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ABSTRACT. We consider linear delay differential equations at the verge of Hopf instability, i.e.
a pair of roots of the characteristic equation are on the imaginary axis of the complex plane and
all other roots have negative real parts. When nonlinear and noise perturbations are present, we
show that the error in approximating the dynamics of the delay system by certain two dimensional
stochastic differential equation without delay is small (in an appropriately defined sense). Two cases
are considered: (i) linear perturbations and multiplicative noise (ii) cubic perturbations and additive
noise. The approximation results are useful because, processes without delay are easier to simulate
numerically as they do not require storage of the history of the process.
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1. INTRODUCTION

Consider the stochastic delay differential equation (SDDE)

dx(t) =
(
µx(t− 1) + x3(t)

)
dt+ εc1x(t− 1)dV1(t) + ε2c2dV2(t),(1.1)

where 0 < ε � 1 and V1, V2 are Wiener processes. The above equation represents a

noisy perturbation of the following deterministic system:

ẋ(t) = µx(t− 1) + x3(t).(1.2)

The linear system corresponding to (1.2) is

ẋ(t) = µx(t− 1).(1.3)

Seeking a solution of the form x(t) = etλ to the linear system, we find that λ must

satisfy the characteristic equation λ − µe−λ = 0. When µ ∈ (−π
2
, 0), all roots of the

characteristic equation have negative real parts (see corollary 3.3 on page 53 of [1]).

When µ = −π
2

a pair of roots ±iπ
2

are on the imaginary axis and all other roots

have negative real parts. When µ < −π
2

some of the roots have positive real part.

Hence, the system (1.3) is on the verge of instability at µ = −π
2
. Close to the verge

of instability, the behaviour of the solution is oscillatory with amplitude increasing
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or decreasing depending on whether the root with the largest real part has positive

real part or negative.

To study (1.1) close to the verge of instability, set µ = −π
2

+ ε2µ̃ and zoom-in

near x = 0, i.e. write y(t) = ε−1x(t) for x governed by (1.1). We get

dy(t) = −π
2
y(t− 1)dt+ ε2(y3(t) + µ̃y(t− 1))dt(1.4)

+ εc1y(t− 1)dV1(t) + εc2dV2(t).

The equations studied in this paper are of the above kind. Before stating the equations

in more precise terms below, we describe briefly the motivation for studying such

equations.

Delay equations at the verge of instability arise, for example, in machining pro-

cesses [2], in the response of eye-pupil to incident light [3], in human balancing [4]. In

machining processes, the motion of the cutting tool can be described by a DDE—the

tool cuts a work-piece placed on a rotating shaft and the delay is the time-period

of the rotating shaft. For each rotation period there is certain rate of cutting below

which the tool is stable and above which the tool breaks. The inhomogenities in the

properties of the material being cut can be modeled by noise (see [5]). The eye-pupil

exhibits oscillations in response to incident light—however there is some delay in

the response because neurons have finite processing speed. This phenomenon can be

modeled using a DDE at the verge of instability [3]. So, a study of the effect of noise

perturbations on ‘DDE at the verge of instability’ is indeed useful.

Now we describe the equations studied in this article in more precise terms.

Let {yt : t ≥ 0} be an R-valued process governed by an SDDE. Let r > 0 be the

maximum of the delays involved in the drift and diffusion coefficients of the SDDE. To

find the evolution at time t of the process, we need to keep track of ys for t−r ≤ s ≤ t.

For this purpose, let C := C([−r, 0]; R) be the space of R-valued continuous functions

on [−r, 0], and equip C with sup norm:

‖η‖ := sup
θ∈[−r,0]

|η(θ)|, for η ∈ C.

Define the segment extractor Πt as follows: for f ∈ C([−r,∞); R),

(Πtf)(θ) = f(t+ θ), θ ∈ [−r, 0], t ∈ [0,∞).

Then, consider equation of the form:

dy(t) = L0(Πty)dt+ ε2G(Πty)dt+ εL1(Πty)dV1(t) + εc2dV2(t), t ≥ 0,(1.5)

where L0, L1 : C → R are bounded linear operators, G : C → R, and Vi are Wiener

processes. Of course, as an initial condition we specify Π0y = ξ ∈ C.
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If we choose the maximum delay r = 1 and L0(η) = −π
2
η(−1), L1(η) = c1η(−1),

G(η) = η3(0) + µ̃η(−1), we see that (1.5) represents (1.4).

We make the following assumption on L0 to reflect the Hopf-bifurcation scenario:

Assumption 1.1. We assume that the corresponding unperturbed DDE

ẋ(t) = L0(Πtx)(1.6)

is critical, i.e. a pair of roots (±iωc) of the characteristic equation λ − L0(eλ ·) = 0

are on the imaginary axis (critical eigenvalues) and all other roots have negative real

parts (stable eigenvalues).

Roughly speaking, under the above assumption, the solution of the unperturbed

system (1.6) is oscillatory with constant amplitude. However for the perturbed system

(1.5), it can be shown that for the amplitude of oscillation of y to change considerably,

we need to wait for a time of order ε−2. Hence we change the time scale, i.e. define

Y ε(t) = y(t/ε2).

To be able to put the rescaled process Y ε in a form akin to (1.5) we need to define

the rescaled segment extractor Πε
t as follows: for f ∈ C([−ε2r,∞); R),

(Πε
tf)(θ) = f(t+ ε2θ), θ ∈ [−r, 0], t ∈ [0,∞).

Then, (1.5), with Y ε(t) = y(t/ε2), can be written as

dY ε(t) = ε−2L0(Πε
tY

ε)dt+G(Πε
tY

ε)dt+ L1(Πε
tY

ε)dW1(t) + c2dW2(t),(1.7)

where Wi(t) = εVi(t/ε
2) are again Wiener processes.

In this paper, we restrict to equations of the form:
dXε(t) = ε−2L0(Πε

tX
ε)dt+G(Πε

tX
ε)dt+ σdW (t), t ∈ [0, T ],

Xε(t) = ξ(ε−2t), t ∈ [−ε2r, 0], ξ ∈ C,

G(η) =
∫ 0

−r η(θ)dν1(θ) +
∫ 0

−r η
3(θ)dν3(θ),

(1.8)

where for i = 1, 3, νi : [−r, 0] → R, are bounded functions continuous from the left

on (−r, 0) and normalized with νi(0) = 0; and also equations of the form:
dXε(t) = ε−2L0(Πε

tX
ε)dt+G(Πε

tX
ε)dt+ L1(Πε

tX
ε)dW (t), t ∈ [0, T ],

Xε(t) = ξ(ε−2t), t ∈ [−ε2r, 0], ξ ∈ C,

|G(η1)−G(η2)| ≤ KG‖η1 − η2‖, G(0) = 0.

(1.9)

We refer to (1.8) as the additive noise case and (1.9) as the mulitplicative noise

case. In both cases we assume that the initial condition ξ is deterministic (not a

random variable).

Equations of the form dXε(t) = ε−2L0(Πε
tX

ε)dt + G(Πε
tX

ε)dt + σdW (t) were

studied in [6] but the coefficient G was assumed to be Lipschitz. A quantity Hε was
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identified which, roughly speaking, gives the amplitude of oscillations of Xε. It was

shown that the distribution ofHε converges weakly to the distribution of a processH0

governed by a stochastic differential equation (SDE) without delay. For small ε, this

H0 gives good approximation for the dynamics of Xε. The advantage is three fold:

(i) equations without delay are easier to analyze, (ii) for numerical simulations, Xε

requires storage of Πε
tX

ε (the entire segment) whereas H0 requires just the storage

of current value H0
t , (iii) numerical simulation of Xε requires very small time-step

for integration because the drift coefficient is of the order ε−2, whereas H0 does not

require such a small time-step.

In this article we relax the Lipschitz assumption on the coefficient G for the ad-

ditive noise case. Note that the presence of ν3 in (1.8) makes G non-Lipschitz. The

process Hε mentioned above encodes information only about the critical eigenspace

(space spanned by the eigenvectors corresponding to the imaginary roots of the char-

acteristic equation), and to obtain the convergence to H0 one needs to show that the

projection of Xε onto stable eigenspace is small (details would be provided later). In

[6] this was easy to show because of the Lipschitz condition on G. In this article we

need to follow a different approach.

The case of multiplicative noise (1.9) is also considered here. However, for the

multiplicative noise case the Lipschitz condition could not be relaxed. The presence

of cubic nonlinearites causes the following problem: in trying to estimate a moment

of certain order we encounter terms with higher order moments.

[7] discusses the approaches in the literature towards SDDE at the verge of in-

stability and shows the mistakes and shortcomings of those approaches (see section 1

and appendix A of [7]). Hence, here we refrain from mentioning these works again.

Though here we discuss rigorously only R-valued processes, the multi-dimensional

processes are dealt with in [7] without proofs. An applications-oriented reader would

benefit from [7] rather than this article.

Before stating the goals of this paper, we give a brief overview of the unperturbed

system (1.6), and the variation-of-constants formula relating the solutions of (1.8) and

(1.9) with (1.6). The material in section 1.1 can be found in chapter 7 of [8] (see also

[9]).

1.1. The unperturbed system (1.6). The solution of (1.6) gives rise to the strongly

continuous semigroup T (t) : C → C, t ≥ 0, defined by T (t)Π0x = Πtx.

The state space C can be split in the form C = P ⊕Q where P = spanR{Φ1,Φ2}
where

Φ1(θ) = cos(ωcθ), Φ2(θ) = sin(ωcθ), θ ∈ [−r, 0].
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Write Φ = [Φ1,Φ2]. Any η ∈ P can be written as Φz = z1Φ1 + z2Φ2 for z ∈ R2, i.e.

Φ is a basis for the two-dimensional space P and the z are coordinates of η ∈ P with

respect to the basis Φ.

Let π denote the projection of C onto P along Q, i.e. π : C → P with π2 = π and

π(η) = 0 for η ∈ Q. The operator π can be written down explicitly, but we would

not need the explicit form.

1.1.1. Behaviour of the solution on P and Q. It is easy to see that Πtx = cos(ωc(t+·))
is a solution to (1.6) with the initial condition Π0x = cos(ωc·), and Πtx = sin(ωc(t+·))
is a solution to (1.6) with the initial condition Π0x = sin(ωc·). Using the identity

cos(ωc(t + ·)) = cos(ωct) cos(ωc·)− sin(ωct) sin(ωc·) and the linearity of L0, it can be

shown that

T (t)Φ(·) = Φ(·)eBt, B =

[
0 ωc

−ωc 0

]
.(1.10)

There exists positive constants κ and K such that

‖T (t)φ‖ ≤ Ke−κt‖φ‖, ∀φ ∈ Q.(1.11)

The above is a consequence of the fact that, except for the roots ±iωc all other roots

of the characteristic equation have negative real parts.

Write the solution to (1.6) as

Πtx = πΠtx+ (1− π)Πtx =: Φz(t) + yt

where z is R2-valued and y is C valued. Then we find that1 z oscillate harmonically

according to ż(t) = Bz(t) and ‖yt‖ decays exponentially fast, i.e.

‖yt‖ ≤ Ke−κt‖y0‖.(1.12)

1.2. The variation-of-constants formula. The solution of the perturbed systems

(1.8) or (1.9) can be expressed in terms of the solution of (1.6) with the initial

condition Π0x = 1{0} where

1{0}(θ) =

1, θ = 0,

0, θ ∈ [−r, 0).

However, note that 1{0} does not belong to C and so we need to extend the space C
to accommodate the discontinuity.

See p. 192–193, 206–207 of [10] for the results pertaining to the extension. Let

Ĉ := Ĉ([−r, 0]; R) be the Banach space of all bounded measurable maps [−r, 0]→ R,

1Multiply (1.10) by z(0) and realize (using the fact T commutes with π) that T (t)Φ(·)z(0) =
T (t)πΠ0x = πT (t)Π0x = πΠtx = Φz(t) to get that Φz(t) = ΦeBtz(0) from which ż = Bz fol-
lows.
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given the sup norm. Solving the unperturbed system (1.6) for initial conditions in Ĉ,
we can extend the semigroup T to one on Ĉ. Denote the extension by T̂ . Again Ĉ
splits in the form Ĉ = P ⊕ Q̂. The projection π can be extended to Ĉ. The extension

is denoted by π̂. There exists a two component column vector Ψ̃ ∈ R2 such that

π̂1{0} = ΦΨ̃ = Ψ̃1Φ1 + Ψ̃2Φ2.(1.13)

Also, there exists positive constants κ and K such that

‖T̂ (t)φ‖ ≤ Ke−κt‖φ‖, ∀φ ∈ Q̂.(1.14)

1.2.1. Additive noise case. The solution of (1.8) can be represented as (see theorem

IV.4.1 on page 200 in [10])

Πε
tX

ε = T̂ (t/ε2)Πε
0X

ε +

∫ t

0

T̂

(
t− u
ε2

)
1{0}G(Πε

uX
ε)du(1.15)

+

∫ t

0

T̂

(
t− u
ε2

)
1{0} σdWu.

The third term in the RHS of (1.15) is an element in C and its value at θ ∈ [−r, 0] is

given by
∫ t

0

(
T̂ ( t−u

ε2
)1{0}

)
(θ)σdWu. Write

Πε
tX

ε = Φzεt + yεt .

Here (yεt )t≥0 is the C-valued process yεt = (1−π)Πε
tX

ε and Φzt = πΠε
tX

ε. Note that z

is R2-valued process. Taking projection of (1.15) onto the space P , and using the facts

(i) πΠε
tX

ε = Φzεt , (ii) T̂ commutes with π̂, (iii) π̂1{0} = ΦΨ̃, (iv) T̂ (t)Φz = ΦetBz,

we get for zε (see corollary IV.4.1.1 on page 207 in [10])

dzεt = ε−2Bzεt dt+ Ψ̃G(Φzεt + yεt )dt+ Ψ̃σdWt, Φzε0 = πΠε
0X

ε.(1.16)

Using the fact that T̂ commutes with π̂, yεt satisfies

yεt = T̂ (t/ε2)yε0 +

∫ t

0

T̂

(
t− u
ε2

)
(1− π̂)1{0}G(Φzεu + yεu)du(1.17)

+

∫ t

0

T̂

(
t− u
ε2

)
(1− π̂)1{0} σdWu.

1.2.2. Multiplicative noise case. The solution of (1.9) can be represented in a form

analogous to (1.15) with σ replaced by L1(Πε
uX

ε) (see [11]):

Πε
tX

ε = T̂
(
t/ε2

)
Πε

0X
ε +

∫ t

0

T̂

(
t− u
ε2

)
1{0}G(Πε

uX
ε)du(1.18)

+

∫ t

0

T̂

(
t− u
ε2

)
1{0} L1(Πε

uX
ε)dWu.

For the projections onto P and Q we have:

dzεt = ε−2Bzεt dt+ Ψ̃G(Φzεt + yεt )dt+ Ψ̃L1(Φzεt + yεt )dW, Φzε0 = πΠε
0X

ε,(1.19)
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yεt = T̂ (t/ε2)yε0 +

∫ t

0

T̂

(
t− u
ε2

)
(1− π̂)1{0}G(Φzεu + yεu)du(1.20)

+

∫ t

0

T̂

(
t− u
ε2

)
(1− π̂)1{0} L1(Φzεu + yεu)dWu.

Crucial role would be played in proofs by

γ(t) := (T̂ (t)(1− π̂)1{0})(0).(1.21)

From (1.14) we already know that

|γ(t)| ≤ Ke−κt‖(1− π̂)1{0}‖, t ≥ 0.(1.22)

Further, for t > 0∣∣∣∣ ddtγ(t)

∣∣∣∣ =

∣∣∣∣L0

(
T̂ (t)(1− π̂)1{0}

)∣∣∣∣ ≤ ‖L0‖op ‖T̂ (t)(1− π̂)1{0}‖(1.23)

≤ ‖L0‖op ‖(1− π̂)1{0}‖Ke−κt.

Thus, both γ and γ′ have exponential decay.

1.3. Goal of this paper. Let Xε evolve according to either (1.8) or (1.9). Write

Πε
tX

ε = Φzεt + yεt , and define

Yε
t := T̂ (t/ε2)yε0, Y ε

t := yεt −Yε
t .(1.24)

Note that Yε
t depends only on the unperturbed system (1.6). Given the initial

condition Πε
0X

ε, Yε
t is a deterministic quantity. Note that ‖Yε

t‖ decays exponentially

fast:

‖Yε
t‖ ≤ Ke−κt/ε

2‖(1− π)Πε
0X

ε‖.(1.25)

1.3.1. Goal for the multiplicative noise case (1.9). Roughly speaking, the goals are

(i) Show that, until time T > 0, E supt∈[0,T ] ‖Y ε
t ‖n

ε→0−−→ 0, so that we can approxi-

mate yεt with the deterministic quantity Yε
t

(ii) Consider the process

dzεt = ε−2Bzεtdt+ Ψ̃G(Φzεt)dt+ Ψ̃L1(Φzεt)dW, Φzε0 = πΠε
0X

ε.(1.26)

Note that zε is two-dimensional process without delay totally ignoring yε. Show

that

E sup
t∈[0,T ]

‖zεt − zεt ‖2
2
ε→0−−→ 0(1.27)

where ‖ · ‖2 is `2 norm of vectors in R2.

The above tasks justify the approximation of Πε
tX

ε by Φzεt + Yε
t for small ε.

Note that zε is a two-dimensional process without delay and Yε
t is an exponentially
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decaying deterministic process. For small ε one could study this non-delay system

instead of the original stochastic DDE (1.9). The advantage is that the 2-dimensional

system without delay would be easier to analyze or simulate numerically.

The approximation result is stated in theorem 2.8. The process z̃̃z̃zεt in (2.8) is

related to the process zεt of (1.26) by etB/ε
2
z̃̃z̃zεt = zεt .

Further simplification can be obtained by studying the process

Hε
t :=

1

2
‖zεt ‖2

2.(1.28)

Roughly speaking2,
√

2Hε is the amplitude of oscillations of Xε. We will show that

there is a constant C such that

E sup
t∈[0,T ]

‖zεt‖2
2 < C(1.29)

for all ε smaller than some ε∗. Using (1.29) and (1.27) it follows that

E sup
t∈[0,T ]

|Hε
t −

1

2
‖zεt‖2

2|
ε→0−−→ 0.(1.30)

One can use standard averaging techniques for stochastic differential equations (with-

out delay) to show that the distribution of 1
2
‖zε‖2

2 converges to the distribution of

some one-dimensional process H0 without delay. By theorem 3.1 in [12], the distri-

bution of Hε converges to the distribution of H0. For small ε, the distribution of H0

gives a good approximation to the distribution of Hε. The advantages of having H0

were mentioned in section 1.

The above result concerning Hε is stated in theorem 2.10. The process z̃̃z̃zεt in (2.10)

is related to zεt of (1.26) by zεt = etB/ε
2
z̃̃z̃zεt .

1.3.2. Goal for the additive noise case (1.8). The presence of cubic nonlinearites

causes the following problem: in trying to estimate a moment of certain order we

face the task of estimating terms with higher order moments. So the approach taken

for (1.9) does not work here. We take the following approach.

Recall the projection operator π : C → P . Fix a constant Ce > 0 and define

the stopping time eε = inf{t ≥ 0 : ‖πΠε
tX

ε‖ ≥ Ce}. (Note that the stopping time

depends on ε).

• Show that for t ∈ [0, T ∧ eε], ‖Y ε
t ‖ is small with high probability

• Define a 2-dimensional process zε as

dzεt = ε−2Bzεtdt+ Ψ̃G(Φzεt)dt+ Ψ̃σdW, Φzε0 = πΠε
0X

ε.(1.31)

2Writing Πε
tX

ε = Φz(t)+yt and showing y is small, we can write Xε(t) = Πε
tX

ε(0) ≈ Φ(0)zt = (zt)1.
Since the dynamics of z is small perturbation of a predominant oscillation according ż = Bz, the
approximate amplitude of (z)1 is

√
(z)21 + (z)22 = ‖z‖2 =

√
2H.
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Note that zε is a 2 dimensional process without delay. Show that for t ∈ [0, T∧eε],

error in approximating zε by zε is small with high probability

• Using estimates on zε process, get rid of the stopping time and obtain approxi-

mation results until time T , by leveraging some arbitrarily small probability.

The stopping time helps in arriving at a bound on the norm of stable-mode

(1− π)Πε
tX

ε without worrying about what happens to the critical-mode πΠε
tX

ε.

The approximation result is stated in theorem 3.10. The process z̃̃z̃zεt in (3.9) is

related to the process zεt of (1.31) by etB/ε
2
z̃̃z̃zεt = zεt .

Examples illustrating the usefulness of the above approximation results are shown

in sections 2.1 and 3.1.

For related work on stochastic partial differential equations see [13]. However

note that in [13] the bifurcation scenario is different—analogous situation in the DDE

framework would be if one root of characteristic equation is zero and all other roots

have negative real parts.

2. MULTIPLICATIVE NOISE

In this section we consider (1.9) with T > 0 fixed. The constants here can depend

on T .

The first goal is to show that E supt∈[0,T ] ‖Y ε
t ‖n → 0, which is the content of

proposition 2.4. For this purpose, we use the variation of constants formulas (1.18)–

(1.20). Recalling the definition of Y ε from (1.24), to estimate E supt∈[0,T ] ‖Y ε
t ‖n, we

need to estimate the last two terms on the RHS of (1.20).

Roughly speaking, the integral in the last term of RHS of (1.20) can be split as∫ s
0

=
∫ s−εδr

0
+
∫ s
s−εδr with 0 < δ < 2. For

∫ s−εδr
0

we can use exponential decay of T̂ on

Q̂. For
∫ s
s−εδr, making note that the length of the interval of integration is small (rεδ),

we need to be concerned with increments of Wiener process over small intervals, i.e.

the modulus of continuity of the Wiener process.

Lemma 2.1 is needed to be able to use the results of [14] on moments of modulus-

of-continuity of Ito processes. Using results from [14], proposition 2.3 shows that the

stochastic term in (1.20) is small. Then, straight forward estimation yields proposition

2.4 which is the result that we need.

Lemma 2.1. Fix n ≥ 0. There exists constants C > 0 and ε∗ > 0 such that ∀ε < ε∗,

E sup
t∈[0,T ]

‖Πε
tX

ε‖n < C.(2.1)

Proof is given in appendix A.1. Note that, though one of the drift coefficients

in (1.9) is of the order ε−2, the constant C above does not depend on ε. Proof uses:

(i) the variation-of-constants formula to exploit the exponential decay (1.22) and
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(1.23) on Q̂, and oscillatory behaviour on P ; (ii) Burkholder-Davis-Gundy inequality

to estimate supremum of martingales by their quadratic-variation; and then (iii)

Gronwall inequality.

Definition 2.2. Define the modulus of continuity for f : [0,∞)→ R by

w(a, b; f) = sup
|u−v|≤a
u,v∈[0,b]

|f(u)− f(v)|.

Define

Υε
s := sup

θ∈[−r,0]

∣∣∣∣∫ s

0

(
T̂ (
s− u
ε2

)(1− π̂)1{0}

)
(θ)dZu

∣∣∣∣ , Zt :=

∫ t

0

L1(Πε
sX

ε)dWs.

(2.2)

Note that Z dependens also on ε.

Proposition 2.3. Fix n ≥ 1. There exists constant Ĉ > 0 and a family of constants

ε̂δ > 0 (indexed by 0 < δ < 2) such that, given δ ∈ (0, 2) we have for ε < ε̂δ

E sup
s∈[0,T ]

(Υε
s)
n ≤ Ĉ

(
rεδ ln

(
2T

rεδ

))n/2
ε→0−−→ 0.(2.3)

Proof is given in appendix A.2. The essential idea of writing
∫ s

0
=
∫ s−εδr

0
+
∫ s
s−εδr

and using [14] is mentioned earlier.

Let Yε
t and Y ε

t be as defined in (1.24).

Proposition 2.4. Fix n ≥ 1. ∃ε∗ > 0 such that ∀ ε < ε∗,

E sup
s∈[0,T ]

‖Y ε
s ‖n ≤ ε2n2n−1

(
KGK

κ

)n
C + 2n−1E sup

s∈[0,T ]

(Υε
s)
n ε→0−−→ 0,(2.4)

where C is from lemma 2.1.

Proof given in appendix A.3.

Recall that when we write Πε
tX

ε = Φzεt + yεt , the R2-valued process zε satisfies

equation (1.19). Removing the fast rotation induced by B, i.e. writing zεt = e−tB/ε
2
zεt

we have

dzε = e−tB/ε
2

Ψ̃G(ΦetB/ε
2

zεt + yεt )dt+ e−tB/ε
2

Ψ̃L1(ΦetB/ε
2

zεt + yεt )dWt, zε0 = zε0.

Let ẑε be governed by

d̂zε = e−tB/ε
2

Ψ̃G(ΦetB/ε
2

ẑεt + Yε
t)dt+ e−tB/ε

2

Ψ̃L1(ΦetB/ε
2

ẑεt + Yε
t)dWt, ẑε0 = zε0.

i.e. we are totally ignoring y part except for the effect of initial condition (note that

Yε
t = T̂ (t/ε2)yε0).
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As an intermediate step towards the end goal, we want to show that, until time

T the error in approximating zε by ẑε is small. For this purpose, define

αεt =
1

2
‖zεt − ẑεt‖2

2 =
1

2
((zεt − ẑεt)

2
1 + (zεt − ẑεt)

2
2).

Here (zεt − ẑεt)i denotes the ith component of the R2-valued vector zεt − ẑεt . Let

Γt =
2∑
i=1

(zεt − ẑεt)i(e
−tB/ε2Ψ̃)i.(2.5)

Then αεt is governed by

dαεt = Btdt+ ΣtdWt, αε0 = 0,

where

Bt = Γt

(
G(ΦetB/ε

2

zεt + yεt )−G(ΦetB/ε
2

ẑεt + Yε
t)
)

+
1

2
‖Ψ̃‖2

2

(
L1(ΦetB/ε

2

(zεt − ẑεt)) + L1(yεt −Yε
t)

)2

,

and

Σt = Γt

(
L1(ΦetB/ε

2

(zεt − ẑεt)) + L1(yεt −Yε
t)

)
.

The following lemma gives processes dominating Bt and Σt. These help in ap-

plying Gronwall inequality to arrive at proposition 2.6.

Lemma 2.5. Define

B(α, p) := CB(α + p2), CB = 2‖Ψ̃‖2
2‖L1‖2 + 3‖Ψ̃‖2KG,

S2(α, p) := CΣ(α2 + p4), CΣ = 16‖Ψ̃‖2
2‖L1‖2.

Then |Bt| ≤ B(αεt , ‖Y ε
t ‖) and Σ2

t ≤ S2(αεt , ‖Y ε
t ‖) for t ≥ 0.

Proof given in appendix A.4

Proposition 2.6. Fix δ ∈ (0, 2). There exists constants C, ε̂δ > 0 such that ∀ε < ε̂δ

E sup
s∈[0,T ]

(αεs)
2 ≤C

(
rεδ ln(

2T

rεδ
)

)2
ε→0−−→ 0.

Proof is given in appendix A.5 and is by using lemma 2.5, result (2.4), applying

Gronwall pathwise (see [15]) and Doob’s Lp inequalities.

As final step, consider the system

d z̃̃z̃zεt = e−tB/ε
2

Ψ̃G(ΦetB/ε
2

z̃̃z̃zεt)dt+ e−tB/ε
2

Ψ̃L1(ΦetB/ε
2

z̃̃z̃zεt)dW, z̃̃z̃zε0 = zε0,(2.6)

i.e. we are totally ignoring the Q part—even the effect Y of the initial condition.

Define βεt = 1
2
‖̃z̃z̃zεt − ẑεt‖2

2. Using exactly the same technique as the one employed for
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αε and using the exponential decay of Yε, it is trivial to get the following result

analogous to proposition 2.6.

Proposition 2.7. There exists C > 0 and ε∗ > 0 such that ∀ε < ε∗

E sup
s∈[0,T ]

(βεs)
2 ≤Cε2.

Proof given in appendix A.6.

Combining propositions 2.4, 2.6 and 2.7 we get

Theorem 2.8. Fix δ ∈ (0, 2). There exists constants C, ε̂δ > 0 such that ∀ε < ε̂δ

E sup
t∈[0,T ]

∣∣Xε(t)−
(
Φ(0)etB/ε

2

ẑεt + Yε
t(0)

)∣∣4 ≤ C

(
rεδ ln(

2T

rεδ
)

)2
ε→0−−→ 0.(2.7)

There exists constants C > 0 and ε∗ > 0 such that ∀ε < ε∗

E sup
t∈[0,T ]

∣∣Xε(t)−
(
Φ(0)etB/ε

2

z̃̃z̃zεt + Yε
t(0)

)∣∣4 ≤ Cε2.(2.8)

Proof given in appendix A.7

Note that both the approximating processes ẑε and z̃̃z̃zε are processes without delay.

However, ẑε considers the effect of the initial condition yε0, but z̃̃z̃zε ignores it. Hence

the approximation (2.7) using ẑε is better than the approximation (2.8). For example,

choosing δ close to two in (2.7) we can get the bound O(ε4−) whereas the bound in

(2.8) is O(ε2).

Now we revisit the goals stated in section 1.3.1.

Note that for zεt defined in (1.26) we have zεt = etB/ε
2
z̃̃z̃zεt . Hence, zεt − zεt =

etB/ε
2
(̃z̃z̃zεt − zεt). Using the results of this section and the fact that for any R2-vector v,

‖etB/ε2v‖2 = ‖v‖2, we can easily see that (1.27) is satisfied. The condition (1.29) is

equivalent to the following condition (2.9). Lemma 2.9 is proved in appendix A.8.

Lemma 2.9. There exists constants C and ε∗ > 0 such that ∀ε < ε∗

E sup
t∈[0,T ]

‖̃z̃z̃zεt‖2
2 < C.(2.9)

Hence, (1.30) follows. We summarize the discussion in section 1.3.1 in the fol-

lowing theorem.

Theorem 2.10. Define Hε
t := 1

2
‖zεt ‖2

2 where zε are given by πΠε
tX

ε = Φzεt . Let z̃̃z̃zε be

the two-dimensional process (without delay) defined in (2.6). Then

E sup
t∈[0,T ]

|Hε
t −

1

2
‖̃z̃z̃zεt‖2

2|
ε→0−−→ 0.(2.10)

If the process 1
2
‖̃z̃z̃zε‖2

2 converges weakly to a process H0, then Hε converges weakly to

H0.
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Remark 2.1. Because z̃̃z̃zε is a process without delay, weak convergence of 1
2
‖̃z̃z̃zε‖2

2 can

be dealt using standard averaging techniques for stochastic differential equations.

2.1. Example. Consider (1.9) with G ≡ 0. The corresponding z̃̃z̃zε satisfies

d̃z̃z̃zε = e−tB/ε
2

MetB/ε
2

z̃̃z̃zεtdW, M = Ψ̃L1Φ,

with z̃̃z̃zε0 such that Φ̃z̃z̃zε0 = πξ. Let Hε
t := 1

2
‖zεt ‖2

2 and Hε
t := 1

2
‖̃z̃z̃zεt‖2

2. Then applying Ito

formula we have

dHε
t =(̃z̃z̃zεt)

∗e−tB/ε
2

MetB/ε
2

z̃̃z̃zεtdWt(2.11)

+
1

2

((
e−tB/ε

2

MetB/ε
2

z̃̃z̃zεt

)2

1
+
(
e−tB/ε

2

MetB/ε
2

z̃̃z̃zεt

)2

2

)
dt.

Averaging out the fast oscillations of z̃̃z̃zε, it can be shown that3 as ε → 0, the distri-

bution of Hε converges weakly to the distribution of

dH0
t = C1H0

t dWt + C2H0
tdt,(2.12)

where 2C2
1 = 3(M2

11 +M2
22)+(M12 +M21)2 +2M11M22 and C2 = 1

2
(
∑2

i,j=1M
2
ij). Using

M = Ψ̃L1Φ we get

dH0
t =

√(
1

2
‖Ψ̃‖2

2‖L1Φ‖2
2 + (L1ΦΨ̃)2

)
H0
tdWt +

1

2
‖Ψ̃‖2

2‖L1Φ‖2
2H0

tdt.(2.13)

For (2.13) solution can be written explicitly. For small ε, the distribution of H0 gives

good approximation to the distribution of Hε. Note that, roughly speaking,
√

2Hε is

the amplitude of oscillations of Xε. HenceH0 can be used to understand the dynamics

of Xε. The advantage is that H0 does not involve any delay and is one-dimensional,

and hence easier to analyze and simulate numerically (see [7] for examples involving

numerical simulations).

3. ADDITIVE NOISE

In this section we consider (1.8) with T > 0 fixed. The constants here can depend

on T .

The strategy employed for (1.9) in the previous section does not work for (1.8) due

to the problem of moment-closure, i.e. in trying to estimate a lower moment we end

up with the task of estimating a higher moment (because of the cubic nonlinearity).

For (1.8) we employ the strategy stated in section 1.3.2.

Define

Υε
s := sup

θ∈[−r,0]

∣∣∣∣∫ s

0

(
T̂ (
s− u
ε2

)(1− π̂)1{0}

)
(θ)dZu

∣∣∣∣ , Zt := σWt.(3.1)

3If 1
2 ‖̃z̃z̃z

ε‖22 = H0 then limT→0
1
T

∫ T

0
1
2‖e
−tB/ε2MetB/ε

2
z̃̃z̃zε‖22 dt = C2H0 and

limT→0
1
T

∫ T

0

(
(̃z̃z̃zε)∗e−tB/ε

2
MetB/ε

2
z̃̃z̃zε
)2

dt = (C1H0)2.
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Proposition 3.1. Fix n ≥ 1. There exists constant Ĉ > 0 and a family of constants

ε̂δ > 0 (indexed by 0 < δ < 2) such that, given δ ∈ (0, 2) we have for ε < ε̂δ

E sup
s∈[0,T ]

(Υε
s)
n ≤ Ĉ

(
rεδ ln

(
2T

rεδ

))n/2
ε→0−−→ 0.(3.2)

Proof is same as that of proposition 2.3 with appropriate changes to account for

Zt = σWt; and we dont need anything analogous to lemma 2.1.

Fix a constant Ce > 0 and define the stopping time

eε = inf{t ≥ 0 : ‖πΠε
tX

ε‖ ≥ Ce}.(3.3)

The stopping time helps in arriving at a bound on the norm of stable-mode (1 −
π)Πε

tX
ε (until time T ∧ eε) without worrying about what happens to the critical-

mode πΠε
tX

ε. Hence, as an intermediate step we establish results that hold until

time T ∧ eε and later get rid of the stopping time eε.

Write Πε
tX

ε = Φzεt +yεt . Then zεt and yεt satisfy the variation-of-constants formula

(1.16) and (1.17). Define Yε and Y ε as in (1.24).

Proposition 3.2. Let Ĉ and ε̂δ be the same as in proposition 3.1. There exists a

family of constants εa,Ce > 0 such that, given a ∈ [0, 1) and δ ∈ (2a, 2), we have for

ε < min{ε̂δ, εa,Ce}

P
[

sup
s∈[0,T∧eε]

‖Y ε
s ‖ ≤ 8εa

]
≥ 1− Ĉε−a

√
rεδ ln

(
T

rεδ

)
.(3.4)

Here εa,Ce is of the order O(min{C−3/(2−a)
e , C

−3/2a
e }) for large Ce.

In (3.4) we obtain a bound on ‖Y ε‖ which does not depend on Ce in spite of the

cubic nonlinearity—hence the ε should be made really small. Larger the Ce, smaller

the ε we need to consider. Proof is by straight forward application of exponential

decay on Q̂, Markov and Gronwall inequalities. Proof is given in appendix B.1

Removing the fast rotation induced by B, i.e. writing zεt = e−tB/ε
2
zεt we have

dzεt = e−tB/ε
2

Ψ̃G(ΦetB/ε
2

zεt + yεt )dt+ e−tB/ε
2

Ψ̃σdWt, zε0 = zε0.

Let ẑε be governed by

d̂zεt = e−tB/ε
2

Ψ̃G(ΦetB/ε
2

ẑεt + Yε
t)dt+ e−tB/ε

2

Ψ̃σdWt, ẑε0 = zε0,

i.e., in ẑε we are totally ignoring y part except for the effect of the initial condition

(Yε
t = T̂ (t/ε2)yε0). Note that ẑε is a process without delay.
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We want to show that until time T ∧ eε, error in approximating zε by ẑε is small.

For this purpose, define

αεt =
1

2
‖zεt − ẑεt‖2

2 =
1

2
((zεt − ẑεt)

2
1 + (zεt − ẑεt)

2
2).

and let Γt =
(∑2

i=1(zεt − ẑεt)i(e
−tB/ε2Ψ̃)i

)
. Then αεt is governed by

dαεt = Bt dt, αε0 = 0,

where

Bt = Γt

(
G(ΦetB/ε

2

zεt + yt)−G(ΦetB/ε
2

ẑεt + Yε
t)
)
.

The following lemma gives a process dominating Bt. This helps in applying

Gronwall inequality to arrive at proposition 3.4.

Lemma 3.3. ∃C > 0 (is of the order O(C2
e ) for large Ce) such that if B is defined

by

B(α, p) := C
√

2α
3∑
j=1

(
pj +

(√
2α
)j)

,(3.5)

then |Bt| ≤ B(αt, ‖Y ε
t ‖) for t ∈ [0, T ∧ eε].

Proof given in appendix B.2.

Proposition 3.4. Let Ĉ and ε̂δ be the same as in proposition 3.1. There exists two

families of constants εa,Ce,1 > 0, εa,Ce,2 > 0 such that, given a ∈ [0, 1) and δ ∈ (2a, 2),

we have for ε < min{ε̂δ, εa,Ce,1, εa,Ce,2}

P

[
sup

t∈[0,T∧eε]

αεt ≤ εa/2

]
≥ 1− Ĉε−a

√
rεδ ln

(
T

rεδ

)
=: pε

ε→0−−→ 1.(3.6)

Here εa,Ce,1 is of the order O(min{C−3/(2−a)
e , C

−3/2a
e }) (these are from proposition 3.2)

and εa,Ce,2 is of the order O(exp(−30C2
e T/a)) for large Ce.

Proof is given in appendix B.3.

Finally, the stopping time eε can be got rid as follows.

Let Ω be the set of all realizations of the Brownian motion W and ω ∈ Ω denote

one particular realization.

Definition 3.5. Given T > 0 and q > 0, we say that “̂zε system possesses the property

P(T, q)” if ∃Ce, ε∗ > 0 such that ∀ε < ε∗, we have P[Eε] ≥ 1− q where

Eε :=

{
ω : sup

t∈[0,T ]

‖ΦetB/ε2 ẑεt‖ < 0.99Ce

}
.(3.7)
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Theorem 3.6. Fix T > 0. Define

Hε :=

{
ω : sup

t∈[0,T ]

αεt ≥ εa/2

}
, Sε :=

{
ω : sup

t∈[0,T ]

‖Y ε
t ‖ ≥ 8εa

}
,

for a ∈ [0, 1). Fix q > 0 and assume ẑε system possesses the property P(T, q). Then

∃ εq > 0 such that ∀ ε < εq,

P[Hε] < q + 2(1− pε), P[Sε] < q + 2(1− pε),

where pε → 1 as ε→ 0 and is given explicitly in (3.6).

Proof is given in appendix B.4.

Note that we have extended our results on [0, T ∧eε] to [0, T ] by leveraging a small

probability q, provided that ẑε system possess property P(T, q). Now we discuss

under what conditions does ẑε system possesses the property P(T, q) for arbitrary

q > 0.

Fix T > 0. In general one cannot expect P(T, q) to hold for arbitrary q >

0—for example, if the cubic nonlinearities have a destabilizing effect then there is

a non-zero probability that trajectories blow-up in finite time. Similar situation

arises in stochastic partial differential equations—see remark 5.2 in [13]. When cubic

nonlinearities have stabilizing effect, it is reasonable to expect P(T, q) to hold for

arbitrary q > 0 (see proposition 3.8 below).

The following two propositions help in checking if the property P(T, q) is satis-

fied. Proofs of them are similar in nature to the proof of Theorem 5.1 in [13]. [13]

deals with stochastic partial differential equations and the instability scenario there is

different—analogous situation in delay equations case would be that “one root of the

characteristic equation is zero, and all other roots have negative real parts”. For the

scenario that we are considering in this paper, one pair of roots lie on the imaginary

axis, and so there are oscillations in the system and the proofs requires a bit more

work than that in [13].

Proposition 3.7 does not assume anything about the nature of the nonlinearity

G—consequently its result is weak. Proposition 3.8 assumes that the nonlinearity is

stabilizing and concludes that ẑε possesses the property P(T, q) for any q > 0.

Proposition 3.7. Fix q > 0. Then ∃Tq > 0 such that the ẑε system possesses the

property P(T, q) for T ∈ [0, Tq].

Proof is given in appendix B.5.

Proposition 3.8. Fix T > 0. Assume the cubic nonlinearity of G is stabilizing, i.e.,

∃CG > 0 such that

ωc
2π

∫ 2π/ωc

0

(
(etBz)∗Ψ̃

∫ 0

−r
(Φ(θ)etBz)3dν3(θ)

)
dt < −CG‖z‖4

2, ∀z ∈ R2.(3.8)
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Then the ẑε system possesses the property P(T, q) for arbitrary q > 0.

Proof is given in appendix B.6.

Now consider the system

d z̃̃z̃zεt = e−tB/ε
2

Ψ̃G(ΦetB/ε
2

z̃̃z̃zεt)dt+ e−tB/ε
2

Ψ̃L1(ΦetB/ε
2

z̃̃z̃zεt)dW, z̃̃z̃zε0 = zε0,

i.e. we are totally ignoring the Q part—even the effect Y of the initial condition.

Define

βεt =
1

2
‖̃z̃z̃zεt − ẑεt‖2

2.

Proposition 3.9. Assume the cubic nonlinearity is such that (3.8) is satisfied, i.e.

nonlienarity is stabilizing. Fix T > 0. Given any q > 0, ∃C > 0 and ε◦ > 0 such

that ∀ε < ε◦

P

[
sup
t∈[0,T ]

βεt ≥ Cε4

]
≤ q.

Proof is in appendix B.7.

Combining theorem 3.6 and proposition 3.9 we get the following result.

Theorem 3.10. Assume the cubic nonlinearity is such that (3.8) is satisfied, i.e.

nonlinearity is stabilizing. Fix any a ∈ [0, 1). For any q > 0, ∃εq > 0 such that

∀ε < εq

P
[

sup
s∈[0,T ]

∣∣Xε
s−
(

Φ(0)esB/ε
2

z̃̃z̃zεs + Yε
s

) ∣∣ > 6εa/4
]
< 3q + 4(1− pε)(3.9)

where pε → 1 as ε→ 0 and is given explicitly in (3.6).

Proof. Using Xε
s = Φ(0)esB/ε

2
zεs + Y ε

s + Yε
s the above probability is bounded by

P
[

sup
s∈[0,T ]

∣∣Φ(0)esB/ε
2

(zεs − ẑεs)
∣∣+
∣∣Φ(0)esB/ε

2

(̂zεs − z̃̃z̃zεs)
∣∣+ |Y ε

s (0)| > 6εa/4
]

≤ P

[
sup
s∈[0,T ]

√
2αεt > 2εa/4

]
+ P

[
sup
s∈[0,T ]

√
2βεt > 2εa/4

]
+ P

[
sup
s∈[0,T ]

‖Y ε
s ‖ > 2εa/4

]
< q + 2(1− pε) + q + q + 2(1− pε). (for ε sufficiently small.)

Remark 3.1. Note that z̃̃z̃zε is a 2-dimensional system without delay and Yε is a

deterministic process that has exponential decay. The above theorem shows that, for

small enough ε, the delay system Xε can be approximated by the z̃̃z̃zε system without

delay, with probability close to 1.

When the nonlinearity is stabilizing, using standard averaging techniques for

equations without delay (see for example [16]), it can be shown that the distribution
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of z̃̃z̃zε converges as ε → 0 to the distribution of a 2-dimensional process z̃̃z̃z0. Theorem

3.6 and propositions 3.9 show that supt∈[0,T ] β
ε
t and supt∈[0,T ] α

ε
t converge to zero in

probability. Hence, by theorem 3.1 in [12], the distribution of zε converges as ε → 0

to the distribution of z̃̃z̃z0. Also, the distribution of Hε process, where Hε
t := 1

2
‖zεt ‖2

2 =
1
2
‖zεt‖2

2, converges as ε → 0 to the distribution of H0, where H0 is the weak-limit as

ε→ 0 of the process Hε
t = 1

2
‖̃z̃z̃zεt‖2

2.

Great simplification can be obtained when 1
2
‖zε‖2

2 can be used to approximate

the required quantities. For example, consider the exit time

τ ε := inf{t ≥ 0 : |Xε
t | ≥

√
2H∗}(3.10)

whereH∗ is fixed and is such that
√

2H∗ � ‖(I−π)Πε
0X

ε‖. Noting that Φ(0)etB/ε
2
zεt =

(zεt)1 cos(ωt/ε2) + (zεt)2 sin(ωt/ε2); because of the fast oscillations of zε and fast decay

of Yε and smallness of Y ε, the exit time τ ε would be very close to the exit time τ ′ε

where

τ ′
ε

:= inf{t ≥ 0 :
√

(zεt)
2
1 + (zεt)

2
2 ≥
√

2H∗}.(3.11)

To approximate the distribution of τ ε, one can study Hε
t := 1

2
‖̃z̃z̃zεt‖2

2 and consider the

distribution of

τ ε,~ := inf{t ≥ 0 : Hε
t ≥ H∗}.

The distribution of τ ε,~ would be close to that of τ ε. Since z̃̃z̃zεt does not involve any

delay, standard averaging techniques can be used to show that the distribution of Hε

converges as ε→ 0 to the distribution of a specific 1-dimensional process H0 (without

delay). Then the exit times

τ~ := inf{t ≥ 0 : H0
t ≥ H∗}

would closely approximate τ ε. The advantages in doing so are: (i) H0 is a process

without delay and hence easier to simulate (ii) numerical simulation of H0 can be

done with a much coarser numerical mesh than that required for Xε.

3.1. Example. Consider the following equation:

dXε(t) = ε−2L0(Πε
tX

ε)dt+G(Πε
tX

ε)dt+ σdW, Πε
0X

ε = ξ,(3.12)

where L0η = −π
2
η(−1) and G(η) = γcη

3(−1). The characteristic equation λ+ π
2
e−λ =

0 has countably infinite roots on the complex plane. The roots with the largest real

part are ±iπ
2
. Hence L0 satisfies the assumption 1.1. The basis Φ for P and the

vector Ψ̃ can be evaluated as

Φ(θ) =
[
cos
(π

2
θ
)

sin
(π

2
θ
)]
, Ψ̃ =

2

(1 + (π/2)2)

[
1

π/2

]
.
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The corresponding z̃̃z̃zε satisfies

d̃z̃z̃zε = γce
−tB/ε2Ψ̃

(
Φ(−1)etB/ε

2

z̃̃z̃zεt

)3

dt+ e−tB/ε
2

Ψ̃σdW, Φ̃z̃z̃zε0 = πξ.

Let Hε
t = 1

2
((̃z̃z̃zε1)2 + (̃z̃z̃zε2)2)t. Applying Ito formula we have

dHε
t = γc(e

−tB/ε2Ψ̃)∗̃z̃z̃zε(Φ(−1)etB/ε
2

z̃̃z̃zε)3 dt+ (e−tB/ε
2

Ψ̃)∗̃z̃z̃zεσdW

+
1

2
σ2
(

(e−tB/ε
2

Ψ̃)2
1 + (e−tB/ε

2

Ψ̃)2
2

)
dt.

Averaging the fast oscillations we get that the probability distribution of Hε converges

as ε→ 0 to the probability distribution of

dH0
t =

(
− 3γcπ/2

1 + (π/2)2
(H0

t )
2 +

2σ2

1 + (π/2)2

)
dt+

2√
1 + (π/2)2

√
H0
t σdW.(3.13)

Now we illustrate our results employing numerical simulations.

Draw a random sample of Nsamp particles with initial H values {hi}Nsampi=1 . Sim-

ulate them according to (3.13) for 0 ≤ t ≤ Tend.

Simulate (3.12) for 0 ≤ t ≤ Tend using initial trajectories {
√

2hi cos(ωc·)}Nsampi=1 .

Let τ ε := inf{t ≥ 0 : |Xε
t | ≥

√
2H∗} and τh := inf{t ≥ 0 : H0(t) ≥ H∗}

We can check whether the following pairs are close.

1. the distribution of 1
2
((zεTend)

2
1 +(zεTend)

2
2) from (3.12) and the distribution of H0

Tend

from (3.13),

2. distribution of τ ε and the distribution of τh.

We took ε = 0.025, H∗ = 1.5, Tend = 2, Nsamp = 4000, and
√

2{hi}Nsampi=1 = 1.2.

Figures 1 and 2 answer the above questions. Two cases are considered with σ = 1

fixed: γc = 1 and γc = 0.

More examples (oscillators with cubic nonlinearity) are discussed in4 [7].

4[7] employs complex coordinates and so the form of answers would differ from this paper. However
the numerical values would be same. For example, in this paper we write an element in P as
z1 cos(ωc·) + z2 sin(ωc·) with zi ∈ R. But in [7] we write z1eiωc· + z2e

−iωc· with z1 and z2 being
complex conjugates. For multidimensional systems as treated in [7] this complex coordinates is more
convenient.
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Appendix A. PROOFS OF RESULTS IN SECTION 2

A.1. Proof of Lemma 2.1. For η ∈ C, by η(θ) we mean η evaluated at θ ∈ [−r, 0].

Let Xε
q,t := ((1 − π)Πε

tX
ε)(0), and Xε

p,t := (πΠε
tX

ε)(0). And for the unper-

turbed system (1.6), let xq,t := ((1−π)Πtx)(0), and xp,t := (πΠtx)(0) with the initial

condition Π0x = Πε
0X

ε = ξ. Let

Zt :=

∫ t

0

L1(Πε
sX

ε)dWs.

In (1.21), γ was defined. Let

χ(t) = (T̂ (t)π̂1{0})(0).

Using π̂1{0} = ΦΨ̃ from (1.13) and T̂ (t)Φ = ΦetB, we get χ(t) = Φ(0)etBΨ̃.

Using the variation-of-constants formula (1.18)-(1.20) we have for t ≥ 0

Xε
t = Xε

p,t +Xε
q,t = xp,t/ε2 + xq,t/ε2 +Dp,t +Dq,t + Ap,t + Aq,t

with

Dq,t :=

∫ t

0

γ

(
t− s
ε2

)
G(Πε

sX
ε)ds, Aq,t :=

∫ t

0

γ

(
t− s
ε2

)
dZs,

Dp,t :=

∫ t

0

χ

(
t− s
ε2

)
G(Πε

sX
ε)ds, Ap,t :=

∫ t

0

χ

(
t− s
ε2

)
dZs.

For any process M , we define M∗
t := sup0≤s≤t |Ms|. Now, what we mean by D∗q,t,

A∗q,t and x∗q,t etc is clear. Also define

Xε
t := sup

s∈[0,t]

|Xε
s |n.

We then have,

2−5(n−1)E Xε
t ≤ E|x∗p,t/ε2|n + E|x∗q,t/ε2|n(A.1)

+ E |D∗p,t|n + E |D∗q,t|n + E |A∗p,t|n + E|A∗q,t|n.



284 N. LINGALA

First we focus on the terms involving the process A. Using integration by parts

we have

Aq,s = γ(0)Zs +

∫ s

0

ε−2γ′
(
s− u
ε2

)
Zu du.

Using Minkowski inequality,

E |A∗q,t|n ≤ 2n−1|γ(0)|nE sup
s∈[0,t]

|Zs|n(A.2)

+ 2n−1E sup
s∈[0,t]

∣∣∣∣∫ s

0

ε−2γ′
(
s− u
ε2

)
Zu du

∣∣∣∣n .
The second term on the RHS of (A.2) is bounded above (using the exponential decay

(1.23)) by

2n−1E sup
s∈[0,t]

∣∣∣∣∫ s

0

ε−2

∣∣∣∣γ′(s− uε2

)∣∣∣∣ |Zu| du∣∣∣∣n
≤ 2n−1E sup

s∈[0,t]

∣∣∣∣∫ s

0

ε−2K̃‖L0‖e−κ(s−u)/ε2 |Zu| du
∣∣∣∣n

≤ 2n−1(K̃‖L0‖/κ)nE sup
s∈[0,t]

|Zs|n,

where K̃ = K‖(1 − π̂)1{0}‖. Hence, using Burkholder-Davis-Gundy inequality and

Holder inequality

E|A∗q,t|n ≤ 2n−1
(
|γ(0)|n + (K̃‖L0‖/κ)n

)
E sup
s∈[0,t]

|Zs|n

≤ 2n−1
(
|γ(0)|n + (K̃‖L0‖/κ)n

)
CmE

(∫ t

0

L2
1(Πε

uX
ε)du

)n/2
≤ 2n−1

(
|γ(0)|n + (K̃‖L0‖/κ)n

)
Cmt

n−2
2 ‖L1‖n

(∫ t

0

EXε
udu+ E‖ξ‖n(t ∧ ε2r)

)
= Cm,Lt

n−2
2

(∫ t

0

EXε
udu+ E‖ξ‖n(t ∧ ε2r)

)
where Cm,L = 2n−1

(
|γ(0)|n + (K̃‖L0‖/κ)n

)
Cm‖L1‖n and t ∧ ε2r means min{t, ε2r}.

Now we focus on Ap,t.

Ap,t =

∫ t

0

χ

(
t− s
ε2

)
dZs

=

∫ t

0

(
Φ(0)e(t−s)B/ε2Ψ̃

)
dZs = Φ(0)etB/ε

2

(∫ t

0

e−sB/ε
2

dZs

)
Ψ̃.

Let M c
t =

∫ t
0

cos(ωcs/ε
2)dZs and M s

t =
∫ t

0
sin(ωcs/ε

2)dZs. Then

E|A∗p,t|n ≤ (‖Φ(0)‖2‖Ψ̃‖2)nE(M c,∗
t +M s,∗

t )n.



APPROXIMATION OF DDE AT THE VERGE OF INSTABILITY 285

Using BDG and Holder inequalities,

E|A∗p,t|n ≤ 2n−1(‖Φ(0)‖2‖Ψ̃‖2)nCt
n−2

2 ‖L1‖n
(∫ t

0

EXε
udu+ E‖ξ‖n(t ∧ ε2r)

)
.

Now we focus on the process D. Using exponential decay of γ we have

|Dq,t| ≤
∫ t

0

∣∣∣∣γ (t− sε2

)∣∣∣∣ |G(Πε
sX

ε)|ds

≤ sup
s∈[0,t]

|G(Πε
sX

ε)|
∫ t

0

K̃e−κ(t−s)/ε2ds ≤ ε2(K̃/κ) sup
s∈[0,t]

|G(Πε
sX

ε)|.

Hence, using the Lipschitz condition |G(η)| ≤ KG‖η‖ we have,

E|D∗q,t|n ≤ ε2n(K̃KG/κ)n(EXε
t + E‖ξ‖n).

Now,

|Dp,t| ≤
∫ t

0

∣∣∣∣χ(t− sε2

)∣∣∣∣ |G(Πε
sX

ε)|ds =

∫ t

0

∣∣∣Φ(0)e(t−s)B/ε2Ψ̃
∣∣∣ |G(Πε

sX
ε)|ds

≤ ‖Φ(0)‖2‖Ψ̃‖2

∫ t

0

|G(Πε
sX

ε)|ds ≤ ‖Φ(0)‖2‖Ψ̃‖2KG

∫ t

0

‖Πε
sX

ε‖ds.

Hence, using BDG and Holder inequalities,

E|D∗p,t|n ≤ (‖Φ(0)‖2‖Ψ̃‖2KG)ntn−1

(∫ t

0

EXε
sds+ E‖ξ‖n(t ∧ ε2r)

)
.

Now, we focus on the deterministic terms. Because of our assumption on L0, there

exists CL0 > 0 such that x∗q,t/ε2 ≤
√
CL0‖(1− π)ξ‖e−κt/ε2 and x∗p,t/ε2 ≤

√
CL0‖πξ‖.

Collecting all the above results in (A.1), we have for n > 2,

(2−5(n−1) − ε2n(K̃KG/κ)n)EXε
t ≤ C1 + C2

∫ t

0

EXε
sds,

where

C1 = C
n/2
L0

(E‖πξ‖n + E‖(1− π)ξ‖n) + ε2n(K̃KG/κ)nE‖ξ‖n

+ (‖Φ(0)‖2‖Ψ̃‖2)n(T n−1Kn
G + 2n−1‖L1‖nCT (n−2)/2)E‖ξ‖nε2r,

C2 = (‖Φ(0)‖2‖Ψ̃‖2KG)nT n−1 + Cm,LT
(n−2)/2 + 2n−1‖Φ(0)‖n2‖Ψ̃‖n2CT

n−2
2 ‖L1‖n.

The initial condition ξ is assumed to be deterministic and hence C1 can be written

as C1 = C
n/2
L0

(‖πξ‖n + ‖(1− π)ξ‖n) + ε2n(KKG/κ)n‖ξ‖n.

Applying Gronwall inequality we have EXε
T ≤ 2C1

2−5(n−1) exp
(

2C2

2−5(n−1)T
)

for small

enough ε.

For 0 ≤ n ≤ 2 we can use E supt∈[0,T ] |Xε
t |n ≤ 1 + E supt∈[0,T ] |Xε

t |3.



286 N. LINGALA

A.2. Proof of Proposition 2.3. Recall the γ defined in (1.21). We have(
T̂ (
s− u
ε2

)(1− π̂)1{0}

)
(θ) =

γ
(
s+ε2θ−u

ε2

)
, s+ ε2θ − u ≥ 0

π̂1{0}

(
s+ε2θ−u

ε2

)
, s+ ε2θ − u < 0.

Note that

sup
s∈[0,T ]

Υε
s ≤ sup

s∈[0,T ]

sup
θ∈[−r,0]

∣∣∣∣∣
∫ (s+ε2θ)∨0

0

γ

(
s+ ε2θ − u

ε2

)
dZu

∣∣∣∣∣
(A.3)

+ sup
s∈[0,T ]

sup
θ∈[−r,0]

∣∣∣∣∫ s

(s+ε2θ)∨0

π̂1{0}

(
s+ ε2θ − u

ε2

)
dZu

∣∣∣∣ =: J1 + J2.

In the above t ∨ s means max{t, s}.

For J1 we have (with δ ∈ (0, 2))

J1 = sup
t∈[0,T ]

∣∣∣∣∫ t

0

γ

(
t− u
ε2

)
dZu

∣∣∣∣
≤ sup

t∈[rεδ,T ]

∣∣∣∣∣
∫ t−rεδ

0

γ

(
t− u
ε2

)
dZu

∣∣∣∣∣+ sup
t∈[0,T ]

∣∣∣∣∫ t

(t−rεδ)∨0

γ

(
t− u
ε2

)
dZu

∣∣∣∣
=: J1a + J1b.

Using integration by parts and exponential decay of γ and γ′ (see (1.22)–(1.23)) in

J1a we have

J1a ≤ sup
t∈[rεδ,T ]

|γ(rεδ−2)Zt−rεδ |+ sup
t∈[rεδ,T ]

1

ε2

∫ t−rεδ

0

∣∣∣∣γ′(t− uε2

)∣∣∣∣ |Zu|du
≤K̃e−κrεδ−2

sup
t∈[0,T ]

|Zt|+ sup
t∈[rεδ,T ]

1

ε2
‖L0‖K̃

∫ t−rεδ

0

e−κ(t−u)/ε2|Zu| du

≤K̃
(

1 +
‖L0‖
κ

)
e−κrε

δ−2

sup
t∈[0,T ]

|Zt|,

where K̃ = K‖(1− π)1{0}‖. For J1b we use

γ

(
t− u
ε2

)
= γ

(
t− ((t− rεδ) ∨ 0)

ε2

)
− 1

ε2

∫ u

(t−rεδ)∨0

γ′
(
t− τ
ε2

)
dτ,

for u ∈ [(t− rεδ) ∨ 0, t].

Now, using the definition 2.2 of modulus of continuity, we have

J1b ≤ sup
t∈[0,rεδ]

|γ(tε−2)||Zt|+ sup
t∈[rεδ,T ]

|γ(rεδ−2)||Zt − Zt−rεδ |

+ sup
t∈[0,T ]

1

ε2

∣∣∣∣∫ t

(t−rεδ)∨0

(∫ u

(t−rεδ)∨0

γ′
(
t− τ
ε2

)
dτ

)
dZu

∣∣∣∣
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≤ 2K̃w(rεδ, T ;Z) + sup
t∈[0,T ]

1

ε2

∣∣∣∣∫ t

(t−rεδ)∨0

(∫ t

τ

dZu

)
γ′
(
t− τ
ε2

)
dτ

∣∣∣∣
≤ 2K̃w(rεδ, T ;Z) + sup

t∈[0,T ]

1

ε2

∫ t

(t−rεδ)∨0

|Zt − Zτ |
∣∣∣∣γ′(t− τε2

)∣∣∣∣ dτ
≤ 2K̃w(rεδ, T ;Z) + w(rεδ, T ;Z) sup

t∈[0,T ]

1

ε2

∫ t

(t−rεδ)∨0

K‖L0‖e−κ(t−τ)/ε2dτ

≤ 2K̃

(
1 +
‖L0‖
2κ

)
w(rεδ, T ;Z).

For J2 we make use of the following facts:

π̂1{0}(v − u) = Ψ̃1 cos(ωc(v − u)) + Ψ̃2 sin(ωc(v − u))

= (Ψ̃1 cosωcv + Ψ̃2 sinωcv) cosωcu+ (Ψ̃1 sinωcv − Ψ̃2 cosωcv) sinωcu,

and |Ψ̃1 cosωcv + Ψ̃2 sinωcv| ≤
√

Ψ̃2
1 + Ψ̃2

2 = ‖Ψ̃‖2. Using these it is easy to see that

the

J2 ≤ ‖Ψ̃‖2 sup
s∈[0,T ]

sup
θ∈[−r,0]

(∣∣∣M c,ε
s −M

c,ε
(s+ε2θ)∨0

∣∣∣+
∣∣∣M s,ε

s −M
s,ε
(s+ε2θ)∨0

∣∣∣)(A.4)

where

M c,ε
t =

∫ t

0

cos(ωcu/ε
2)dZu, M s,ε

t =

∫ t

0

sin(ωcu/ε
2)dZu.

Using the definition 2.2 of modulus of continuity, we have

J2 ≤ ‖Ψ̃‖2

(
w(ε2r, T ;M c,ε) + w(ε2r, T ;M s,ε)

)
.

Collecting all the above estimates in (A.3) we have

sup
s∈[0,T ]

Υε
s ≤ K̃

(
1 +
‖L0‖
κ

)
e−κrε

δ−2

sup
t∈[0,T ]

|Zt|

+ 2K̃

(
1 +
‖L0‖
2κ

)
w(rεδ, T ;Z)

+ ‖Ψ̃‖2

(
w(ε2r, T ;M c,ε) + w(ε2r, T ;M s,ε)

)
.

Now we take expectations. Using Burkholder-Davis-Gundy inequality and lemma 2.1,

we have for n ≥ 1,

E sup
t∈[0,T ]

|Zt|n ≤ CE〈Z〉n/2T ≤ CE

(
T sup
t∈[0,T ]

|L1(Πε
tX

ε)|2
)n/2

≤ CT n/2C.

Using the Theorem 1 in section 3 of [14] and lemma 2.1, we get that there ex-

ists constants Cw, Cc
w and Cs

w such that, Ewn(rεδ, T ;Z) ≤ Cw

(
rεδ ln

(
2T
rεδ

))n/2
,

Ewn(ε2r, T ;M c,ε) ≤ Cc
w

(
ε2r ln

(
2T
ε2r

))n/2
and Ewn(ε2r, T ;M s,ε) ≤ Cs

w

(
ε2r ln

(
2T
ε2r

))n/2
.
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Collecting all, we have

2−5(n−1)E sup
s∈[0,T ]

(Υε
s)
n ≤ K̃n

(
1 +
‖L0‖
κ

)n
CT n/2Ce−nκrε

δ−2

+

(
2K̃

(
1 +
‖L0‖
2κ

))n
Cw

(
εδr ln

(
2T

εδr

))n/2
+ ‖Ψ̃‖n2 (Cc

w + Cs
w)

(
ε2r ln

(
2T

ε2r

))n/2
.

As ε→ 0, the 2nd term on the RHS dominates and hence we have (2.3).

A.3. Proof of Proposition 2.4. Using the variation of constants formula (1.20),

we have

‖Y ε
s ‖ ≤‖

∫ s

0

T̂

(
s− u
ε2

)
(1− π̂)1{0}G(Πε

uX
ε)du‖+ Υε

s.(A.5)

Using the exponential decay (1.14) we have

‖
∫ s

0

T̂

(
s− u
ε2

)
(1− π̂)1{0}G(Πε

uX
ε)du‖ ≤

∫ s

0

‖T̂
(
s− u
ε2

)
(1− π̂)1{0}‖G(Πε

uX
ε)‖ du

≤ KG sup
u∈[0,s]

‖Πε
uX

ε‖
∫ s

0

K̃e−κ(s−u)/ε2du ≤ (ε2KGK̃/κ) sup
u∈[0,s]

‖Πε
uX

ε‖,

where K̃ = K‖(1− π̂)1{0}‖. Hence for s ∈ [0, T ]

‖Y ε
s ‖ ≤ (ε2KGK̃/κ) sup

u∈[0,s]

‖Πε
uX

ε‖+ Υε
s.

Hence

sup
s∈[0,t]

‖Y ε
s ‖ ≤ (ε2KGK̃/κ) sup

s∈[0,t]

‖Πε
sX

ε‖+ sup
s∈[0,t]

Υε
s.

Raise to power n, take expectation and apply lemma 2.1 for the first term on the

RHS and proposition 2.3 for the second term to get (2.4).

A.4. Proof of lemma 2.5. For any R2-vector v, and θ ∈ [−r, 0], we have Φ(θ)etB/ε
2
v =

v1 cos((ωct/ε
2) + θ) + v2 sin((ωct/ε

2) + θ). Hence

‖ΦetB/ε2v‖ = sup
θ∈[−r,0]

|Φ(θ)etB/ε
2

v| ≤
√
v2

1 + v2
2.(A.6)

Using Lipshitz condition on G, and then using yεt −Yε
t = Y ε

t and (A.6), we get∣∣∣G(ΦetB/ε
2

zεt + yεt )−G(ΦetB/ε
2

ẑεt + Yε
t)
∣∣∣ ≤ KG(‖Y ε

t ‖+
√

2αεt ).(A.7)

Using the definition (2.5) of Γt we have

|Γt| =
∣∣(Ψ̃1(zεt − ẑεt)1 + Ψ̃2(zεt − ẑεt)2

)
cos(ωct/ε

2)

+
(
Ψ̃1(zεt − ẑεt)2 − Ψ̃2(zεt − ẑεt)1

)
sin(ωct/ε

2)
∣∣
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≤
√

(Ψ̃1(zεt − ẑεt)1 + Ψ̃2(zεt − ẑεt)2)2 + (Ψ̃1(zεt − ẑεt)2 − Ψ̃2(zεt − ẑεt)1)2

= ‖Ψ̃‖2

√
2αεt .

Using the above inequality and (A.7) in the definition of Bt we get

|Bt| ≤ ‖Ψ̃‖2

√
2αεtKG(‖Y ε

t ‖+
√

2αεt ) +
1

2
‖Ψ̃‖2

2‖L1‖2(
√

2αεt + ‖Y ε
t ‖)2

≤ ‖Ψ̃‖2KG(
‖Y ε

t ‖2 + 2αεt
2

+ 2αεt ) + ‖Ψ̃‖2
2‖L1‖2(2αεt + ‖Y ε

t ‖2)

≤ CB(αεt + ‖Y ε
t ‖2).

Using |Γt| ≤ ‖Ψ̃‖2

√
2αεt in the definition of Σt we get

Σ2
t ≤ Γ2

t‖L1‖2(
√

2αεt + ‖Y ε
t ‖)2

≤ ‖Ψ̃‖2
2‖L1‖22αεt (

√
2αεt + ‖Y ε

t ‖)2 ≤ 16‖Ψ̃‖2
2‖L1‖2((αεt )

2 + ‖Y ε
t ‖4).

A.5. Proof of Proposition 2.6. Using lemma 2.5 we have that

dαεt ≤ CB(αεt + ‖Y ε
t ‖2)dt+ ΣtdWt.

Let

Ht := CB

∫ t

0

‖Y ε
s ‖2ds, Mt :=

∫ t

0

ΣsdWs, Lt :=

∫ t

0

e−CBsdMs.

Then,

αεt ≤
∫ t

0

CBα
ε
sds+Ht +Mt.(A.8)

Applying Gronwall inequality pathwise, we get,

αεte
−CBt ≤ (Ht +Mt)e

−CBt +

∫ t

0

(Hs +Ms)CBe
−CBsds.(A.9)

Using integration by parts we get∫ t

0

HsCBe
−CBsds = −Hte

−CBt +

∫ t

0

e−CBsdHs

≤ −Hte
−CBt +

∫ t

0

dHs = −Hte
−CBt +Ht.

Using integration by parts we get
∫ t

0
MsCBe

−CBsds = −Mte
−CBt + Lt. Using these

results in (A.9) we get

0 ≤ αεte
−CBt ≤ Lt +Ht.

Note that L is a martingale. We have

E sup
s∈[0,t]

(
αεse

−CBs
)2 ≤ E sup

s∈[0,t]

(Ls +Hs)
2 ≤ 2E sup

s∈[0,t]

L2
s + 2E sup

s∈[0,t]

H2
s

≤ 8EL2
t + 2EH2

t
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where in the last step we have used Doob’s Lp inequality (Theorem 2.1.7 in [17]) and

the fact that H is non-decreasing. Now, using BDG inequality

EL2
t = E

∫ t

0

e−2CBsΣ2
sds ≤ CΣE

∫ t

0

e−2CBs((αεs)
2 + ‖Y ε

s ‖4)ds,

≤ CΣ

∫ t

0

E sup
u∈[0,s]

(
αεue

−CBu
)2
ds+ CΣ

∫ t

0

E‖Y ε
s ‖4ds.

Using Holder inequality we have

2EH2
t = 2E

(
CB

∫ t

0

‖Y ε
s ‖2ds

)2

≤ 2C2
Bt

∫ t

0

E‖Y ε
s ‖4ds.

Hence,

E sup
s∈[0,t]

(
αεse

−CBs
)2 ≤ 8CΣ

∫ t

0

E sup
u∈[0,s]

(
αεue

−CBu
)2
ds+ (8CΣ + 2C2

Bt)

∫ t

0

E‖Y ε
s ‖4ds.

Using Gronwall and then (2.4) we have

E sup
s∈[0,T ]

(
αεse

−CBs
)2 ≤ (8CΣ + 2C2

BT )T26

(
ε823

(
KGK

κ

)4

C4 + 23E sup
s∈[0,T ]

(Υε
s)

4

)
e8CΣT

≤ C

(
rεδ ln(

2T

rεδ
)

)2

, for small enough ε.

Hence

E sup
s∈[0,T ]

(αεs)
2 ≤ Ce2CBT

(
rεδ ln(

2T

rεδ
)

)2

, for small enough ε.

A.6. Proof of Proposition 2.7. Following exactly the same technique as for αε,

we arrive at

E sup
s∈[0,t]

(
βse
−CBs

)2 ≤ 8CΣ

∫ t

0

E sup
u∈[0,s]

(
βue

−CBu
)2
ds+ (8CΣ + 2C2

Bt)

∫ t

0

E‖Yε
s‖4ds.

Using the exponential decay (1.22) we have that
∫ t

0
E‖Yε

s‖4ds ≤ K̃4
∫ t

0
e−4κs/ε2ds ≤

ε2(K̃4/4κ) where K̃ = K‖(I − π̂)1{0}‖. Using Gronwall inequality we have

E sup
s∈[0,T ]

(
βse
−CBs

)2 ≤ ε2(8CΣ + 2C2
BT )T (K̃4/4κ)e8CΣT .

A.7. Proof of theorem 2.8. Using Xε(t) = Φ(0)etB/ε
2
zεt + yεt (0) and Minkowski

inequality in (2.8) and then using (A.6) we have∣∣Xε(t)−
(
Φ(0)etB/ε

2

z̃̃z̃zεt + Yε
t(0)

)∣∣4
≤ 8

(
‖ΦetB/ε2(zεt − ẑεt)‖4 + ‖ΦetB/ε2 (̂zεt − z̃̃z̃zεt)‖4 + ‖yεt −Yε

t‖4
)

≤ 8
(
‖zεt − ẑεt‖4

2 + ‖̂zεt − z̃̃z̃zεt‖4
2 + ‖Y ε

t ‖4
)

≤ 8
(
4(αεt )

2 + 4(βεt )
2 + ‖Y ε

t ‖4
)
.
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Combining propositions 2.4, 2.6 and 2.7 and realizing that
(
rεδ ln( 2T

rεδ
)
)2 � ε2 for

small enough ε when δ ∈ (1, 2), we get (2.8). Similar is the proof for (2.7).

A.8. Proof of lemma 2.9. Define ζεt = 1
2
‖̃z̃z̃zεt‖2

2. Using Ito formula we have dζεt =

B̃tdt+ Σ̃tdWt where

B̃t = Γ̃tG(ΦetB/ε
2

z̃̃z̃zεt) +
1

2
‖e−tB/ε2Ψ̃‖2

2

(
L1(ΦetB/ε

2

z̃̃z̃zεt)
)2
, Σ̃t = Γ̃tL1(ΦetB/ε

2

z̃̃z̃zεt),

and Γ̃t =
∑2

i=1(̃z̃z̃zεt)i(e
−tB/ε2Ψ̃)i. Using similar technique as in proof of lemma 2.5 it can

be shown that |B̃t| ≤ C eBζεt and Σ̃2
t ≤ CeΣ(ζεt )

2 where C eB = 2‖Ψ̃‖2KG + ‖Ψ̃‖2
2‖L1‖2

and CeΣ = 4‖Ψ̃‖2
2‖L1‖2. Hence we have

ζεt ≤
∫ t

0

C eBζεsds+ H̃t + M̃t, H̃t := ζε0 , M̃t :=

∫ t

0

Σ̃sdWs,

which is analogous to (A.8). Following the same technique as in section A.5 we get

E sup
s∈[0,T ]

(ζεs )
2 ≤ E(ζε0)2e(2CfB+8CeΣ)T .

Appendix B. PROOFS OF RESULTS IN SECTION 3

B.1. Proof of proposition 3.2. Using the variation of constants formula (1.17) and

definition (3.1), we have

‖Y ε
s ‖ ≤‖

∫ s

0

T̂

(
s− u
ε2

)
(1− π̂)1{0}G(Πε

uX
ε)du‖+ Υε

s.(B.1)

For G defined in (1.8) we have

|G(η)| ≤
∫
|πη||dν1|+

∫
|(1− π)η||dν1|+

3∑
j=0

(
3

j

)∫ 0

−r
|πη|3−j|(1− π)η|j|dν3|.

(B.2)

For s ∈ [0, T ∧ eε] we have that ‖πΠε
sX

ε‖ ≤ Ce. Using this fact and ‖(1−π)Πε
sX

ε‖ ≤
‖Y ε

s ‖ + ‖Yε
s‖ in (B.2), and using inequalities q ≤ 1 + q3, q2 ≤ 1 + q3 for q > 0; we

have for s ∈ [0, T ∧ eε]

|G(Πε
sX

ε)| ≤ C(1 + ‖Y ε
s ‖3 + ‖Yε

s‖3).

This C is of the order of C3
e for large Ce. Now, using the above inequality and the

exponential decays (1.14) and (1.25) we have

‖
∫ s

0

T̂

(
s− u
ε2

)
(1− π̂)1{0}G(Πε

uX
ε)du‖ ≤

∫ s

0

‖T̂
(
s− u
ε2

)
(1− π̂)1{0}‖|G(Πε

uX
ε)|du

≤ C

∫ s

0

e−κ(s−u)/ε2(1 + ‖Y ε
u ‖3 + ‖Yε

u‖3)du

≤ (Cε2/κ)(1 +K3‖(1− π)Πε
0X

ε‖3/2) + C

∫ s

0

e−κ(s−u)/ε2‖Y ε
u ‖3du.
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Plugging the above inequality in (B.1) we have for s ∈ [0, T ∧ eε]

‖Y ε
s ‖ −

(
Cε2 + C

∫ s

0

e−κ(s−u)/ε2‖Y ε
u ‖3du

)
≤ Υε

s,

where C above is of the order of C3
e for large Ce. For the RHS of the above inequality

we use Markov inequality, i.e.

P

[
sup

s∈[0,T∧eε]

Υε
s ≥ εa

]
≤ ε−aE

[
sup
s∈[0,T ]

Υε
s

]
and then proposition 3.1. Then we have the following statement:

Fix a ∈ [0, 1). For δ ∈ (2a, 2), there exists constants Ĉ > 0 (independent of δ

and a) and εδ > 0, such that for ε < εδ

P
[
∀s ∈ [0, T ∧ eε], ‖Y ε

s ‖ ≤ Cε2 + C

∫ s

0

e−κ(s−u)/ε2‖Y ε
u ‖3du+ 2εa

]

≥ 1− Ĉε−a
√
rεδ ln

(
T

rεδ

)
.

Using Gronwall kind of inequality (Theorem 2.4.8 in [18]) we have that LHS of

above inequality is bounded above by

P
[
∀s ∈ [0, T ∧ eε], ‖Y ε

s ‖ ≤
Cε2 + 2εa√

1− 2
∫ s

0
(Cε2 + 2εa)2Cdu

]

which is bounded above by (for small enough ε, i.e. ε� (2/C)1/(2−a))

P
[
∀s ∈ [0, T ∧ eε], ‖Y ε

s ‖ ≤
4εa√

1− 2CT (4εa)2

]
.

which is bounded above by (for small enough ε, i.e. ε� (1/C)1/2a)

P
[
∀s ∈ [0, T ∧ eε], ‖Y ε

s ‖ ≤ 8εa
]
.

Hence (3.4) follows.

B.2. Proof of lemma 3.3. Recall that G(η) =
∫ 0

−r η(θ)dν1(θ)+
∫ 0

−r η
3(θ)dν3(θ). For

brevity, let e denote etB/ε
2
. Now,∣∣∣∣ ∫ 0

−r
(Φezεt + yεt )

3dν3 −
∫ 0

−r
(Φêzεt + Yε

t)
3dν3

∣∣∣∣
=

∣∣∣∣∫ 0

−r
(Φezεt + Yε

t + Y ε
t )3dν3 −

∫ 0

−r
(Φezεt + Φe(̂zεt − zεt) + Yε

t)
3dν3

∣∣∣∣
≤

3∑
j=1

(
3

j

) ∣∣∣∣∫ 0

−r
(Φezεt)

3−j((Yε
t + Y ε

t )j − (Φe(̂zεt − zεt) + Yε
t)
j)dν3

∣∣∣∣
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≤

(
3

2∑
j=0

‖Φezεt‖j
)(

3
2∑
j=0

‖Yε
t‖j
)(∫

|dν1|+ |dν3|
) 3∑

j=1

(‖Y ε
t ‖j + ‖Φe(̂zεt − zεt)‖j).

Note that for t ∈ [0, T ∧ eε], zε is bounded. Also, due to the exponential decay (1.25)

we have that ‖Yε
t‖ < K‖(I − π)Πε

0X
ε‖. Hence we have,∣∣∣∣ ∫ 0

−r
(Φezεt + yεt )

3dν3 −
∫ 0

−r
(Φêzεt + Yε

t)
3dν3

∣∣∣∣ ≤ C

3∑
j=1

(‖Y ε
t ‖j + (

√
2αεt )

j),

where C in the above inequality is of the order of C2
e for large Ce.

Similarly,∣∣∣∣∫ 0

−r
(Φezεt + yεt )dν1 −

∫ 0

−r
(Φêzεt + Yε

t)dν1

∣∣∣∣ ≤ C(‖Y ε
t ‖+ (

√
2αεt )).

Combining, we get that for t ∈ [0, T ∧ eε],

|Γt|
∣∣∣G(ΦetB/ε

2

zεt + yεt )−G(ΦetB/ε
2

ẑεt)
∣∣∣ ≤ |Γt|C 3∑

j=1

(‖Y ε
t ‖j + (

√
2αεt )

j).

We have shown |Γt| ≤ ‖Ψ̃‖2

√
2αεt in section A.4. Hence, if we define B by (3.5), then

we have, |Bt| ≤ B(αt, ‖Y ε
t ‖) for t ∈ [0, T ∧ eε].

B.3. Proof of proposition 3.4. Using lemma 3.3 and
√

2α(
√

2α)2 ≤ 4α(1 + α) we

have

dαεt ≤ (6Cαεt + 8C(αεt )
2)dt+ C

√
2αεt (

3∑
j=1

‖Y ε
t ‖j)dt, t ∈ [0, T ∧ eε], αε0 = 0,

where C is from lemma 3.3. This C is of the order O(C2
e ) for large Ce. Let εa,Ce

be as in proposition 3.2 and define εa,Ce,1 = min{1, εa,Ce}. Then we have, for ε <

min{ε̂δ, εa,Ce,1}, with probability at least pε := 1− Ĉε−a
√
rεδ ln

(
T
rεδ

)
,

3∑
j=1

‖Y ε
t ‖j ≤ 24εa, ∀t ∈ [0, T ∧ eε].

(We have used that for ε ≤ 1, ε3a ≤ εa.)

Let s := inf{t ≥ 0 : αεt ≥ 1}. Using
√

2α ≤ 2(1 +α), and α2 < α when α < 1; we

have for t ∈ [0, T ∧ eε ∧ s]

1

C
dαεt ≤ αεt (6 + 8 + 48εa) dt+ 48εadt

Using Gronwall we get for t ∈ [0, T ∧ eε ∧ s]

αεt ≤
48εa

14 + 48εa
(e(14+48εa)Ct − 1).
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Define εa,Ce,2 = min{48−1/a, (14e−15CT/48)2/a}. Then for ε < min{ε̂δ, εa,Ce,1, εa,Ce,2}
we have αεt ≤ εa/2 for t ∈ [0, T ∧ eε ∧ s]. But, since εa/2 < 1 we have s > T ∧ eε and

hence αεt ≤ εa/2 for t ∈ [0, T ∧ eε].

Note that C is of the order O(C2
e ) and hence εa,Ce,2 is of the order O(e−30C2

eT/a).

B.4. Proof of theorem 3.6. Since the ẑε system possesses the property P(T, q),

∃Ce, ε∗ > 0 such that ∀ε < ε∗, we have P[Eε] ≥ 1− q where Eε is given in (3.7).

The stopping time eε was defined at (3.3).

Using

Ω = Eε ∪ (Ω \ Eε)

= (Eε ∩ {eε ≤ T}) ∪ (Eε ∩ {eε > T}) ∪ (Ω \ Eε),

we have

Hε = (Eε ∩ {eε ≤ T} ∩Hε) ∪ (Eε ∩ {eε > T} ∩Hε) ∪ (Hε ∩ (Ω \ Eε)).(B.3)

Now we deal with the first term on the RHS of (B.3). Note that

sup
t∈[0,T∧eε]

√
2αεt ≥ sup

t∈[0,T∧eε]

‖ΦetB/ε2(zεt − ẑεt)‖(B.4)

≥ sup
t∈[0,T∧eε]

‖ΦetB/ε2zεt‖ − sup
t∈[0,T∧eε]

‖ΦetB/ε2 ẑεt‖.

In Eε we have supt∈[0,T∧eε] ‖ΦetB/ε
2
ẑεt‖ < 0.99Ce, and in {eε ≤ T} we have

sup
t∈[0,T∧eε]

‖ΦetB/ε2zεt‖ ≥ Ce.

Hence, in Eε ∩ {eε ≤ T} we have that supt∈[0,T∧eε]

√
2αεt > 0.01Ce. Hence Eε ∩ {eε ≤

T} ⊂ Jε where Jε :=
{
ω : supt∈[0,T∧eε] α

ε
t ≥ 1

2
(0.01Ce)

2
}

. By proposition 3.4, ∃ε1 such

that ∀ε < ε1, P[Jε] < 1− pε.

Now we deal with the second term on the RHS of (B.3). Note that {eε >

T} ∩Hε ⊂ J̃ε where

J̃ε :=

{
ω : sup

t∈[0,T∧eε]

αεt ≥ εa/2

}
.

By proposition 3.4, ∃ε2 such that ∀ε < ε2, P[J̃ε] < 1− pε.

And ∀ε < ε∗ P[Ω \ Eε] < q.

Combining we have, when ε < min{ε1, ε2, ε∗} =: εq,

P[Hε] < q + 2(1− pε).

Note that (B.3) is true with Hε replaced by Sε. Using that

{eε > T} ∩ Sε ⊂ {ω : sup
t∈[0,T∧eε]

‖Y ε
t ‖ ≥ 8εa}
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and also that the probability of the latter set is bounded above by 1− pε we get the

desired result.

B.5. Proof of proposition 3.7. We have

ẑεt = ẑε0 +

∫ t

0

e−sB/ε
2

Ψ̃G(ΦesB/ε
2

ẑεs + Yε
s)ds+ wt, wt :=

∫ t

0

e−sB/ε
2

Ψ̃σdWs.

(B.5)

To keep things simple, we prove assuming ‖Yε
0‖ = 0 (which ensures that ‖Yε

t‖ = 0

for all t ≥ 0). Using
∫ t

0
‖Yε

s‖nds ≤ ε2(K/nk)‖Yε
0‖n (because of exponential decay

(1.25)), it is easy to see that the following ideas work even if we assume that ‖Yε
0‖ 6= 0

(we assume the initial condition is deterministic).

We will make use of the inequality5 that for R2 vector v,

‖ΦetB/ε2v‖ ≤ ‖v‖1(B.6)

where ‖ · ‖1 indicates the 1-norm. Using the structure of G specified at (1.8) in (B.5)

we have (with some KG > 0)

‖̂zεt‖1 ≤ ‖̂zε0‖1 + ‖Ψ̃‖1

∫ t

0

KG(‖̂zεs‖1 + ‖̂zεs‖3
1)ds+ ‖wt‖1.(B.7)

Because the initial condition is deterministic, we have a C0 > 0 such that ‖̂zε0‖1 < C0.

For any Ca > 4C0, define TCa :=
(

2(1 + C2
a)KG‖Ψ̃‖1

)−1

.

Suppose that supt∈[0,T ] ‖wt‖1 < Ca/4. If T ≤ TCa , as long as ‖̂zεt‖1 < Ca, we have

(using (B.7)) for t ∈ [0, T ]

‖̂zεt‖1 < C0 +KG‖Ψ̃‖1(Ca + C3
a)T +

1

4
Ca

<
1

4
Ca +KG‖Ψ̃‖1(Ca + C3

a)TCa +
1

4
Ca = Ca.

This means that, if Ca > 4C0 and T ≤ TCa , then we have supt∈[0,T ] ‖̂zεt‖1 < Ca

provided supt∈[0,T ] ‖wt‖1 < Ca/4.

Hence, for Ca > 4C0 and T ≤ TCa ,

P

[
sup
t∈[0,T ]

‖̂zεt‖1 ≥ Ca

]
≤ P

[
sup
t∈[0,T ]

‖wt‖1 ≥ Ca/4

]
.(B.8)

Using Markov inequality and Burkholder-Davis-Gundy inequality we have

P[ sup
t∈[0,T ]

‖wt‖1 ≥ Ca/4] ≤
E supt∈[0,T ] ‖wt‖1

Ca/4

≤
∑2

j=1CbdgE
√∫ T

0
(e−sB/ε2Ψ̃σ)2ds

Ca/4
≤ 8|σ|‖Ψ̃‖2

√
TCbdg

Ca
.

5Note that ‖ΦetB/ε2v‖ = supθ∈[−r,0] |v1 cos(θ + ωct/ε
2) + v2 sin(θ + ωct/ε

2)| ≤ |v1|+ |v2|.



296 N. LINGALA

Using the above inequality in (B.8) we have for Ca > 4C0 and T ≤ TCa

P

[
sup
t∈[0,T ]

‖̂zεt‖1 ≥ Ca

]
≤ 8|σ|‖Ψ̃‖2Cbdg

Ca

√
2KG‖Ψ̃‖1(1 + C2

a)
=: f(Ca).(B.9)

Given q > 0, let Ca,q > 4C0 be such that f(Ca) < q, ∀Ca ≥ Ca,q. Such a Ca,q exists

because f is monotonically decreasing in Ca. Set Tq = TCa,q . Choose Ce > Ca,q/0.99.

Let

Ẽε :=

{
ω : sup

t∈[0,Tq ]

‖ΦetB/ε2 ẑεt‖ < 0.99Ce

}
.(B.10)

Now, using (B.6) and (B.9)

P[Ω \ Ẽε] = P

[
sup

t∈[0,Tq ]

‖ΦetB/ε2 ẑεt‖ ≥ 0.99Ce

]

≤ P

[
sup

t∈[0,Tq ]

‖̂zεt‖1 ≥ 0.99Ce

]
≤ P

[
sup

t∈[0,Tq ]

‖̂zεt‖1 ≥ Ca,q

]
≤ f(Ca,q) < q.

Hence P[Ẽε] ≥ 1 − q. But, for T ≤ Tq the set Eε defined in (3.7) contains Ẽε and

hence we have that for T ∈ [0, Tq], P[Eε] ≥ 1− q. Hence (1.8) possesses the property

P(T, q) for T ∈ [0, Tq].

B.6. Proof of proposition 3.8. To keep things simple, we prove assuming ‖Yε
0‖ = 0

(which ensures that ‖Yε
t‖ = 0 for all t ≥ 0). Using

∫ t
0
‖Yε

s‖nds ≤ ε2(K/nk)‖Yε
0‖n

(because of exponential decay (1.25)), it is easy to see that the following ideas work

even if we assume that ‖Yε
0‖ 6= 0.

For simplicity of notation we write G = G1 +G3 where G1 is the linear part and

G3 is the cubic part.

We have

ẑεt = ẑε0 +

∫ t

0

e−sB/ε
2

Ψ̃G(ΦesB/ε
2

ẑεs)ds+ wt, wt :=

∫ t

0

e−sB/ε
2

Ψ̃σdWs.

Writing yt = ẑεt −wt, we have

ẏt = e−tB/ε
2

Ψ̃G(ΦetB/ε
2

(yt + wt))(B.11)

from which we can write (using that the transpose of etB/ε
2

is e−tB/ε
2
)

1

2

d

dt
‖yt‖2

2 = (etB/ε
2

yt)
∗Ψ̃G(ΦetB/ε

2

(yt + wt))

= (etB/ε
2

yt)
∗Ψ̃G(ΦetB/ε

2

yt)

+ (etB/ε
2

yt)
∗Ψ̃
(
G(ΦetB/ε

2

(yt + wt))−G(ΦetB/ε
2

yt)
)
.



APPROXIMATION OF DDE AT THE VERGE OF INSTABILITY 297

Using G = G1 +G3, and the Lipschitz condition on the linear part |G1(η1)−G1(η2)| ≤
KG‖η1−η2‖, and that ‖ΦetB/ε2wt‖ ≤ ‖wt‖1, and |(etB/ε2yt)∗Ψ̃| ≤ ‖Ψ̃‖2‖yt‖2, we have

1

2

d

dt
‖yt‖2

2 ≤ KG‖Ψ̃‖2‖yt‖2
2 + (etB/ε

2

yt)
∗Ψ̃G3(ΦetB/ε

2

yt)(B.12)

+ ‖Ψ̃‖2‖yt‖2KG‖wt‖1 +
3∑
j=1

cj‖yt‖4−j
2 ‖wt‖j1,

for some constants cj > 0.

Define the time averaging operator T as follows: For a periodic function f : R→
R with period 2π/ωc, the action of T is given by T(f) = 1

2π/ωc

∫ 2π/ωc
0

f(s)ds. Note

that the condition (3.8) means that

T
(

(e·Bz)∗Ψ̃G3(Φe·Bz)
)
< −CG‖z‖4

2.(B.13)

Define

G̃3(z, t) := (etBz)∗Ψ̃G3(ΦetBz)− T((e·Bz)∗Ψ̃G3(Φe·Bz)).(B.14)

Then, using (B.14) and (B.13) in (B.12) we have

1

2

d

dt
‖yt‖2

2 ≤ KG‖Ψ̃‖2‖yt‖2
2 − CG‖y‖4

2 + G̃3(yt, t/ε
2)

+ ‖Ψ̃‖2‖yt‖2KG‖wt‖1 +
3∑
j=1

cj‖yt‖4−j
2 ‖wt‖j1.

Using Young’s inequality we have for some CY > 0

1

2

d

dt
‖y‖2

2 < −
1

2
CG‖y‖4

2 + CY ‖wt‖4
1 + CY + G̃3(yt, t/ε

2).(B.15)

Assume

sup
t∈[0,T ]

‖wt‖4
1 < R,(B.16)

and let C̃ = CY (1 +R). Then

1

2

d

dt
‖y‖2

2 < −
1

2
CG‖y‖4

2 + C̃ + G̃3(yt, t/ε
2).(B.17)

Using comparison principle (theorem 6.1 on page 31 of [19]), we have that ‖yt‖2
2 ≤ vt

where v is governed by

d

dt
vt = −CGvt + CG(vt − v2

t ) + 2C̃ + 2G̃3(yt, t/ε
2), v0 = ‖y0‖2

2.(B.18)

Using variation-of-constants formula, the fact that v − v2 < 1, and integration-by-

parts, we find that

vt < v0e
−CGt +

2C̃ + CG
CG

(1− e−CGt) + 2

∫ t

0

G̃3(ys, s/ε
2)ds(B.19)
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− CG
∫ t

0

e−CG(t−s)
(

2

∫ s

0

G̃3(yu, u/ε
2)du

)
ds.

Now we try to obtain some bounds on the last two terms of the above inequality.

Using the structure of G3 (defined in (1.8)) and G̃3 (defined in (B.14)) and that

T(G̃3(z, ·)) = 0, it is easy to see that G̃3 can be expressed as

G̃3(y, t) =
4∑
j=1

(αj cos(jωct) + βj sin(jωct))

where αj and βj are fourth order polynomials in the components of y. Define

g(z, t) := 2

∫ t

0

G̃3(z, s)ds.

Using the structure of G̃3 it is easy to see that (note that G̃3 is mean zero and periodic

as a function of its second argument) there exists Cg > 0 such that

|g(y, t)| ≤ Cg(1 + ‖y‖4
2), ‖∂g

∂y
(y, t)‖2 ≤ Cg(1 + ‖y‖3

2).

Also, from (B.11), it is easy to see that ∃C∗ > 0 such that ‖ẏ‖2 ≤ C∗(1 + ‖y + w‖3
2).

Since

ε2g(yt, t/ε
2)− ε2g(y0, 0)− ε2

∫ t

0

∂g

∂y
(ys, s/ε

2)ẏsds = 2

∫ t

0

G̃3(ys, s/ε
2)ds,

and g(y, 0) = 0, we have∣∣∣∣2∫ t

0

G̃3(ys, s/ε
2)ds

∣∣∣∣ ≤ ε2Cg(1 + ‖yt‖4
2) + ε2CgC∗

∫ t

0

(1 + ‖ys‖3
2)(1 + ‖ys + ws‖3

2)ds

≤ ε2Cg(1 + ‖yt‖4
2) + ε211CgC∗

∫ t

0

(1 + ‖ys‖6
2 + ‖ws‖6

1)ds.

Let

τ ε := inf{t ≥ 0 : ‖yt‖2 ≥
1

ε1/6
}.(B.20)

Then, for t ≤ min{τ ε, T} we have∣∣∣∣2 ∫ t

0

G̃3(ys, s/ε
2)ds

∣∣∣∣ ≤ ε2Cg + ε4/3Cg + ε211CgC∗

∫ t

0

(1 + ε−1 +R3/2)ds.

When ε < 1, we have (from the above inequality) that for t ≤ τ ε ∧ T∣∣∣∣2 ∫ t

0

G̃3(ys, s/ε
2)ds

∣∣∣∣ ≤ ε4/32Cg + εĈt(B.21)

where Ĉ = 22CgC∗(1 +R3/2).
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Using (B.21) in (B.19), we have6 for ε < 1 and t ≤ τ ε ∧ T

‖yt‖2
2 ≤ vt < v0e

−CGt +
2C̃ + CG
CG

(1− e−CGt) + ε2Ĉt+ ε4/34Cg(B.22)

< max{‖y0‖2
2,

2C̃ + CG
CG

}+ ε2(ĈT + 2Cg).

Hence, for ε < 1 and t ≤ τ ε ∧ T

‖yt‖2 < ‖y0‖2 + 1 +

√
2C̃

CG
+
√
ε
√

2ĈT +
√
ε
√

4Cg.

Using Ĉ = 22CgC∗(1 +R3/2) and that C̃ = CY (1 +R) we find that

‖yt‖2 < ‖y0‖2 + (1 +
√
ε
√

4Cg) +

√
2CY
CG

√
1 +R +

√
ε
√

44CgC∗T (1 +R3/4).

Note that ∃ ε(2) such that ∀ε < ε(2) we have
√
ε
√

4Cg < 1. Also, ∃ ε(3) such that

∀ε < ε(3) we have
√
ε
√

44CgC∗T
2CY /CG

< 1. Hence, for ε < min{1, ε(2), ε(3)} =: ε(4) and

t ≤ τ ε ∧ T we have7

‖yt‖2 < ‖y0‖2 + 2 + 6

√
2CY
CG

√
1 +R6/4.(B.23)

Hence, for ε < ε(4) if τ ε ≥ T we have (using ‖̂zεt‖2 ≤ ‖yt‖2 + ‖wt‖1)

sup
t∈[0,T ]

‖̂zεt‖2 < ‖̂zε0‖2 + 2 + 6

√
2CY
CG

√
1 +R6/4 +R1/4

< ‖̂zε0‖2 + 2 + 6

(
1

6
+

√
2CY
CG

)√
1 +R6/4

=: ‖̂zε0‖2 + 2 + CY G
√

1 +R6/4

Because the initial condition is deterministic ∃C0 > 0 such that ‖̂zε0‖2 < C0. Hence

sup
t∈[0,T ]

‖̂zεt‖2 < C0 + 2 + CY G
√

1 +R6/4.(B.24)

Define CR by

CR
def
= C0 + 2 + CY G

√
1 +R6/4.

For ε < ε(4) and t ≤ τ ε ∧ T , we have from (B.23) that ‖yt‖2 < CR. So, if we define

εR := (1/CR)6, then for ε < min{ε(4), εR} we have that ‖yt‖2 <
1

ε1/6
and hence τ ε > T .

6For the last term in RHS of (B.19) we have used that

|CG
∫ t

0

e−CG(t−s)f(s)ds| ≤ ( sup
s∈[0,t]

|f(s)|)CG
∫ t

0

e−CG(t−s)ds ≤ ( sup
s∈[0,t]

|f(s)|).

7We use
√

1 +R+ (1 +R3/4) < 6
√

1 +R6/4.
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Hence, from (B.24) we have that for ε < min{ε(4), εR}

sup
t∈[0,T ]

‖̂zεt‖2 < CR.(B.25)

Recalling the definition of R from (B.16) we have for ε < min{ε(4), εR}

P

[
sup
t∈[0,T ]

‖̂zεt‖2 ≥ CR

]
≤ P

 sup
s∈[0,T ]

‖wt‖1 ≥

((
CR − C0 − 2

CY G

)2

− 1

)1/6
 .(B.26)

Lets estimate the RHS of the above equation. Using the definition of w and then

Markov and Burkholder-Davis-Gundy inequalities we have that

P

[
sup
s∈[0,T ]

‖wt‖1 ≥ ρ

]
≤

2∑
j=1

P

[
sup
s∈[0,T ]

∣∣∣∣∫ t

0

(e−sB/ε
2

Ψ̃)jσdWs

∣∣∣∣ ≥ 1

2
ρ

]

≤ 2

ρ

2∑
j=1

E

[
sup
s∈[0,T ]

∣∣∣∣∫ t

0

(e−sB/ε
2

Ψ̃)jσdWs

∣∣∣∣
]

≤ 2Cbdg
ρ

2∑
j=1

E

√∫ t

0

(e−sB/ε2Ψ̃)2
jσ

2ds ≤ 2
√

2Cbdg
ρ

‖Ψ̃‖2σ
√
T

Hence, from (B.26) we have that for ε < min{ε(4), εR}

P

[
sup
t∈[0,T ]

‖̂zεt‖2 ≥ CR

]
≤ 2

√
2Cbdg‖Ψ̃‖2σ

√
T((

CR−C0−2
CY G

)2

− 1

)1/6

def
= : f(CR).(B.27)

Let CR,q > C0 + 2 + CY G be such that f(CR) < q for CR > CR,q. Such a CR,q

exists because f is monotonically decreasing in CR (for CR > C0 + 2 +CY G). Choose

Ce > CR,q/0.99 and ε∗ = min{ε(4), (CR,q)
−6}. Let Eε be as defined in (3.7). Now,

using (B.27) for ε < ε∗

P[Ω \ Eε] = P

[
sup
t∈[0,T ]

‖ΦetB/ε2 ẑεt‖ ≥ 0.99Ce

]

≤ P

[
sup
t∈[0,T ]

‖̂zεt‖2 ≥ 0.99Ce

]
≤ P

[
sup
t∈[0,T ]

‖̂zεt‖2 ≥ CR,q

]
≤ f(CR,q) < q.

Hence P[Eε] ≥ 1 − q, and so (1.8) possesses the property P(T, q). As mentioned

above, for any q > 0 it is possible to select ε∗ and CR,q such that f(CR,q) < q and

hence ẑε possesses the property P(T, q) for arbitrary q > 0.

B.7. Proof of proposition 3.9. Using Ito formula, βεt satisfies

dβεt = Btdt, βε0 = 0,
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where

Bt = Γt

(
G(ΦetB/ε

2

z̃̃z̃zεt)−G(ΦetB/ε
2

ẑεt + Yt)
)
, Γt =

2∑
i=1

(
e−tB/ε

2

Ψ̃
)
i
(̃z̃z̃zεt − ẑεt)i .

Using the structure of e−tB and Ψ̃, we have |Γt| ≤
√

Ψ̃∗Ψ̃
√

2βεt . Writing z̃̃z̃zεt as

ẑεt + (̃z̃z̃zεt − ẑεt) and expanding G in Bt we get

|Bt| ≤ C
√
βεt

(√
βεt + ‖Yε

t‖+
3∑
j=1

‖ΦetB/ε2 ẑεt‖3−j
(

(
√
βεt )

j + ‖Yε
t‖j
))

Because the nonlinearity is such that (3.8) is satisfied, by lemma 3.8, ẑε possesses

property P(T, q) for abitrary q > 0. Hence, it is possible to select Ce > 0 so that

∃ ε∗ > 0 such that ∀ε < ε∗, we have P[Eε] ≥ 1 − q where Eε is defined in (3.7). So,

with probability at least 1− q we have

|Bt| ≤ C
√
βεt

(
(1 + C2

e )
√
βεt + Ce(

√
βεt )

2 + (
√
βεt )

3 + (1 + C2
e )

3∑
j=1

‖Yε
t‖j
)
.

Let C := ‖(1− π)Πε
0X

ε‖. As long as
√
βεt < 1 we have

|Bt| ≤ C
√
βεt

(
(3 + 2C2

e )
√
βεt + (1 + C2

e )

(
3∑
j=1

C j

)
e−kt/ε

2

)
.

Hence, as long as
√
βεt < 1

d
√
βεt ≤ C(3 + 2C2

e )
√
βεt + C(1 + C2

e )

(
3∑
j=1

C j

)
e−kt/ε

2

.

Using Gronwall, we get (as long as
√
βεt < 1)

√
βεt ≤

ε2C(1 + C2
e )(
∑3

j=1 C j)

k + ε2C(3 + 2C2
e )

(
eC(3+2C2

e )t − e−kt/ε2
)

<
ε2C(1 + C2

e )(
∑3

j=1 C j)

k
eC(3+2C2

e )T

Choose ε∗∗ small enough so that the above expression is less than one. Set ε◦ =

min{ε∗, ε∗∗}. Then, we have ∀ε < ε◦, supt∈[0,T ] β
ε
t < Cε4 with probability at least

1− q.


