z, u+(z)) + β(z) almost everywhere in Ω

and

0 = ξ(z, 0) 6 ξ(z,−u−(z)) + β(z) almost everywhere in Ω,

so

0 = ξ(z, 0) 6 ξ(z, u(z)) + β(z) almost everywhere in Ω

and thus

(3.37) −ξ(z, u(z)) = pF (z, u(z)) − f(z, u(z))u(z) 6 β(z)

almost everywhere in Ω. Let u ∈ W
1,p
0 (Ω) and let t > 0. then

d

dt
ϕλ(tu) = 〈ϕ′

λ(tu), u〉 =
1

t
〈ϕ′

λ(tu), tu〉

=
1

t

(
‖∇(tu)‖p

p − λ

∫

Ω

f(z, tu)tu dz

)

6
1

t

(
‖∇(tu)‖p

p − λ

∫

Ω

pF (z, tu) dz + λ‖β‖1

)

=
1

t

(
pϕλ(tu) + λ‖β‖1

)
(3.38)

(see (3.37)). From (3.36) it is clear that, if u 6= 0 and t > 0 is big, then

ϕλ(tu) 6 ϑ0 < −
λ‖β‖1

p
,

so

(3.39)
d

dt
ϕλ(tu) < 0 for t > 0 big.

So, for u ∈ ∂B1 we can find a unique γ(u) > 0 such that ϕλ(γ(u)u) = ϑ0 and the

implicit function theorem (see (3.39)) implies that γ ∈ C(∂B1). We extend γ to

W
1,p
0 (Ω) \ {0} by setting

γ0(u) =
1

‖u‖
γ

(
u

‖u‖

)
∀u ∈ W

1,p
0 (Ω) \ {0}.
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Evidently γ0 ∈ C(W 1,p
0 (Ω) \ {0}) and ϕλ(γ0(u)u) = ϑ0. Note that, if ϕ(u) = ϑ0, then

γ0(u) = 1. So, if we define

γ̂0(u) =

{
1 if ϕλ(u) < ϑ0,

γ0(u) if ϕλ(u) > ϑ0,

then clearly γ̂0 ∈ C(W 1,p
0 (Ω) \ {0}).

We introduce the deformation

h(t, u) = (1 − t)u + tγ̂0(u)u ∀(t, u) ∈ [0, 1] × (W 1,p
0 (Ω) \ {0}).

We have

h(0, u) = u, h(1, u) = γ̂0(u)u ∈ ϕϑ0

λ

and

h(t, ·)|
ϕ

ϑ0
λ

= id|
ϕ

ϑ0
λ

∀t ∈ [0, 1],

so ϕϑ0

λ is a strong deformation retract of W
1,p
0 (Ω) \ {0}.

The radial retraction implies that ∂B1 is a retract of W
1,p
0 (Ω) \ {0} and the

latter is deformable onto ∂B1. So, from Dugundji [7, p. 325], we have that ∂B1 is a

deformation retract of W
1,p
0 (Ω) \ {0}. Therefore, it follows that

ϕϑ0

λ and ∂B1 are homotopy equivalent,

so

(3.40) Hk(W
1,p
0 (Ω), ϕϑ0

λ ) = Hk(W
1,p
0 (Ω), ∂B1) ∀k > 0.

Since W
1,p
0 (Ω) is infinite dimensional, we have that ∂B1 is contractible in itself. There-

fore we have

Hk(W
1,p
0 (Ω), ∂B1) = 0 ∀k > 0

(see Granas-Dugundji [21, p. 389]), so

Hk(W
1,p
0 (Ω), ϕϑ0

λ ) = 0 ∀k > 0

(see (3.40)) and finally

Ck(ϕλ,∞) = 0 ∀k > 0

(choosing ϕ0 < 0 even smaller if necessary).

We can have an analogous result for the truncated functionals ϕ±
λ .

Proposition 3.10. If hypotheses H1 hold and λ > 0, then

Ck(ϕ
±
λ ,∞) = 0 ∀k > 0.



538 L. GASIŃSKI AND N. S. PAPAGEORGIOU

Proof. Let ∂B+
1 = {u ∈ ∂B1 : u+ 6= 0}. We consider the deformation h+ : [0, 1] ×

∂B+
1 −→ ∂B+

1 defined by

h+(t, u) =
(1 − t)u + tû1

‖(1 − t)u + tû1‖
∀(t, u) ∈ [0, 1] × ∂B+

1 .

Note that

h+(1, u) =
û1

‖û1‖
∈ ∂B+

1 ,

so ∂B+
1 is contractible in itself.

By virtue of hypothesis H1(ii), for every u ∈ ∂B+
1 we have

(3.41) ϕ+
λ (tu) −→ −∞ as t → +∞.

From hypothesis H1(iii), we have

0 = ξ(z, 0) 6 ξ(z, u+(z)) + β(z) almost everywhere in Ω,

so

pF (z, u+(z)) − f(z, u+(z))u+(z) 6 β(z) almost everywhere in Ω,

thus

(3.42) −f+(z, u(z))u(z) 6 β(z) − pF+(z, u(z)) almost everywhere in Ω.

We fix u ∈ ∂B+
1 . Then for t > 0, we have

d

dt
ϕ+

λ (tu) = 〈(ϕ+
λ )′(tu), u〉 =

1

t
〈(ϕ+

λ )′(tu), tu〉

=
1

t

(
‖∇(tu)‖p

p − λ

∫

Ω

f+(z, tu)(tu) dz

)

6
1

t

(
‖∇(tu)‖p

p − λ

∫

Ω

pF+(z, tu) dz + λ‖β‖1

)

=
1

t

(
pϕ+

λ (tu) + λ‖β‖1

)
.(3.43)

From (3.41) it follows that

(3.44)
d

dt
ϕ+

λ (tu) < 0 for t > 0 big

(such that ϕ+
λ (tu) < −λ‖β‖1

p
). Let η ∈ R be such that

η < min

{
−

λ‖β‖1

p
, inf

B1

ϕ+
λ

}
.

From (3.44) we infer that there exists unique µ(u) > 1 such that

(3.45) ϕ+
λ (tu)





> η if t ∈ [0, µ(u)),

= η if t = µ(u),

< η if t > µ(u).

Moreover, as before the implicit function theorem implies that µ ∈ C(∂B+
1 ). Also,

we have

(ϕ+
λ )η =

{
tu : u ∈ ∂B+

1 , t > µ(u)
}
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(see (3.45)). Let E+ = {tu : u ∈ ∂B+
1 , t > 1}. Then (ϕ+

λ )η ⊆ E+. We consider the

deformation ĥ+ : [0, 1] × E+ −→ E+ defined by

ĥ+(s, tu) =

{
(1 − s)tu + sµ(u)u if t ∈ [1, µ(u)],

tu if µ(u) < t,

for all s ∈ [0, 1], all t > 1 and all u ∈ ∂B+
1 .

We have

ĥ+(0, tu) = tu, ĥ+(1, tu) ∈ (ϕ+
λ )η

(see (3.45)) and

ĥ+(s, ·)
∣∣
(ϕ+

λ
)η = id

∣∣
(ϕ+

λ
)η ∀s ∈ [0, 1],

so (ϕ+
λ )η is a strong deformation retract of E+ and thus

(3.46) Hk(W
1,p
0 (Ω), (ϕ+

λ )η) = Hk(W
1,p
0 (Ω), E+) ∀k > 0.

We consider the deformation h̃+ : [0, 1] × E+ −→ E+ defined by

h̃+(s, tu) = (1 − s)tu + s
tu

‖tu‖
∀s ∈ [0, 1], t > 1, u ∈ ∂B1.

This deformation shows that E+ is deformable onto ∂B+
1 , which is a retract of E+.

Therefore from Dugundji [7, p. 325], we have that ∂B1 is a deformation retract of

E+. Hence

(3.47) Hk(W
1,p
0 (Ω), E+) = Hk(W

1,p
0 (Ω), ∂B+

1 ) ∀k > 0.

From (3.46) and (3.47) it follows that

(3.48) Hk(W
1,p
0 (Ω), (ϕ+

λ )η) = Hk(W
1,p
0 (Ω), ∂B+

1 ) ∀k > 0.

Recall that ∂B+
1 is contractible in itself. Hence

Hk(W
1,p
0 (Ω), ∂B+

1 ) = 0 ∀k > 0

(see Granas-Dugundji [21, p. 389]) and so

Hk(W
1,p
0 (Ω), (ϕ+

λ )η) = 0 ∀k > 0

(see (3.48)), thus finally

Ck(ϕ
+
λ ,∞) = 0 ∀k > 0

(choosing η < 0 even smaller if necessary).

The two constant sign solutions u0 ∈ int C+ and v0 ∈ −int C+ produced in

Proposition 3.7 are critical points of mountain pass type for the functionals ϕ+
λ and

ϕ−
λ respectively. So we have

(3.49) C1(ϕ
+
λ , u0) 6= 0 and C1(ϕ

−
λ , v0) 6= 0.

Using Proposition 3.10 we can improve (3.49).
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Proposition 3.11. If hypotheses H1 hold, λ > 0 and Kϕλ
= {0, u0, v0}, then

Ck(ϕλ, u0) = Ck(ϕλ, v0) = δk,1F ∀k > 0.

Proof. We can easily verify that Kϕ+

λ
⊆ C+. Since ϕλ|C+

= ϕ+
λ |C+

it follows that

Kϕ+

λ
= {0, u0}.

Let η < 0 < γ < η+
λ,̺ (see (3.19)) and consider the following triple of sets

(ϕ+
λ )η ⊆ (ϕ+

λ )γ ⊆ W
1,p
0 (Ω).

We consider the corresponding long exact sequence of homology groups

(3.50) . . . Hk(W
1,p
0 (Ω), (ϕ+

λ )η)
i∗−→ Hk(W

1,p
0 (Ω), (ϕ+

λ )γ)
∂∗−→ Hk−1((ϕ

+
λ )γ, (ϕ+

λ )η) . . .

with i∗ being the homomorphism induced by the inclusion (ϕ+
λ )η i

−→ (ϕ+
λ )γ and ∂∗ is

the boundary homomorphism. Since Kϕ+

λ
= {0, u0} and 0 = ϕ+

λ (0) < η+
λ,̺ 6 ϕ+

λ (u0)

(see (3.19)), from the choice of η > 0, we have

(3.51) Hk(W
1,p
0 (Ω), (ϕ+

λ )η) = Ck(ϕ
+
λ ,∞) = 0 ∀k > 0

(see Proposition 3.10). Also, since γ ∈ (0, η+
λ,̺), we have

(3.52) Hk(W
1,p
0 (Ω), (ϕ+

λ )γ) = Ck(ϕ
+
λ , u0) ∀k > 0.

Finally, since η < 0 < γ < η+
λ,η, we have

(3.53) Hk−1((ϕ
+
λ )γ, (ϕ+

λ )η) = δk−1,0F = δk,1F ∀k > 0

(see Proposition 3.5). From (3.51), (3.52), (3.53), it follows that in (3.50) only the

tail (that is k = 1) is nontrivial. The exactness of (3.50) and the rank theorem, imply

that

dim C1(ϕ
+
λ , u0) = dim (ker ∂∗) + dim (im ∂∗)

6 dim (im i∗) + 1 = 1

(see (3.53) and (3.51)), so

Ck(ϕ
+
λ , u0) = δk,1F ∀k > 0

(see (3.49)).

Similarly, we show that

Ck(ϕ
−
λ , v0) = δk,1F ∀k > 0.

Since ϕλ

∣∣
C+

= ϕ+
λ

∣∣
C+

, ϕλ

∣∣
−C+

= ϕ−
λ

∣∣
−C+

and u0 ∈ int C+, v0 ∈ −int C+, via the

homotopy invariance of critical groups, we obtain

Ck(ϕ
−
λ , u0) = Ck(ϕ

−
λ , v0) = δk,1F ∀k > 0.

Now we are ready for the first multiplicity theorem.
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Theorem 3.12. If hypotheses H1 hold, then for every λ > 0, problem (Pλ) admits at

least three solutions

u0 ∈ int C+, v0 ∈ −int C+ and y0 ∈ C1
0(Ω) \ {0}.

Proof. From Proposition 3.7, we already have two nontrivial constant sign solutions

u0 ∈ int C+, and v0 ∈ −int C+.

Suppose that Kϕλ
= {0, u0, v0}. Then Proposition 3.11 implies that

(3.54) Ck(ϕλ, u0) = Ck(ϕλ, v0) = δk,1F ∀k > 0.

Also, from Propositions 3.5 and 3.9, we have

(3.55) Ck(ϕλ, 0) = δk,0F and Ck(ϕλ,∞) = 0 ∀k > 0.

From (3.54), (3.55) and the Morse relation with t = −1 (see 2.3), we have

2(−1)1 + (−1)0 = 0,

a contradiction. This means that there exists y0 ∈ Kϕλ
, y0 6∈ {0, u0, v0}. Evidently

this is the third nontrivial solution of (Pλ) and y0 ∈ C1
0(Ω) (nonlinear regularity).

Remark 3.13. Theorem 3.12 extends Theorem 1.1 of Miyagaki-Souto [26] (where

p = 2) an Theorem 1.1 of Li-Yang [25] (where 1 < p < +∞). Both works produce

only one solution for all λ > 0, under stronger conditions on the reaction f(z, ζ).

4. Problems with Combined Nonlinearities

In Section 3, although we were able to produce extremal constant sign solutions

(see Proposition 3.8), the geometry of the problem, with u = 0 being a local minimizer

of the energy functional ϕλ (see Proposition 3.5), does not allow us to obtain nodal

(sign-changing) solutions. We can do this for the following alternative parametric

Dirichlet problem:

(Cλ)

{
−∆pu(z) = λ

(
|u(z)|q−2u(z) + f(z, u(z))

)
in Ω,

u|∂Ω = 0,

where 1 < q < p. Again f(z, ζ) is a Carathéodory function, which exhibits (p − 1)-

superlinear growth in the ζ-variable, without satisfying the Ambrosetti-Rabinowitz

condition. Since 1 < q < p we see that in (Cλ), we have the combined effect of

both concave and convex nonlinearities. Such equations were studied by Ambrosetti-

Brézis-Cerami [2], Garćıa Azorero-Manfredi-Peral Alonso [10], Papageorgiou-Smyrlis

[27]. In all these works, the emphasis is on the existence, nonexistence and multiplicity

of positive solutions (bifurcation-type results). Nodal solutions were produced by Hu-

Papageorgiou [22], but under stronger conditions on the superlinear nonlinearity. We
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point out that in all the aforementioned works the parameter λ > 0 multiplies only

the concave term |u|q−2u, that is the reaction of the problem, has the form

λ|ζ |q−2ζ + f(z, ζ).

In fact, in Ambrosetti-Brézis-Cerami [2] and in Garćıa Azorero-Manfredi-Peral Alonso

[10], we have

f(z, ζ) = f(ζ) = |ζ |r−2ζ,

with p < r < p∗. For other problems with combined nonlinearities we refer to

Gasiński-Papageorgiou [17, 18, 19, 20].

For every λ > 0, let ϕ̂λ : W
1,p
0 (Ω) −→ R be the energy functional for the problem

(Cλ), namely

ϕ̂λ(u) =
1

p
‖∇u‖p

p −
λ

p
‖u‖q

q −

∫

Ω

λF (z, u(z)) dz ∀u ∈ W
1,p
0 (Ω).

Also, we introduce the following Carathéodory functions

g+
λ (z, ζ) =

{
0 if ζ 6 0,

λ(ζq−1 + f(z, ζ)) if 0 < ζ,
(4.1)

g−
λ (z, ζ) =

{
λ(|ζ |q−2ζ + f(z, ζ)) if ζ 6 0,

0 if 0 < ζ.
(4.2)

We set

G±
λ (ζ) =

∫ ζ

0

g±
λ (z, s) ds

and consider the C1-functionals ϕ̂±
λ : W

1,p
0 (Ω) −→ R, namely

ϕ±
λ (u) =

1

p
‖∇u‖p

p −

∫

Ω

G±
λ (z, u(z)) dz ∀u ∈ W

1,p
0 (Ω).

We strengthen the conditions of f as follows:

H2 : f : Ω×R −→ R is a Carathéodory function, such that f(z, 0) = 0 for almost all

z ∈ Ω, hypotheses H2(i)− (iv) are the same as corresponding hypotheses H1(i)− (iv)

and

(v): f(z, ζ)ζ > 0 for almost all z ∈ Ω and all ζ > 0 and for every ̺ > 0, there

exists ξ̺ > 0 such that for almost all z ∈ Ω the function ζ 7−→ f(z, ζ)+ξ̺|ζ |
p−2ζ

is nondecreasing on [−̺, ̺].

The presence of the concave term λ|η|q−2ζ alters drastically the geometry of the

problem near the origin and leads to a nodal solution but only when λ > 0 is small

enough.

A careful reading of the proof of Proposition 3.3, reveals that the result remains

valid for the functionals ϕ̂λ and ϕ̂±
λ .
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Proposition 4.1. If hypotheses H2 hold and λ > 0, then the functionals ϕ̂λ and ϕ̂±
λ

satisfy the Cerami condition.

In contrast to the previous case in Section 3, now in order to proceed we need to

restrict the range of the parameter. This is necessary in order to satisfy the mountain

pass geometry (see Theorem 2.1).

Proposition 4.2. If hypotheses H2 hold, then there exist λ∗ > 0 and ̺± > 0 such

that for all λ ∈ (0, λ∗), we have

inf
{
ϕ̂±

λ : ‖u‖ = ̺±

}
= η±

λ > 0.

Proof. We do the proof for the functional ϕ̂+
λ , the proof for ϕ̂−

λ being similar.

Hypotheses H1(i) and (iv) imply that given ε > 0, we can find c3 = c3(ε) > 0

such that

f(z, ζ) 6 εζp−1 + c3ζ
r−1 for almost all z ∈ Ω, all ζ > 0,

so

(4.3) F (z, ζ) 6
ε

p
ζp +

c3

r
ζr for almost all z ∈ Ω, all ζ > 0.

Then for every u ∈ W
1,p
0 (Ω), we have

ϕ̂+
λ (u) =

1

p
‖∇u‖p

p −

∫

Ω

G+
λ (z, u) dz

=
1

p
‖∇u‖p

p −
λ

q
‖u+‖q

q −

∫

Ω

F (z, u+) dz

>
1

p

(
1 −

ε

λ̂1

)
‖∇u‖p

p −
λ

q
‖u‖q

q −
λc3

r
‖u‖r

r

(see (4.3)).

Choosing ε ∈ (0, λ̂1) and since 1 < q < r < p∗, we have

ϕ̂+
λ (u) > c4‖u‖

p − λc5(‖u‖
q + ‖u‖r)

=
(
c4 − λc5(‖u‖

q−p + ‖u‖r−p)
)
‖u‖p,(4.4)

with c4 = 1
p
(1 − ε

bλ1

) > 0 and c5 > 0.

We consider the function

γ(t) = tq−p + tr−p ∀t > 0.

Evidently γ ∈ C1(0, +∞) and since q < p < r, we see that

γ(t) −→ +∞ as t ց 0 and as t → +∞.

So, we can find t0 ∈ (0, +∞) such that

γ(t0) = inf
t>0

γ > 0,
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so

γ′(t0) = 0,

thus

(p − q)tq−p−1
0 = (r − p)tr−p−1

0

and hence

t0 =

(
p − q

r − p

) 1

r−q

.

We return to (4.4) and we see that, if ‖u‖ = t0, then

ϕ̂+
λ (u) >

(
c4 − λc5γ(t0)

)
t
p
0.

So, if λ∗ = c4
c5γ(t0)

and ̺+ = t0, then for every λ ∈ (0, λ∗), we have

inf
{
ϕ̂+

λ (u) : ‖u‖ = ̺+

}
= η+

λ > 0

(see (4.4)). In a similar fashion, we show the corresponding result for the functional

ϕ̂−
λ .

As before (see Proposition 3.6), using hypothesis H2(ii), we infer that:

Proposition 4.3. If hypotheses H2 hold, λ > 0 and u ∈ int C+, then ϕ̂±
λ (tu) −→ −∞

as t → ±∞.

Now we are ready to produce nontrivial constant sign solutions for problem (Cλ).

More precisely, we show that for all λ ∈ (0, λ∗) (here λ∗ > 0 is as in Proposition

4.2) problem (Cλ) admits at least four nontrivial constant sign solutions which are

ordered.

Proposition 4.4. If hypotheses H2 hold and λ ∈ (0, λ∗), then problem (Cλ) has at

least four nontrivial constant sign solutions

u0, û ∈ int C+, u0 6 û, u0 6= û,

v0, v̂ ∈ −int C+, v̂ 6 v0, v0 6= v̂.

Proof. First we produce the two positive solutions.

Propositions 4.1, 4.2 and 4.3 permit the use of Theorem 2.1 (the mountain pass

theorem). So, we can find u0 ∈ W
1,p
0 (Ω) such that

(4.5) ϕ̂+
λ (0) = 0 < η+

λ 6 ϕ̂+
λ (u0) and (ϕ̂+

λ )′(u0) = 0.

From the inequality in (4.5) it is clear that u0 6= 0. From the equality in (4.5), we

have

(4.6) A(u0) = Ng+

λ
(u0).

On (4.6) we act with −u−
0 ∈ W

1,p
0 (Ω). From (4.1) we have

‖∇u−
0 ‖

p
p = 0,



PARAMETRIC p-LAPLACIAN EQUATIONS WITH SUPERLINEAR REACTION 545

hence u0 > 0, u0 6= 0. So, (4.6) becomes

A(u0) = λ(uq−1
0 + Nf(u0))

(see (4.1)), thus u0 is a nontrivial nonnegative solution of (Cλ) and hence u0 ∈ C+\{0}

(by the nonlinear regularity theory).

Let ̺ = ‖u0‖∞ and let ξp > 0 be as postulated by hypothesis H2(v). Then

−∆pu0(z) + λξpu0(z)p−1 = λ
(
u0(z)q−1 + f(z, u0(z))

)
+ λξpu0(z) > 0

almost everywhere on Ω, so

∆pu0(z) 6 λξ̺u0(z)p−1

almost everywhere on Ω, thus u0 ∈ int C+ (see, e.g., Gasiński-Papageorgiou [15,

p. 738]).

Using u0 ∈ int C+, we introduce the following truncation of the reaction in the

problem (Cλ):

(4.7) k+
λ (z, ζ) =

{
λ
(
u0(z)q−1 + f(z, u0(z))

)
if ζ 6 u0(z),

λ(ζq−1 + f(z, ζ)) if u0(z) < ζ.

This is a Carathéodory function. We set

K+
λ (z, ζ) =

∫ ζ

0

k+
λ (z, s) ds

and consider the C1-functional σ+
λ : W

1,p
0 (Ω) −→ R defined by

σ+
λ (u) =

1

p
‖∇u‖p

p −

∫

Ω

K+
λ (z, u(z)) dz ∀u ∈ W

1,p
0 (Ω).

Claim 1. Kσ+

λ
⊆ [u0), where

[u0) =
{
u ∈ W

1,p
0 (Ω) : u0(z) 6 u(z) almost everywhere in Ω

}
.

Let u ∈ Kσ+

λ
. Then we have

(4.8) A(u) = Nk+

λ
(u).

On (4.8) we act with (u0 − u)+ ∈ W
1,p
0 (Ω). Then

〈A(u), (u0 − u)+〉 =

∫

Ω

k+
λ (z, u)(u0 − u)+ dz

=

∫

Ω

λ(uq−1
0 + f(z, u0))(u0 − u)+ dz

= 〈A(u0), (u0 − u)+〉

(see (4.7) and use the fact that u0 is a solution of (Cλ)), so
∫

{u0>u}

(
|∇u0|

p−2∇u0 − |∇u|p−2∇u,∇u0 −∇u
)

RN dz = 0
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and thus

|{u0 > u}|N = 0,

hence u0 6 u.

Therefore u ∈ [u0) and this proves Claim 1.

Claim 2. u0 ∈ int C+ is a local minimizer of the functional σ+
λ .

Let µ ∈ (λ, λ∗). From the first part of the proof, via the mountain pass theorem

(see Theorem 2.1), we show that problem (Cµ) admits a solution uµ ∈ int C+. We

will show that without any loss of generality, we may assume that

u0 6 uµ.

Indeed, note that by virtue of hypothesis H2(v), we have

−∆puµ(z) = µ
(
uµ(z)q−1 + f(z, uµ(z))

)

> λ
(
uµ(z) + f(z, uµ(z))

)
for almost all z ∈ Ω.(4.9)

So, we truncate the reaction of problem (Cλ) at {0, uµ(z)} and define the Carathéodory

function

(4.10) h+
λ (z, ζ) =





0 if ζ < 0,

λ(ζq−1 + f(z, ζ)) if 0 6 ζ 6 uµ(z).

λ(uµ(z) + f(z, uµ(z))) if uµ(z) < ζ.

We set

H+
λ (z, ζ) =

∫ ζ

0

h+
λ (z, s) ds

and consider the C1-functional η+
λ : W

1,p
0 (Ω) −→ R defined by

η+
λ (u) =

1

p
‖∇u‖p

p −

∫

Ω

H+
λ (z, u(z)) dz ∀u ∈ W

1,p
0 (Ω).

From (4.10) it is clear that η+
λ is coercive. Also, using the Sobolev embedding theorem,

we see that η+
λ is sequentially weakly lower semicontinuous. So, by the Weierstrass

theorem, we can find u0 ∈ W
1,p
0 (Ω) such that

(4.11) η+
λ (u0) = inf

u∈W
1,p
0

(Ω)
η+

λ (u).

Since q < p, we can easily see that for u ∈ int C+ and for t ∈ (0, 1) small (at least

such that tu 6 uµ; see Filippakis-Kristaly-Papageorgiou [9, Lemma 3.3]), we have

η+
λ (tu) < 0,

so

η+
λ (u0) < 0 = η+

λ (0)

(see (4.11)), hence u0 6= 0.

From (4.11) we have

(η+
λ )′(u0) = 0,
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so

(4.12) A(u0) = Nh+

λ
(u0).

On (4.12) we act with −u−
0 ∈ W

1,p
0 (Ω) and with (u0 − uµ)+ ∈ W

1,p
0 (Ω) and using

(4.10), we obtain

u0 ∈ [0, uµ],

where [0, uµ] =
{
u ∈ W

1,p
0 (Ω) : 0 6 u(z) 6 uµ(z) almost everywhere in Ω

}
, so u0 is a

positive solution of (Cλ) (see (4.10)).

Therefore, without any loss of generality, we may assume that u0 6 uµ. Moreover,

we can assume that Kσ+

λ
∩ [0, uµ] = {u0} or otherwise we already have the second

positive solution û ∈ int C+ with û ∈ [u0, uµ] (see Claim 1).

Using {u0, uµ}, we introduce the following Carathéodory function

(4.13) γ+
λ (z, ζ) =





λ
(
u0(z)q−1 + f(z, u0(z))

)
if ζ < u0(z),

λ(ζq−1 + f(z, ζ)) if u0(z) 6 ζ 6 uµ(z).

λ(uµ(z) + f(z, uµ(z))) if uµ(z) < ζ.

We set

Γ+
λ (z, ζ) =

∫ ζ

0

γ+
λ (z, s) ds

and consider the C1-functional ϑ+
λ : W

1,p
0 (Ω) −→ R defined by

ϑ+
λ (u) =

1

p
‖∇u‖p

p −

∫

Ω

Γ+
λ (z, u(z)) dz ∀u ∈ W

1,p
0 (Ω).

As before, via the direct method, we obtain ũ0 ∈ W
1,p
0 (Ω) such that

(4.14) ϑ+
λ (ũ0) = inf

u∈W
1,p
0

(Ω)
ϑ+

λ (u),

so

(ϑ+
λ )′(ũ0) = 0,

hence

A(ũ0) = Nγ+

λ
(ũ0).

Acting with (u0 − ũ0)
+ ∈ W

1,p
0 (Ω) and with (ũ0 − uµ)+ ∈ W

1,p
0 (Ω) and using (4.9)

and (4.13), we obtain that

ũ0 ∈ [u0, uµ],

where

[u0, uµ] =
{
u ∈ W

1,p
0 (Ω) : u0(z) 6 u(z) 6 uµ(z) almost everywhere in Ω

}
,

so

ũ0 ∈ Kσ+

λ

(see (4.13)) and so

ũ0 = u0
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(since Kσ+

λ
∩ [0, uµ] = {u0}).

Let ̺ = ‖uµ‖∞ and ξ̺ > 0 be as postulated by hypothesis H2(v). Then

−∆pu0(z) + λξ̺u0(z)p−1

= λ
(
u0(z)q−1 + f(z, u0(z)) + ξ̺u0(z)p−1

)

< µu0(z)q−1 + λ
(
f(z, u0(z)) + ξ̺u0(z)p−1

)

6 µ
(
uµ(z)q−1 + f(z, uµ(z))

)
+ λξ̺uν(z)p−1

= −∆puµ(z) + λξ̺uµ(z)p−1 almost everywhere in Ω

(since λ < µ, u0 ∈ int C+, u0 6 uµ; see hypothesis H2(v)), so

uµ − u0 ∈ int C+

(see Arcoya-Ruiz [4, Proposition 2.6]).

From (4.7) and (4.13) it is clear that σ+
λ

∣∣
[0,uµ]

= ϑ+
λ

∣∣
[0,uµ]

. So, it follows that u0 ∈

int C+ is a local C1
0(Ω)-minimizer of σ+

λ (see (4.14)). From Garćıa Azorero-Manfredi-

Peral Alonso [10, Theorem 1.2] it follows that u0 is a local W
1,p
0 (Ω)-minimizer of σ+

λ .

This proves Claim 2.

We claim that Kσ+

λ
is finite (otherwise we already have an infinity of positive

solutions û > u0 and so we are done). Then by virtue of Claim 1, we can find

̺ ∈ (0, 1) small, such that

(4.15) σ+
λ (u0) < inf

{
σ+

λ (u) : ‖u − u0‖ = ̺
}

= m̂+
λ , ‖u0‖ > ̺.

Moreover, (4.7) and hypothesis H2(ii) imply that for all u ∈ int C+, we have

(4.16) σ+
λ (tu) −→ −∞ as t → +∞.

Finally, a slight modification of the proof of Proposition 3.3, reveals that

(4.17) σ+
λ satisfies the Cerami condition.

Note that (4.15), (4.16) and (4.17) permit the use of Theorem 2.1 (the mountain pass

theorem). So, we can find û ∈ W
1,p
0 (Ω) such that

û ∈ Kσ+

λ
and m̂+

λ 6 σ+
λ (û),

thus

û 6= u0 and u0 6 û

(see (4.15) and Claim 1), and hence

û ∈ int C+ is a positive solution of (Cλ)

(see (4.7)) and u0 6 û, u0 6= û.

Similarly, starting with the functional ϕ̂−
λ , we produce two ordered negative so-

lutions v0, v̂ ∈ −int C+ with v̂ 6 v0, v̂ 6= v0.
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Next, as in Section 3, we generate extremal nontrivial constant sign solutions.

To this end, we consider the following auxiliary Dirichlet problem:

(Au)λ

{
−∆pu(z) = λ|u(z)|q−2u(z) in Ω,

u|∂Ω = 0.

Using the direct method (recall that q < p) and Diaz-Saa [6, Theorem 1] we can

state the following existence and uniqueness result for problem (Au)λ.

Proposition 4.5. If 1 < q < p and λ > 0, then problem (Au)λ admits a unique

positive solution ũλ ∈ int C+ and since the problem is odd, ṽλ = −ũλ ∈ −int C+ is

the unique negative solution.

We introduce the following solution sets.

S±(λ) =
{
u ∈ W

1,p
0 (Ω) : u is a positive (resp. negative) solution of (Cλ).

}

From Proposition 4.4 and its proof, we know that for all λ ∈ (0, λ∗), we have

∅ 6= S+(λ) ⊆ int C+ and ∅ 6= S−(λ) ⊆ −int C+.

Moreover, as before, we have that S+(λ) is downward directed and S−(λ) is upward

directed (see Filippakis-Kristaly-Papageorgiou [9]).

Proposition 4.6. If hypotheses H2 hold and λ ∈ (0, λ∗), then ũλ 6 u for all u ∈

S+(λ) and v 6 ṽλ for all v ∈ S−(λ).

Proof. Let u ∈ S+(λ) ⊆ C+ and consider the following Carathéodory function

(4.18) v+
λ (z, ζ) =






0 if ζ < 0,

λζq−1 if 0 6 ζ 6 u(z),

λu(z)q−1 if u(z) < ζ.

Let

V +
λ (z, ζ) =

∫ ζ

0

v+
λ (z, s) ds

and introduce the C1-functional β+
λ : W

1,p
0 (Ω) −→ R defined by

β+
λ (u) =

1

p
‖∇u‖p

p −

∫

Ω

V +
λ (z, u(z)) dz ∀u ∈ W

1,p
0 (Ω).

From (4.18) it is clear that β+
λ is coercive. Also, it is sequentially weakly lower

semicontinuous. So, we can find ũ ∈ W
1,p
0 (Ω) such that

(4.19) β+
λ (ũ) = inf

{
β+

λ (u) : u ∈ W
1,p
0 (Ω).

}

Since q < p, as before (see the proof of Proposition 4.4), we have

β+
λ (ũ) < 0 = β+

λ (0),
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hence ũ 6= 0. From (4.19), we have

(β+
λ )′(ũ) = 0,

so

A(ũ) = NV +

λ
(ũ).

As before, acting with −ũ− ∈ W
1,p
0 (Ω) and with (ũ−u)+ ∈ W

1,p
0 (Ω) and using (4.18),

we obtain

ũ ∈ [0, u],

so

ũ = ũλ ∈ int C+

(see (4.18) and Proposition 4.5), thus

ũλ 6 u ∀u ∈ S+(λ).

In a similar fashion, we show that v 6 ṽλ for all v ∈ S−(λ) ⊆ −int C+.

As we did in Section 3, we can establish the existence of extremal nontrivial

constant sign solutions for problem (Cλ).

Proposition 4.7. If hypotheses H2 hold and λ ∈ (0, λ∗), then problem (Cλ) admits

a smallest positive solution u∗
λ ∈ int C+ and a biggest negative solution v∗

λ ∈ −int C+.

Proof. As in proof of Proposition 3.8, without any loss of generality, we may assume

that

(4.20) ‖u‖∞ 6 M8 ∀u ∈ S+(λ),

for some M8 > 0. Then we can find a sequence {un}n>1 ⊆ S+(λ) such that

inf S+(λ) = inf
n>1

un.

We have

(4.21) A(un) = λ(uq−1
n + Nf(un)) ∀n > 1,

so the sequence {un}n>1 ⊆ W
1,p
0 (Ω) is bounded (see (4.20)). So, we may assume that

un −→ u∗
λ weakly in W

1,p
0 (Ω),(4.22)

un −→ u∗
λ in Lr(Ω).(4.23)

Acting on (4.21) with un − u∗
λ ∈ W

1,p
0 (Ω), passing to the limit as n → +∞ and using

(4.22), we obtain

lim
n→+∞

〈A(un), un − u∗
λ〉 = 0,

so

un −→ u∗
λ in W

1,p
0 (Ω)
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(see Proposition 2.2), thus

A(u∗
λ) = λ

(
(u∗

λ)
q−1 + Nf (u

∗
λ)

)

(see (4.21). Since ũλ 6 u∗
λ (see Proposition 4.6), it follows that

u∗
λ ∈ S+(λ) ⊆ int C+ and u∗

λ = inf S+(λ),

so u∗
λ ∈ int C+ is the desired smallest positive solution of problem (Cλ).

Similarly, we produce the biggest negative solution v∗
λ ∈ −int C+ of (Cλ).

Now we are ready to generate nodal solutions.

Proposition 4.8. If hypotheses H2 hold and λ ∈ (0, λ∗), then problem (Cλ) admits

a nodal solution uλ ∈ [v∗
λ, u

∗
λ] ∩ C1

0 (Ω), where u∗
λ ∈ int C+ and v∗

λ ∈ −int C+ are the

two extremal nontrivial constant sign solutions of problem (Cλ) produced in Proposi-

tion 4.7.

Proof. We introduce the following Carathéodory function

(4.24) µλ(z, ζ) =





λ
(
|v∗

λ(z)|q−2v∗
λ(z) + f(z, v∗

λ(z))
)

if ζ < v∗
λ(z),

λ
(
|ζ |q−2ζ + f(z, ζ)

)
if v∗

λ(z) 6 ζ 6 u∗
λ(z),

λ
(
(u∗

λ)
q−1 + f(z, u∗

λ(z))
)

if u∗
λ(z) 6 ζ.

We set

Mλ(z, ζ) =

∫ ζ

0

µλ(z, s) ds

and consider the C1-functional ξ̂λ : W
1,p
0 (Ω) −→ R defined by

ξ̂λ(u) =
1

p
‖∇u‖p

p −

∫

Ω

Mλ(z, u(z)) dz ∀u ∈ W
1,p
0 (Ω).

We also consider the positive and negative truncations of µλ(z, ·). So, we introduce

the Carathéodory functions

µ±
λ (z, ζ) = µλ(z,±ζ±).

We set

M±
λ (z, ζ) =

∫ ζ

0

µ±
λ (z, s) ds

an consider the C1-functionals ξ̂±λ : W
1,p
0 (Ω) −→ R defined by

ξ̂±λ =
1

p
‖∇u‖p

p −

∫

Ω

M±
λ (z, u(z)) dz ∀u ∈ W

1,p
0 (Ω).

Using (4.24) as before (see the proof of Proposition 4.4), we can check that

Kbξλ
⊆ [v∗

λ, u
∗
λ], Kbξ+

λ
⊆ [0, u∗

λ], Kbξ−
λ

⊆ [v∗
λ, 0].

The extremality of v∗
λ ∈ −int C+ and u∗

λ ∈ int C+, implies that

(4.25) Kbξλ
⊆ [v∗

λ, u
∗
λ], Kbξ+

λ
= {0, u∗

λ}, Kbξ−
λ

= {v∗
λ, 0}.
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Claim. u∗
λ ∈ int C+ and v∗

λ ∈ −int C+ are local minimizers of the functional ξ̂λ.

From (4.24) it is clear that ξ̂+
λ is coercive. Also, it is sequentially weakly lower

semicontinuous. So, we can find ũ∗
λ ∈ W

1,p
0 (Ω) such that

ξ̂+
λ (ũ∗

λ) = inf
{
ξ+
λ (u) : u ∈ W

1,p
0 (Ω)

}
.

As before, since q < p, we have

ξ̂+
λ (ũ∗

λ) < 0 = ξ̂∗λ(0),

hence ũ∗
λ 6= 0, so

ũ∗
λ = u∗

λ ∈ int C+

(see (4.25)). Evidently ξ̂λ

∣∣
C+

= ξ̂+
λ

∣∣
C+

, so u∗
λ ∈ int C+ is a local C1

0 (Ω)-minimizer of

ξ̂λ. Hence, from Garćıa Azorero-Manfredi-Peral Alonso [10, Theorem 1.1], we have

that u∗
λ is also a local W

1,p
0 (Ω)-minimizer of ξ̂λ.

Similarly for v∗
λ ∈ −int C+ using this time the functional ξ−λ . This proves the

Claim.

Without any loss of generality, we may assume that ξ̂λ(v
∗
λ) 6 ξ̂λ(u

∗
λ) (the analysis

is similar if the opposite inequality holds). By virtue of the Claim, we can find

̺ ∈ (0, 1) small such that

(4.26) ξ̂λ(v
∗
λ) 6 ξ̂λ(u

∗
λ) < inf

{
ξ̂λ(u) : ‖u − u∗

λ‖ = ̺
}

= η̂λ, ‖v∗
λ − u∗

λ‖ > ̺.

Since ξ̂λ is coercive (see (4.24)), it satisfies the Cerami condition. This fact and

(4.26) permit the use of Theorem 2.1 (the mountain pass theorem). So, we can find

yλ ∈ W
1,p
0 (Ω) such that

(4.27) yλ ∈ Kξλ
and ηλ 6 ξ̂λ(yλ).

From (4.25), (4.26) and (4.27), it follows that

yλ ∈ [v∗
λ, u

∗
λ] \ {v

∗
λ, u

∗
λ}.

If we can show that yλ 6= 0, then by virtue of the extremality of v∗
λ and u∗

λ, we will

have that yλ is nodal and yλ ∈ C1
0 (Ω) \ {0} (nonlinear regularity theory).

Since yλ ∈ Kbξλ
is of mountain pass type, we have

(4.28) C1(ξ̂λ, yλ) 6= 0.

On the other hand, the presence of the concave term and hypothesis H2(v) imply

that

(4.29) Ck(ϕ̂λ, 0) = 0 ∀k > 0
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(see Jiu-Su [23, proof of Proposition 2.1]). Then since u∗
λ ∈ int C+, v∗

λ ∈ −int C+ and

ϕ̂λ

∣∣
[v∗

λ
,u∗

λ
]
= ξ̂λ

∣∣
[v∗

λ
,u∗

λ
]
(see (4.24)), from the homotopy invariance of critical groups and

(4.29), we have

(4.30) Ck(ξ̂λ, 0) = 0 ∀k > 0.

Comparing (4.28) and (4.30), we infer that yλ 6= 0. So, yλ ∈ C1
0 (Ω) is a nodal solution

for problem (Cλ) (λ ∈ (0, λ∗)).

We can state the following multiplicity theorem for problem (Cλ).

Theorem 4.9. If hypotheses H2 hold, then there exists λ∗ > 0 such that for all

λ ∈ (0, λ∗) problem (Cλ) admits at least five nontrivial solutions

u0, û ∈ int C+, u0 6 û, u0 6= û,

v0, v̂ ∈ −int C+, v̂ 6 v0, v0 6= v̂,

y0 ∈ [v0, u0] ∩ int C1
0(Ω) nodal.

Moreover problem (Cλ) admits extremal nontrivial constant sign solutions

u∗
λ ∈ int C+ and v∗

λ ∈ −int C+.

Next we examine the monotonicity properties of the map (0, λ∗) ∋ λ 7−→ u∗
λ ∈

C1
0(Ω).

Proposition 4.10. If hypotheses H2 hold, then the map (0, λ∗) ∋ λ 7−→ u∗
λ ∈ C1

0 (Ω)

is strictly monotone, that is if λ < µ, then u∗
µ − u∗

λ ∈ int C+.

Proof. We consider the following truncation of the reaction of problem (Cλ):

(4.31) κλ(z, ζ) =





0 if ζ < 0,

λ(ζq−1 + f(z, ζ)) if 0 6 ζ 6 u∗
µ(z),

λ
(
u∗

µ(z)q−1 + f(z, u∗
µ(z))

)
if u∗

µ(z) < ζ.

This is a Carathéodory function. We set

Kλ(z, ζ) =

∫ ζ

0

κλ(x, s) ds

and consider the C1-functional τλ : W
1,p
0 (Ω) −→ R defined by

τλ(u) =
1

p
‖∇u‖p

p −

∫

Ω

Kλ(z, u(z)) dz ∀u ∈ W
1,p
0 (Ω).

As before (see the proof of Proposition 4.4), using the direct method, we can find

uλ ∈ int C+ such that

τλ(uλ) = inf
u∈W

1,p
0

(Ω)
τλ(u),

so

uλ ∈ Kτλ
⊆ [0, u∗

µ] ∩ int C+
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(see the proof of Proposition 4.4). So, uλ ∈ int C+ is a solution of problem (Cλ). Let

̺ = ‖u∗
µ‖∞ and let ξ̺ > 0 be as postulated by hypothesis H2(v). We have

−∆puλ(z) + λξ̺uλ(z)p−1

= λ
(
uλ(z)q−1 + f(z, uλ(z))

)
+ λξ̺uλ(z)p−1

< µu∗
µ(z)q−1 + λf(z, u∗

λ(z)) + λξ̺u
∗
µ(z)p−1

6 µu∗
µ(z)q−1 + µf(z, u∗

µ(z)) + λξ̺u
∗
µ(z)p−1

= −∆pu
∗
µ(z) + λξ̺u

∗
µ(z)p−1 almost everywhere on Ω

(since λ < µ, u∗
µ ∈ int C+ and uλ 6 u∗

µ and see hypothesis H2(v)), so

u∗
µ − uλ ∈ int C+

(see Arcoya-Ruiz [4, Proposition 2.6]) and thus

u∗
µ − u∗

λ ∈ int C+

For the continuity of the map λ 7−→ u∗
λ, we restrict ourselves to the semilinear

problem (that is p = 2). This is done in the next section.

5. Semilinear Problem

In this section, we establish a continuity property of the map (0, λ) ∋ λ 7−→ u∗
λ ∈

C(Ω).

The problem under consideration is the following:

(SCλ)

{
−∆u(z) = λ

(
u(z)q−1 + f(z, u(z))

)
in Ω,

u|∂Ω = 0, u > 0.

We impose the following stronger conditions on the perturbation f :

H3 : f : Ω × R −→ R is a measurable function, such that f(z, 0) = 0 and f(z, ·) ∈

C1(R) for almost all z ∈ Ω and

(i): there exist a function a ∈ L∞(Ω)+ and r ∈ (2, 2∗), such that

|f ′
ζ(z, ζ)| 6 a(z)(1 + ζr−2) for almost all z ∈ Ω, all ζ > 0;

(ii): if

F (z, ζ) =

∫ ζ

0

f(z, s) ds,

then

lim
ζ→+∞

F (z, ζ)

ζ2
= +∞

uniformly for almost all z ∈ Ω;
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(iii): if

ξ(z, ζ) = f(z, ζ)ζ − 2F (z, ζ),

then there exists β ∈ L1(Ω)+ such that

ξ(z, ζ) 6 ξ(z, y) + β(z) for almost all z ∈ Ω, all 0 6 ζ 6 y;

(iv): we have

f ′
ζ(z, 0) = lim

ζ→0+

f(z, ζ)

ζ
= 0

uniformly for almost all z ∈ Ω;

(v): we have

f(z, ζ) > 0 for almost all z ∈ Ω, all ζ > 0.

Remark 5.1. Since we are interested in positive solutions and all the above hy-

potheses concern the positive semiaxis (0, +∞), without any loss of generality, we

may assume that f(z, ζ) = 0 for almost all ζ 6 0. Note that in this case, the ex-

tra regularity of f(z, ·) together with hypothesis H3(i) imply that for every ̺ > 0,

we can find ξ̺ > 0 such that for almost all z ∈ Ω, the map ζ 7−→ f(z, ζ) + ξ̺ζ is

nondecreasing on [0, ̺].

Then Theorem 4.9 can be applied and we can guarantee the existence of a smallest

positive solution u∗
λ ∈ int C+ for problem (SCλ) for all λ ∈ (0, λ∗). Inspired by the

work of Cazenave-Escobedo-Pozio [5], we can establish the continuity of the map

(0, λ) ∋ λ 7−→ u∗
λ ∈ C(Ω). Note that in what follows for m ∈ L∞(Ω), by λ̂1(−∆−mI)

we denote the first (principal) eigenvalue of
{

−∆u(z) − m(z)u(z) = λ̂u(z) in Ω,

u|∂Ω = 0

(see Gasiński-Papageorgiou [15, Section 6.1]).

Proposition 5.2. If hypotheses H1 hold and for some λ0 ∈ (0, λ∗), we have

λ̂1

(
− ∆ − λ

(
(q − 1)(u∗

λ)
q−2 + f ′

ζ(·, u
∗
λ(·))

))
> 0,

then the map (0, λ) ∋ λ 7−→ u∗
λ ∈ C(Ω) is continuous at λ = λ0.

Proof. Let {λn}n>1 ⊆ (0, λ∗) be a sequence such that λn −→ λ0 ∈ (0, λ∗). We set

u∗
n = u∗

λn
∈ int C+ for n > 1 (see Theorem 4.9).

If λn −→ λ−
0 , then from Proposition 4.10, we know that the sequence {u∗

n}n>1 ⊆

int C+ is strictly increasing and so we have

(5.1) ũ∗ = lim
n→+∞

u∗
n, ũ∗

6 u∗
λ0

.

We have

A(u∗
n) = λn

(
(u∗

n)
q−1 + Nf (u

∗
n)

)
∀n > 1



556 L. GASIŃSKI AND N. S. PAPAGEORGIOU

so the sequence {u∗
n}n>1 ⊆ H1

0 (Ω) is bounded (see (5.1)) and thus, passing to a

subsequence if necessary, we have

u∗
n −→ ũ∗ weakly in H1

0 (Ω),

u∗
n −→ ũ∗ in Lr(Ω)

(see (5.1)). So, in the limit as n → +∞, we obtain

A(ũ∗) = λ
(
(ũ∗)q−1 + Nf(ũ

∗)
)
,

thus

u∗
λ0

6 ũ∗

and hence

u∗
λ0

= ũ∗

(see (5.1)).

If λn −→ λ+
0 , then once again Proposition 4.10 implies that the sequence {u∗

n}n>1 ⊆

int C+ is strictly decreasing and so we have

(5.2) u∗ = lim
n→+∞

u∗
n, u∗

λn
6 u∗.

We consider the following auxiliary Dirichlet problem
{

−∆y(z) − λ
(
(q − 1)u∗

λ0
(z)q−2 + f ′

ζ(z, u
∗
λ0

(z))
)
y(z) = 1 in Ω,

y|∂Ω = 0, y > 0.

From our hypothesis this problem has a solution y ∈ int C+. We set

v = u∗
λ0

+ δy,

with δ > 0. Then for µ > 0, we have

−∆v − (λ0 + µ)
(
vq−1 + f(z, v)

)

= δ − µ
(
vq−1 + f(z, v)

)
− λ0

(
vq−1 + f(z, v) − (u∗

λ)
q−1 − f(z, u∗

λ0
)

−(v − u∗
λ)

(
(q − 1)(u∗

λ0
)q−2 + f ′

ζ(z, u
∗
λ0

)
))

= δ − µ
(
vq−1 + f(z, v)

)
− λ0o(δ).

Since vq−1 6 ‖u∗
λ0
‖q−1
∞ + δq−1‖y‖q−1

∞ and using hypothesis H3(i), we see that for

δ ∈ (0, 1) small, we can find µ(δ) > 0 such that

(5.3) −∆v(z) − (λ0 + µ)
(
v(z)q−1 + f(z, v(z))

)
> 0 almost everywhere in Ω.

Then truncating the reaction of problem (SCλ0+µ) at v(z) and using the direct method

and (5.3), we obtain a solution uλ0+µ ∈ S+(λ0 + µ) such that uλ0+µ 6 v, hence

u∗
λ0+µ 6 v and so u∗ 6 v. Since δ > 0 is arbitrary, we let δ ց 0 and obtain

u∗
6 u∗

λ0
,
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so

u∗ = u∗
λ0

∈ int C+

(see (5.2)) and thus

u∗ = ũ∗ = u∗
λ0

.

Therefore, we have

u∗
n(z) −→ u∗

λ0
(z) ∀z ∈ Ω.

Moreover, by Dini’s theorem, it follows that

u∗
n −→ u∗

λ0
in C(Ω),

which proves the continuity of the map λ 7−→ u∗
λ at λ = λ0.

Remark 5.3. Note that the map ζ 7−→ ζq−1 + f(z, ζ) in general is neither convex

nor concave and so, we cannot have general criteria for the condition on the principal

eigenvalue to hold. For the scalar case (that is N = 1; ordinary differential equations),

some such conditions were produced by Cazenave-Escobedo-Pozio [5, Proposition 4.1].
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quasilinéaires, C. R. Acad. Sci. Paris Sér. I Math., 305 (1987), 521–524.

[7] J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, 1978.

[8] N. Dunford and J.T. Schwartz, Linear Operators. I. General Theory, Volume 7 of Pure and

Applied Mathematics, Wiley, New York, 1958.

[9] M. Filippakis, A. Kristaly, N.S. Papageorgiou, Existence of five nonzero solutions with exact

sign for a p-Laplacian equation, Discrete Contin. Dynam. Systems, 24 (2009), 405–440.
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[18] L. Gasiński, N.S. Papageorgiou, Dirichlet problems with an indefinite and unbounded potential

and concave-convex nonlinearities, Abstr. Appl. Anal., 2012 (2012), 1–36, Article ID 492025.

[19] L. Gasiński, N.S. Papageorgiou, Multiple solutions for nonlinear Dirichlet problems with concave

terms, Math. Scand., 113 (2013), 206–247.
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