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ABSTRACT. In this paper, we present sufficient conditions for the existence of solutions of two

different types of nonlinear functional-integral equations in Banach space C([0, a]×[0, b], R) consisting

of real functions, defined and continuous on the set [0, a] × [0, b]. The main tools used in the proof

are the concept of measures of noncompactness, Petryshyn fixed point theorem and Darbo’s theorem

in Banach space concerning the estimate on the solutions. Finally, we establish some examples of

nonlinear functional-integral equations to show that our results are applicable.
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1. INTRODUCTION

Nonlinear integral equations have wide variety of applications in engineering, me-

chanics, physics, economics, vehicular traffic, optimization, biology, queuing theory

and so on, for instance (cf. [2, 3, 5, 8, 9, 10, 14, 17, 22, 28, 37]). They yield an impor-

tant tool for modeling various phenomena and processes occurring in heat conducting

radiation, computer graphics, realistic illumination, particle transport problems of as-

trophysics, elasticity, electrostatics, radiative transfer, chemical kinetics, chemical re-

actor theory, theory of communication systems, quantum mechanics, magnetohydro-

dynamics and many other areas (for more applications of integral equations, see [37]).

The theory of integral equations have been a significant growth with the help of tools

in functional analysis, topology and fixed point theory (see [1, 3, 4, 5, 8, 9, 10, 12, 33]).

In this paper, we study the existence of solutions of nonlinear functional-integral

equation

u(x, y) = f1(x, y)(1.1)
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+ f2



x, y, u(x, y),

x
∫

0

p(x, y, σ, u(σ, y))dσ,

x
∫

0

y
∫

0

q(x, y, s, t, u(s, t))dt ds



 ,

for (x, y) ∈ J = [0, a]×[0, b], where f1 : J → R, f2 : J1×R×R → R, p : J×[0, a]×R →

R, q : J2 × R → R are given continuous functions such that J1 = {(x, y, u) : 0 ≤ x ≤

a; 0 ≤ y ≤ b; u ∈ R}, and J2 = {(x, y, s, t) ∈ J × J : 0 ≤ s ≤ x ≤ a; 0 ≤ t ≤ y ≤ b}.

The main goal of this paper is to study the existence of solutions of certain

nonlinear integral equations in two independent variables (see [1, 16, 23, 27, 29, 32,

34, 35, 38]). For the existence of solutions of integral equation (1.1), we use the

Petryshyn fixed point theorem that has been analysed as a generalization of Darbo’s

fixed theorem.

We also present an existence theorem for the solutions of the following function-

integral equation

u(x, y) = F



x, y,

x
∫

0

y
∫

0

f(x, y, s, t, u(s, t))dt ds



(1.2)

×G



x, y,

a
∫

0

b
∫

0

g(x, y, s, t, u(s, t))dt ds



 ,

for (x, y) ∈ J = [0, a] × [0, b], where F,G : J × R → R and f, g : J × J × R → R are

continuous functions.

By using the fixed point theorem for the product of two operators which satisfy

the Darbo condition with respect to a measure of noncompactness in the Banach

algebra of continuous functions in the set [0, a] × [0, b], we obtain the existence of

solutions for the functional-integral equation (1.2) and those solutions are continuous

and stable.

The paper should be further motivated by somehow connecting the work with

the works of several ones obtained earlier (cf. [3, 7, 9, 11, 13, 15, 17, 18, 19, 22, 25,

26, 30, 31, 32]). In Section 2, we recall some definitions and results and use them

to obtain our main results in next Section. In Section 3, we prove our main results

concerning the existence of solutions of the integral equations (1.1) and (1.2) and in

Section 4, we provide some examples that verifies the applications of these kind of

nonlinear functional-integral equations in nonlinear analysis and finally in Section 5,

we give conclusion of this paper.

2. DEFINITIONS AND PRELIMINARIES

In this section, we gather some facts which will be needed in our further consid-

erations.
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Let E is a real Banach space with the norm ‖ · ‖ and zero element θ. Denote by

B(u, r) the closed ball centered at u and with radius r. The symbols Br = {u ∈ E :

‖u‖ ≤ r} and ∂Br = {u ∈ E : ‖u‖ = r} for the sphere in E around θ with radius r.

If X is a nonempty subset of E we write X̄, ConvX in order to denote the closure

and convex closure of X, respectively. We denote the standard algebraic operations

on sets by the symbols λX and X + Y . Moreover, we denote by ME the family of

all nonempty and bounded subsets of E and by NE its subfamily consisting of all

relatively compact sets.

We use the following definitions on the concept of a measure of noncompactness

[6, 20, 24].

Definition 2.1. The Kuratowski measure of nocompactness (or set measure of non-

compactness)

(2.1)

ν(X) = inf {ǫ > 0 : X may be covered by finitely many sets of diameter ≤ ǫ} .

Goldenštein introduced the following measure of noncompactness.

Definition 2.2. The Hausdorff (or ball) measure of noncompactness

(2.2) µ(X) = inf {ǫ > 0 : there exists a finite ǫ-net for X in E} ,

where by a finite ǫ-net for X in E it means, as usual, a set {p1, p2, . . . , pm} ⊂ E

such that the balls Bǫ(E; p1), Bǫ(E; p2), . . . , Bǫ(E; pm) over X. These measures of

noncompactness are mutually equivalent in the sense given by

µ(X) ≤ ν(x) ≤ 2µ(X),

for any bounded set X ⊂ E.

Theorem 2.3. Let X, Y ∈ ME and λ ∈ R. Then

(i) µ(X) = 0 if and only if X ∈ NE;

(ii) X ⊂ Y ⇒ µ(X) ≤ µ(Y );

(iii) µ(X̄) = µ(ConvX) = µ(X);

(iv) µ(X ∪ Y ) = max{µ(X), µ(Y )};

(v) µ(λX) = |λ|µ(X), where λX = {λu : u ∈ X};

(vi) µ(X + Y ) ≤ µ(X) + µ(Y ), where X + Y = {u+ v : u ∈ X, v ∈ Y };

(vii) |µ(X)− µ(Y )| ≤ 2dh(X, Y ), where dh(X, Y ) denotes the Hausdorff metric of X

and Y , i.e.

dh(X, Y ) = max

{

sup
v∈Y

d(v,X), sup
u∈X

d(u, Y )

}

,

where d(·, ·) is the distance from an element of E to a set of E.
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Further on, every function µ : ME → [0,∞), satisfying conditions (i)–(vi) of

Theorem 2.3, will be called a regular measure of noncompactness in the Banach

space E (cf. [9]).

Now let us assume that Ω is a nonempty subset of a Banach space E and S :

Ω → E is a continuous operator transforming bounded subsets of Ω to bounded ones.

Moreover, let µ be a regular measure of noncompactness in E.

Definition 2.4 (see [6]). We say that S satisfies the Darbo condition with a constant

k with respect to measure µ provided

µ(SX) ≤ kµ(X)

for each X ∈ ME such that X ⊂ Ω. If k < 1, then S is called a contraction with

respect to µ and if µ(SX) < µ(X), for all µ(X) > 0, then S is called densifying or

condensing map. A k-set contraction with 0 < k < 1 is densifying, but converse may

not be true.

In the sequel, we will work in the space C(J,R) consisting of all real functions

defined and continuous on the set J . The space C(J,R) is equipped with standard

norm

‖u‖ = sup{|u(x, y)| : (x, y) ∈ J}.

Obviously, the space C(J,R) has also the structure of Banach algebra.

In our considerations, we will use a regular measure of noncompactness defined

in [7] (cf. also [6]). In order to recall the definitions of that measure let us fix a set

X ∈ MC(J,R). For u ∈ X and for a given ǫ > 0 denote by w(u, ǫ) the modulus of

continuity of u, i.e.,

w(u, ǫ) = sup{|u(x, y) − u(s, t)| : x, s ∈ [0, a]; y, t ∈ [0, b]; |x− s| ≤ ǫ, |y − t| ≤ ǫ}.

Further, put

w(X, ǫ) = sup{w(u, ǫ) : u ∈ X},

w0(X) = lim
ǫ→0

w(X, ǫ).

It can be shown in [7] that the function w0(X) is a regular measure of noncompactness

in the space C(J,R).

For our purposes we will need the following theorems and lemma [7, 21].

Theorem 2.5 (see [36]). Let M : Br → E is a densifying mapping which satisfies

the boundary condition

M(u) = ku, for some u in ∂Br with k ≤ 1,

then the set of fixed points of M in Br is nonempty which is known by Petryshyn fixed

point theorem.
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Lemma 2.6. Let F be a bounded, closed and convex subset of E. If operator S :

F → F is a strict set contraction, then S has a fixed point in F .

Theorem 2.7. Assume that Ω is a nonempty, bounded, convex and closed subset of

C(J,R) and the operators P and T transform continuously the set Ω into C(J,R) in

such a way that P (Ω) and T (Ω) are bounded. Moreover, assume that the operator

S = P · T transform Ω into itself. If the operators P and T satisfy on the set Ω the

Darbo condition with the constant k1 and k2, respectively, then the operator S satisfies

the Darbo condition on Ω with the constant

‖P (Ω)‖k2 + ‖T (Ω)‖k1.

Remark 2.8. In Theorem 2.7, if ‖P (Ω)‖k2 + ‖T (Ω)‖k1 < 1, then S is a contraction

with respect to the measure w0 and has at least one fixed point in the set Ω.

These properties will permit us to identify solutions of the integral equations

(1.1) and (1.2).

3. MAIN RESULTS

In this section, we prove the main results of this paper under the following special

assumptions for integral equation (1.1).

(A1) u, f1 ∈ C(J,R), f2 ∈ C(J1 ×R×R,R), p ∈ C(J × Ja ×R,R), q ∈ C(J2 ×R,R),

and the function f1 is bounded, where, J = Ja × Jb, J1 = {(x, y, u) : 0 ≤ x ≤

a; 0 ≤ y ≤ b; u ∈ R}, J2 = {(x, y, s, t) ∈ J × J : 0 ≤ s ≤ x ≤ a; 0 ≤ t ≤ y ≤ b}.

(A2) There exist nonnegative constants l1, l2, l3 ∈ (0, 1) such that |f2(x, y, u, w, v) −

f2(x, y, u
∗, w∗, v∗) ≤ l1|u− u∗| + l2|w − w∗| + l3|v − v∗|.

(A3) There exists the number r ≥ 0 such that the following bounded condition is

satisfied sup{|f1(x, y)| : (x, y) ∈ J} + A ≤ r, where A = sup{|f2(x, y, u, w, v)| :

(x, y) ∈ J , −r ≤ u ≤ r, −aX1 ≤ w ≤ aX1; −abX2 ≤ v ≤ abX2}, X1 =

sup{|p(x, y, σ, u)| : for all (x, y) ∈ J and σ ∈ Ja, u ∈ [−r, r]},

X2 = sup{|q(x, y, s, t, u)| : for all (x, y, s, t) ∈ J2 and u ∈ [−r, r]}.

Theorem 3.1. Under assumptions (A1)–(A3), equation (1.1) has at least one solution

in the Banach space E = C(J,R).

Proof. To achieve this result, we will use Theorem 2.5 as our main tool, we require

to define the operator M : Br → E as follows:

(Mu)(x, y)

= f1(x, y) + f2



x, y, u(x, y),

x
∫

0

p(x, y, σ, u(σ, y))dσ,

x
∫

0

y
∫

0

q(x, y, s, t, u(s, t))dt ds



 .
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Now, we have to prove that the operator M is continuous on the ball Br. For that,

we consider ǫ > 0 and take arbitrary u, v ∈ Br with ‖u − v‖ ≤ ǫ, for (x, y) ∈ J , we

obtain

|(Mu)(x, y) − (Mv)(x, y)|(3.1)

=

∣

∣

∣

∣

∣

∣

f2



x, y, u(x, y),

x
∫

0

p(x, y, σ, u(σ, y))dσ,

x
∫

0

y
∫

0

q(x, y, s, t, u(s, t))dt ds





−f2



x, y, v(x, y),

x
∫

0

p(x, y, σ, v(σ, y))dσ,

x
∫

0

y
∫

0

q(x, y, s, t, v(s, t))dt ds





∣

∣

∣

∣

∣

∣

≤ l1|u(x, y) − v(x, y)|+ l3

x
∫

0

y
∫

0

|q(x, y, s, t, u(s, t))− q(x, y, s, t, v(s, t))|dt ds

+ l2

x
∫

0

|p(x, y, σ, u(σ, y))− p(x, y, σ, v(σ, y))|dσ

≤ l1‖u− v‖ + l3abwq(ǫ) + l2awp(ǫ),

where for ǫ > 0, we denote wq(ǫ) = sup{|q(x, y, s, t, u)−q(x, y, s, t, v)| : (x, y, s, t) ∈ J2;

u, v ∈ [−r, r]; |u−v| ≤ ǫ}, wp(ǫ) = sup{|p(x, y, σ, u)−p(x, y, σ, v)| : (x, y) ∈ J ; σ ∈ Ja;

u, v ∈ [−r, r]; |u − v| ≤ ǫ}. Now, using the uniform continuity of the functions

p(x, y, σ, u) and q(x, y, s, t, u) on the set J ×Ja × [−r, r] and J2 × [−r, r], respectively,

we derive that wp(ǫ) → 0 and wq(ǫ) → 0 as ǫ→ 0. Hence, in view of our assumptions

and from the above estimate (3.1) we conclude that the operator M is continuous on

Br.

Next, we have to show that the operator M satisfies densifying condition. For

that, we choose a fixed arbitrary ǫ > 0 and take u ∈ X, where X is bounded subset

of E, (x1, y1), (x2, y2) ∈ J , with x1 ≤ x2, y1 ≤ y2 such that x2 − x1 ≤ ǫ, y2 − y1 ≤ ǫ,

we have

|(Mu)(x2, y2) − (Mu)(x1, y1)| ≤ |f1(x2, y2) − f1(x1, y1)|

(3.2)

+

∣

∣

∣

∣

∣

∣

f2



x2, y2, u(x2, y2),

x2
∫

0

p(x2, y2, σ, u(σ, y2))dσ,

x2
∫

0

y2
∫

0

q(x2, y2, s, t, u(s, t))dt ds





−f2



x1, y1, u(x1, y1),

x1
∫

0

p(x1, y1, σ, u(σ, y1))dσ,

x1
∫

0

y1
∫

0

q(x1, y1, s, t, u(s, t))dt ds





∣

∣

∣

∣

∣

∣

≤ w(f1, ǫ)
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+

∣

∣

∣

∣

∣

∣

f2



x2, y2, u(x2, y2),

x2
∫

0

p(x2, y2, σ, u(σ, y2))dσ,

x2
∫

0

y2
∫

0

q(x2, y2, s, t, u(s, t))dt ds





−f2



x2, y2, u(x2, y2),

x2
∫

0

p(x2, y2, σ, u(σ, y2))dσ,

x1
∫

0

y1
∫

0

q(x1, y1, s, t, u(s, t))dt ds





∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

f2



x2, y2, u(x2, y2),

x2
∫

0

p(x2, y2, σ, u(σ, y2))dσ,

x1
∫

0

y1
∫

0

q(x1, y1, s, t, u(s, t))dt ds





−f2



x2, y2, u(x2, y2),

x1
∫

0

p(x1, y1, σ, u(σ, y1))dσ,

x1
∫

0

y1
∫

0

q(x1, y1, s, t, u(s, t))dt ds





∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

f2



x2, y2, u(x2, y2),

x1
∫

0

p(x1, y1, σ, u(σ, y1))dσ,

x1
∫

0

y1
∫

0

q(x1, y1, s, t, u(s, t))dt ds





−f2



x2, y2, u(x1, y1),

x1
∫

0

p(x1, y1, σ, u(σ, y1))dσ,

x1
∫

0

y1
∫

0

q(x1, y1, s, t, u(s, t))dt ds





∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

f2



x2, y2, u(x1, y1),

x1
∫

0

p(x1, y1, σ, u(σ, y1))dσ,

x1
∫

0

y1
∫

0

q(x1, y1, s, t, u(s, t))dt ds





−f2



x1, y1, u(x1, y1),

x1
∫

0

p(x1, y1, σ, u(σ, y1))dσ,

x1
∫

0

y1
∫

0

q(x1, y1, s, t, u(s, t))dt ds





∣

∣

∣

∣

∣

∣

≤ w(f1, ǫ) + l3

∣

∣

∣

∣

∣

∣

x2
∫

0

y2
∫

0

q(x2, y2, s, t, u(s, t))dt ds−

x1
∫

0

y1
∫

0

q(x1, y1, s, t, u(s, t))dt ds

∣

∣

∣

∣

∣

∣

+ l2

∣

∣

∣

∣

∣

∣

x2
∫

0

p(x2, y2, σ, u(σ, y2))dσ −

x1
∫

0

p(x1, y1, σ, u(σ, y1))dσ

∣

∣

∣

∣

∣

∣

+ l1|u(x2, y2) − u(x1, y1)| + w1(f2, ǫ)

≤ w(f1, ǫ) + l3

x1
∫

0

y1
∫

0

|q(x2, y2, s, t, u(s, t)) − q(x1, y1, s, t, u(s, t))|dt ds

+ l3

x2
∫

x1

y2
∫

y1

|q(x2, y2, s, t, u(s, t))|dt ds+ l3

x1
∫

0

y2
∫

y1

|q(x2, y2, s, t, u(s, t))|dt ds

+ l3

x2
∫

x1

y1
∫

0

|q(x2, y2, s, t, u(s, t))|dt ds+ l2

x1
∫

0

|p(x2, y2, σ, u(σ, y2))

− p(x1, y1, σ, u(σ, y1))|dσ + l2

∫ x2

x1

|p(x2, y2, σ, u(σ, y2))|dσ + l1|u(x2, y2) − u(x1, y1)|



310 L. N. MISHRA AND R. P. AGARWAL

+ w1(f2, ǫ).

For our convenience, we use the following quantities:

w1(q, ǫ) = sup{|q(x, y, s, t, u)− q(x∗, y∗, s, t, u)| : |x− x∗| ≤ ǫ, |y − y∗| ≤ ǫ;

(x, y, s, t) ∈ J2; u ∈ [−r, r]},

w1(p, ǫ) = sup{|p(x, y, σ, u)− p(x∗, y∗, σ, u)| : |x− x∗| ≤ ǫ, |y − y∗| ≤ ǫ;

(x, y) ∈ J ; σ ∈ Ja; u ∈ [−r, r]},

w1(f2, ǫ) = sup{|f2(x, y, u, w, v)− f2(x
∗, y∗, u, w, v)| : |x− x∗| ≤ ǫ, |y − y∗| ≤ ǫ;

u ∈ [−r, r];w ∈ [−aX1, aX1]; v ∈ [−abX2, abX2]}.

Thus from the estimate (3.2), we obtain

|(Mu)(x2, y2) − (Mu)(x1, y1)| ≤ w(f1, ǫ) + l3abw1(q, ǫ) + ǫ2l3X2 + ǫal3X2 + ǫbl3X2

+ l2aw1(p, ǫ) + ǫl2X1 + l1w(u, ǫ) + w1(f2, ǫ).

Thus taking the limit as ǫ→ 0, the above estimate yields as follows

w0(MX) ≤ l1w0(X)

which shows that M is densifying map. Now let u ∈ ∂Br and if Mu = ku then we

obtain ‖Mu‖ = k‖u‖ = kr and by using assumption (A3), we conclude

|(Mu)(x, y)|

=

∣

∣

∣

∣

∣

∣

f1(x, y) + f2



x, y, u(x, y),

x
∫

0

p(x, y, σ, u(σ, y))dσ,

x
∫

0

y
∫

0

q(x, y, s, t, u(s, t))dt ds





∣

∣

∣

∣

∣

∣

≤ r,

for all (x, y) ∈ J , and hence ‖Mu‖ ≤ r, this means k ≤ 1.

Now, we will study the solvability of the nonlinear functional-integral equation

(1.2) for u ∈ C(J,R). Then we have the following result.

Theorem 3.2. Under the following assumptions (H1)–(H6):

(H1) The functions F,G : J × R → R are continuous and there exists a nonnegative

constant m such that |F (x, y, 0)| ≤ m, |G(x, y, 0)| ≤ m, for (x, y) ∈ J .

(H2) There exists the continuous functions a1, b1 : J → R+ such that |F (x, y, z1) −

F (x, y, z2)| ≤ a1(x, y)|z1 − z2|, |G(x, y, z1) − G(x, y, z2)| ≤ b1(x, y)|z1 − z2|, for

all zi ∈ R, i = 1, 2 and (x, y) ∈ J .

(H3) The functions f(x, y, s, t, u) and g(x, y, s, t, u) act continuously from the set J ×

J×R → R. Moreover, there exist the functions n, n∗ : J → R+ being continuous

on J and the functions φ, ψ : R+ → R+, continuous and nondecreasing on

R+ with φ(0) = 0 and ψ(0) = 0 such that |f(x, y, s, t, u) − f(x, y, s, t, v)| ≤
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n(x, y)φ(|u − v|), |g(x, y, s, t, u) − g(x, y, s, t, v)| ≤ n∗(x, y)ψ(|u − v|), for all

(s, t) ∈ J such that s ≤ x; t ≤ y and for all u, v ∈ R. Let us define the function

f1 : J → R+, f1(x, y) = max{|f(x, y, s, t, 0)| : 0 ≤ s ≤ x, 0 ≤ t ≤ y}. The

function f1 is continuous on J .

(H4) (Sublinearity condition) There exists the constants ξ and η such that

|f(x, y, s, t, u)| ≤ ξ + η|u|, |g(x, y, s, t, u)| ≤ ξ + η|u|, also abη > 1 for all

(x, y), (s, t) ∈ J and u ∈ R.

(H5) There exists a nonnegative constant k such that max{a1(x, y), b1(x, y)} ≤ k, for

all (x, y) ∈ J .

(H6) 4ξ
′

η
′

< 1 for ξ
′

= kabξ +m and η
′

= kabη + k.

Then equation (1.2) has at least one solution in the Banach algebra E = C(J,R).

Proof. Let us consider the operators P and T defined on the Banach algebra E by

the formula

(Pu)(x, y) = F



x, y,

x
∫

0

y
∫

0

f(x, y, s, t, u(s, t))dt ds



 ,

(Tu)(x, y) = G



x, y,

a
∫

0

b
∫

0

g(x, y, s, t, u(s, t))dt ds



 ,

for (x, y) ∈ J .

From assumptions (H1) and (H3), it follows that P and T transform the algebra

E into itself. Further, let us define the operator S on the algebra E by putting

Su = (Pu) · (Tu).

Obviously, S transform E into itself. Now, let us fix u ∈ E. Then using our assump-

tions for (x, y) ∈ J , we get

|(Su)(x, y)| = |(Pu)(x, y)| × |(Tu)(x, y)|

≤







∣

∣

∣

∣

∣

∣

F



x, y,

x
∫

0

y
∫

0

f(x, y, s, t, u(s, t))dt ds,



− F (x, y, 0)

∣

∣

∣

∣

∣

∣

+ |F (x, y, 0)|







×







∣

∣

∣

∣

∣

∣

G



x, y,

a
∫

0

b
∫

0

g(x, y, s, t, u(s, t))dt ds



−G(x, y, 0)

∣

∣

∣

∣

∣

∣

+ |G(x, y, 0)|







≤







a1(x, y)

x
∫

0

y
∫

0

|f(x, y, s, t, u(s, t))|dt ds+ |F (x, y, 0)|







×







b1(x, y)

a
∫

0

b
∫

0

|g(x, y, s, t, u(s, t))|dt ds+ |G(x, y, 0)|






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≤ {k(ξ + η|u(x, y)|).ab+m} · {k(ξ + η|u(x, y)|).ab+m}

≤ {k(ξ + η‖u‖)ab+m} · {k(ξ + η‖u‖)ab+m}

≤ {(kabη)‖u‖ + kabξ +m}2.

Let η
′

= kabη and ξ
′

= kabξ +m then from the above estimate, we obtain

‖Pu‖ ≤ η
′

‖u‖ + ξ
′

,(3.3)

‖Tu‖ ≤ η
′

‖u‖ + ξ
′

,(3.4)

‖Su‖ ≤ (η
′

‖u‖ + ξ
′

)2,(3.5)

for u ∈ C(J,R).

From estimate (3.5), we deduce that the operator S maps the ball Br ⊂ C(J,R)

into itself for r1 ≤ r ≤ r2, where

r1 =
1 − 2η

′

ξ
′

−
√

1 − 4η′

ξ′

2η′2
,

r2 =
1 − 2η

′

ξ
′

+
√

1 − 4η′

ξ′

2η′2
.

Also, from estimate (3.3) and (3.4), it follows easily that

‖PBr‖ ≤ η
′

r + ξ
′

,(3.6)

‖TBr‖ ≤ η
′

r + ξ
′

.(3.7)

Now we prove that the operator P is continuous on the ball Br. For that we fix ǫ > 0

and take arbitrary u, v ∈ Br such that ‖u− v‖ ≤ ǫ. Then for (x, y) ∈ J , we have

|(Pu)(x, y)− (Pv)(x, y)| =

∣

∣

∣

∣

∣

∣

F



x, y,

x
∫

0

y
∫

0

f(x, y, s, t, u(s, t))dt ds





−F



x, y,

x
∫

0

y
∫

0

f(x, y, s, t, v(s, t))dt ds





∣

∣

∣

∣

∣

∣

≤ a1(x, y)

x
∫

0

y
∫

0

|f(x, y, s, t, u(s, t))− f(x, y, s, t, v(s, t))|dt ds

≤ k

x
∫

0

y
∫

0

|f(x, y, s, t, u(s, t))− f(x, y, s, t, v(s, t))|dt ds

≤ kab w(f, ǫ)

where w(f, ǫ) = sup{|f(x, y, s, t, u) − f(x, y, s, t, v)| : s ≤ x, t ≤ y; (x, y) ∈ J ; u, v ∈

[−r, r]; |u− v| ≤ ǫ}.

Since, we know that the function f = f(x, y, s, t, u(s, t)) is uniformly continuous

on the bounded subset J × J × [−r, r], we conclude that w(f, ǫ) → 0 as ǫ → 0.
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Thus the operator P is continuous on Br. Similarly, one can easily show that T is

continuous on Br and consequently we deduce that S is continuous on Br.

Now, we show that the operators P and T satisfy the Darbo condition with

respect to measure w0 defined in Section 2, in the ball Br. To do this, we take a

nonempty subset X of Br and u ∈ X, Let ǫ > 0 be fixed and x1, x2 ∈ [0, a]; y1, y2 ∈

[0, b] such that x2 − x1 ≤ ǫ, y2 − y1 ≤ ǫ. Without loss of generality we can assume

that x1 ≤ x2 and y1 ≤ y2. Then, in view of imposed assumptions, we have

|(Pu)(x2, y2) − (Pu)(x1, y1)| =

∣

∣

∣

∣

∣

∣

F



x2, y2,

x2
∫

0

y2
∫

0

f(x2, y2, s, t, u(s, t))dt ds



(3.8)

−F



x1, y1,

x1
∫

0

y1
∫

0

f(x1, y1, s, t, u(s, t))dt ds





∣

∣

∣

∣

∣

∣

≤ a1(x, y)

∣

∣

∣

∣

∣

∣

x2
∫

0

y2
∫

0

f(x2, y2, s, t, u(s, t))dt ds−

x1
∫

0

y1
∫

0

f(x1, y1, s, t, u(s, t))dt ds

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

F



x2, y2,

x1
∫

0

y1
∫

0

f(x1, y1, s, t, u(s, t))dt ds





−F



x1, y1,

x1
∫

0

y1
∫

0

f(x1, y1, s, t, u(s, t))dt ds





∣

∣

∣

∣

∣

∣

For our convenience, we define the following quantities

wf(ǫ, ·, ·) = sup{|f(x2, y2, s, t, u)− f(x1, y1, s, t, u)| : x1, x2 ∈ [0, a]; y1, y2 ∈ [0, b];

s ≤ x1, x2; t ≤ y1, y2; |x1 − x2| ≤ ǫ, |y1 − y2| ≤ ǫ and u ∈ [−r, r]},

wF (ǫ, ·, ·) = sup{|F (x2, y2, z) − F (x1, y1, z)| : x1, x2 ∈ [0, a]; y1, y2 ∈ [0, b];

|x1 − x2| ≤ ǫ, |y1 − y2| ≤ ǫ, z ∈ [−k′ab, k′ab] and u ∈ [−r, r]},

k′ = sup{|f(x, y, s, t, u)| : (x, y), (s, t) ∈ J ; u ∈ [−r, r]}.

Then using relation (3.8) we obtain the following

|(Pu)(x2, y2) − (Pu)(x1, y1)|

(3.9)

≤ k

∣

∣

∣

∣

∣

∣

x2
∫

0

y2
∫

0

f(x2, y2, s, t, u(s, t))dt ds−

x1
∫

0

y1
∫

0

f(x1, y1, s, t, u(s, t))dt ds

∣

∣

∣

∣

∣

∣

+ wF (ǫ, ·, ·)

≤ k







x1
∫

0

y1
∫

0

|f(x2, y2, s, t, u(s, t)) − f(x1, y1, s, t, u(s, t))|dt ds
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+

x2
∫

x1

y2
∫

y1

|f(x2, y2, s, t, u(s, t)) − f(x2, y2, s, t, 0) + f(x2, y2, s, t, 0)|dt ds

+

x1
∫

0

y2
∫

y1

|f(x2, y2, s, t, u(s, t))− f(x2, y2, s, t, 0) + f(x2, y2, s, t, 0)|dt ds

+

x2
∫

x1

y1
∫

0

|f(x2, y2, s, t, u(s, t)) − f(x2, y2, s, t, 0) + f(x2, y2, s, t, 0)|dt ds







+ wF (ǫ, ·, ·)

≤ k



wf (ǫ, ., .).ab+

x2
∫

x1

y2
∫

y1

{|f(x2, y2, s, t, u(s, t)) − f(x2, y2, s, t, 0)|

+|f(x2, y2, s, t, 0)|}dt ds

+

x1
∫

0

y2
∫

y1

{|f(x2, y2, s, t, u(s, t))− f(x2, y2, s, t, 0)| + |f(x2, y2, s, t, 0)|}dt ds

+

x2
∫

x1

y1
∫

0

{|f(x2, y2, s, t, u(s, t))− f(x2, y2, s, t, 0)| + |f(x2, y2, s, t, 0)|}dt ds





+ wF (ǫ, ·, ·)

≤ k



wf (ǫ, ., .).ab+

x2
∫

x1

y2
∫

y1

{n(x2, y2)φ(|u(s, t)|) + f1(x2, y2)}dt ds

+

x1
∫

0

y2
∫

y1

{n(x2, y2)φ(|u(s, t)|) + f1(x2, y2)}dt ds

+

x2
∫

x1

y1
∫

0

{n(x2, y2)φ(|u(s, t)|) + f1(x2, y2)}dt ds



+ wF (ǫ, ·, ·)

≤ k [wf(ǫ, ·, ·) · ab+ {n(x2, y2)φ(‖u‖) + f1(x2, y2)}{(x2 − x1)(y2 − y1)

+x1(y2 − y1) + (x2 − x1)y1}] + wF (ǫ, ·, ·)

≤ k [wf(ǫ, ·, ·) · ab+ {n(x2, y2)φ(‖u‖) + f1(x2, y2)}{ǫ(ǫ+ x1 + y1)}]

+ wF (ǫ, ·, ·)

Let us denote

n̄(a, b) = max{n(x, y) : (x, y) ∈ J},

f̄1(a, b) = max{f1(x, y) : (x, y) ∈ J}.
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Further, keeping in mind the estimate (3.9), we get

w(Pu, ǫ) ≤ k
[

wf(ǫ, ·, ·) · ab+ {n̄(a, b)φ(‖u‖) + f̄1(a, b)}{ǫ(ǫ+ x1 + y1)}
]

+ wF (ǫ, ·, ·).

Observe that invoking the uniform continuity of the function F (x, y, z) on the set

J × R and the function f(x, y, s, t, u) on J × J × R, we deduce that wF (ǫ, ·, ·) → 0

and wf(ǫ, ·, ·) → 0 as ǫ→ 0. Consequently, from the above estimate we conclude

(3.10) w0(PX) ≤ kw0(X).

Similarly, we can show that

(3.11) w0(TX) ≤ kw0(X).

Finally, in view of the estimates (3.6), (3.7), (3.10) and (3.11) and Theorem 2.7, we

infer that the operator S satisfies the Darbo condition on Br with respect to measure

w0 with constant (η
′

r + ξ
′

)k + (η
′

r + ξ
′

)k. Thus, we have

(η
′

r + ξ
′

)k + (η
′

r + ξ
′

)k = 2k(η
′

r + ξ
′

)

≤ 2k(η
′

r2 + ξ
′

)

= 2k

{

η
′

(

(1 − 2η
′

ξ
′

) +
√

1 − 4η′

ξ
′

2η′2

)

+ ξ
′

}

= k

(

1 +
√

1 − 4η′

ξ
′

η
′

)

< 1.

Hence, the operator S is a contraction on Br with respect to w0. Thus, by applying

Theorem 2.7 and Remark 2.8 we get that S has at least one fixed point in Br.

Consequently, the nonlinear functional-integral equation (1.2) has at least one solution

in Br.

4. EXAMPLES

As applications and to illustrate our results, we present some examples.

Example 4.1. If f2(x, y, u, w, v) = l2w + l3v and l2, l3 ∈ (0, 1), then equation (1.1)

appears in the following form of the integral equation

u(x, y) = f1(x, y) +

x
∫

0

l2p(x, y, σ, u(σ, y))dσ +

x
∫

0

y
∫

0

l3q(x, y, s, t, u(s, t))dt ds,(4.1)

where (x, y) ∈ [0, a]× [0, b]. The above equation (4.1) is studied by various authors in

the literature [14, 35]. Notice that the above equation contains as a particular case
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of the following integral equation

u(x, y) = f1(x, y) +

a
∫

0

b
∫

0

R(x, y, s, t)S(s, t, u(s, t))dt ds,

which may be conceived as a two independent variables generalization of the famous

Hammerstein type integral equation [35].

Example 4.2. In the above example, if we put l3 = 1
3
, f1(x, y) = 1

4
e−2/(x+y+1), w = 0

and q(x, y, s, t, u) = x+y+1
3

st cos(t + u), then equation (1.1) reduces to the following

form of integral equation

u(x, y) =
1

4
e−2/(x+y+1) +

x+ y + 1

9

x
∫

0

y
∫

0

st cos(t+ u(s, t))dt ds,(4.2)

where (x, y) ∈ J = [0, 1] × [0, 1]. It is clearly seen that assumptions (A1) and (A2)

are satisfied. We only check that (A3) also holds. Take r = 1 then we obtain X2 ≤ 1

and

sup{|f1(x, y)| : (x, y) ∈ J} + sup{|f2(x, y, u, w, v)| : (x, y) ∈ J,−1 ≤ u ≤ 1,

− 1 ≤ v ≤ 1}

≤ sup

{ ∣

∣

∣

∣

1

4
e−2/(x+y+1)

∣

∣

∣

∣

: (x, y) ∈ [0, 1] × [0, 1]

}

+ sup

{

1

3
|v| : −1 ≤ v ≤ 1

}

≤ 1.

Example 4.3. Consider the following nonlinear functional integral equation:

u(x, y) =

[

1

8

x
∫

0

y
∫

0

{

y

2
sin u(s, t) + 5xy ln(1 + |u(s, t)|)

}

dt ds

]

·

[

1

5

1
∫

0

1
∫

0

{

x

2
sin(t+ u(s, t)) + (4x+ y) arctan

(

|u(s, t)|

1 + |u(s, t)|

)}

dt ds

]

(4.3)

where (x, y) ∈ [0, 1] × [0, 1].

Observe that equation (4.3) is a special case of equation (1.2). Let us take

F,G : J × R → R and f, g : J × J × R → R, here J = [0, 1] × [0, 1] and comparing

(4.3) with equation (1.2), we get

F (x, y, z) =
1

8
z, G(x, y, z) =

1

5
z.

It is also seen that these functions are continuous and satisfies the hypothesis (H2)

with a1 = 1
8
, b1 = 1

5
. Further,

|F (x, y, 0)| = 0, |G(x, y, 0)| = 0.
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Also, the functions f and g satisfies assumption (H3) with n(x, y) = y
2

+ 5xy and

n∗(x, y) = 9x
2

+ y. Moreover,

|f(x, y, s, t, u)| =
∣

∣

∣

y

2
sin u+ 5xy ln(1 + |u|)

∣

∣

∣
≤

1

2
+ 5|u|,

|g(x, y, s, t, u)| =

∣

∣

∣

∣

x

2
sin(t+ u) + (4x+ y) arctan

(

|u|

1 + |u|

)∣

∣

∣

∣

≤
1

2
+ 5|u|.

It is observed that ξ = 1
2
, η = 5, m = 0, a = 1, b = 1 and abη > 1. In this case, we

have

k = max

{

1

8
,
1

5

}

=
1

5
.

Finally, we see that

4ξ
′

η
′

=
12

25
< 1.

Hence all the hypotheses from (H1)–(H6) are satisfied. Applying the result obtained

in Theorem 3.2, we deduce that equation (4.3) has at least one solution in Banach

algebra E.

Example 4.4. Consider the following functional integral equation:

u(x, y) =





1

7

x
∫

0

y
∫

0

{

x+
exy

1 + xy
sin |u(s, t)|

}

dt ds



(4.4)

·





1

4

1
∫

0

1
∫

0

{

y +
e

2
ln(1 + |u(s, t)|)

}

dt ds





where (x, y) ∈ [0, 1]× [0, 1]. In this example one can easily verify that all the assump-

tions of our existence Theorem 3.2 are satisfied, hence equation (4.4) has at least one

solution in Banach algebra E.

5. CONCLUSION

The solutions of integral equations have a major role in the field of science and

engineering. In this paper, we have discussed about the existence of the solutions

of nonlinear functional-integral equations in two independent variables in Banach

algebra by using a strategy which is different from other authors approach. Since

the nonlinear functional-integral equation involving with two independent variables

on Banach algebra, this will be useful for several researchers to show the existence of

solutions of these kind of integral equations. By employing some necessary restrictions

on nonlinear terms and on the basis of Theorem 3.1 and Theorem 3.2, we obtain the

existence results. Also, the applicability of our results is illustrated by some examples.
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[16] M. A. Darwish and J. Banaś, Existence and characterization of solutions of nonlinear Volterra-

Stieltjes integral equations in two variables, Abstr. Appl. Anal. 2014:11pp, 2014. Article ID

618434.

[17] Deepmala and H. K. Pathak, A study on some problems on existence of solutions for nonlinear

functional-integral equations, Acta Math. Sci., 33:1305–1313, 2013.

[18] Deepmala and H. K. Pathak, Study on existence of solutions for some nonlinear functional-

integral equations with applications, Math. Commun., 18:97-107, 2013.

[19] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, New York, 1985.
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