QUENCHING FOR DEGENERATE SEMILINEAR PARABOLIC PROBLEMS

W. Y. CHAN

Department of Mathematical Sciences, Montana Tech, Butte, MT 59701, USA

ABSTRACT. Suppose that c is a positive constant. Let f(u) be a $C^2([0,c))$ function such that $f > 0, f' > 0, f'' > 0, f(u) \to \infty$ when $u \to c^-$, and $\int_0^c f(u) du < \infty$, we investigate the quenching problem $\xi^q u_\tau - (\xi^{\gamma} u_{\xi})_{\xi} = f(u)$ for $0 < \xi < a, 0 < \tau < \Gamma \leq \infty, u(\xi, 0) = 0$ for $0 \leq \xi \leq a$, and $u(0,\tau) = 0 = u(a,\tau)$ for $0 < \tau < \Gamma$. It is assumed that $q \ge 0$ and $\gamma \in [0,1)$. In this paper, we study the existence and uniqueness of the classical solution u to the problem. Furthermore, the quenching set of the solution is discussed.

AMS (MOS) Subject Classification. 35K57, 35K58, 35K65.

1. INTRODUCTION

Let a be a positive constant, Γ be a positive real number, q be a nonnegative constant, γ be a nonnegative constant less than 1, and f be a twice differentiable function such that f > 0, f' > 0, f'' > 0, $f(u) \to \infty$ when $u \to c^-$, and $\int_0^c f(u) du < \infty$. In this paper, we study the following degenerate semilinear parabolic initialboundary value problem

(1.1)
$$\xi^{q} u_{\tau} - (\xi^{\gamma} u_{\xi})_{\xi} = f(u) \text{ in } (0, a) \times (0, \Gamma),$$

(1.2)
$$u(\xi, 0) = 0$$
 on $[0, a]$ and $u(0, \tau) = u(a, \tau) = 0$ in $(0, \Gamma)$.

The above problem is motivated by the paper of Chen, Liu, and Xie [3]. They discussed the problem (1.1)–(1.2) with $f(u) = \int_0^a u^p d\xi$. They showed that u blows up in a finite time and the blow-up set is [0, a]. If q = 0 and $u(\xi, 0) = u_0$ where u_0 is a smooth function such that $u_0 \in [0, c)$, Ke and Ning [6] discussed the equation, $u_t - (p(\xi) u_{\xi})_{\xi} = f(u)$ where p(0) = 0, $p(\xi) \in C^1(0, \infty)$, and $p(\xi) > 0$ in $(0, \infty)$ with $1/p \in L^1([0, a])$ and $\int_0^\infty 1/p(\xi) d\xi = \infty$. They investigated the critical length of u and proved that all possible quenching points of u must lie in a compact subset of (0, a). When $\gamma = 0$, $u(\xi, 0) = u_0(\xi)$, and $f(u) = u^p$, Floater [5] showed that if the solution blows up in a finite time, then u blows up at $\xi = 0$ when $1 . Chan and Liu [1] examined the reverse case. They showed that <math>\xi = 0$ is not a blow-up point of u and the blow-up set is a compact subset of (0, a) when p > q + 1. When

Received June 30, 2016

 $f(u) = u^p$, Chan [2] studied the existence and uniqueness of the classical solution to the problem. He also proved that u blows up at $\xi = 0$ when 1 .

When f(u) = 0, Day [4] used (1.1) to describe the heat conduction in a rigid slab. The boundary $\xi = 0$ and $\xi = a$ are in contact with a heat reservoir. ξ^q and ξ^{γ} are representing the heat capacity and the thermal conductivity of the slab, respectively.

In (1.1), the terms ξ^q and ξ^{γ} tend to zero when ξ approaches zero if q and γ are positive, thus the coefficient of u_{τ} and $u_{\xi\xi}$ is degenerate. In Section 2, we shall prove that there exists a unique classical solution to the problem (1.1)–(1.2). We firstly show that problem (1.1)–(1.2) shall have a unique solution over the domain $[\delta, a] \times [0, \Gamma)$ where δ is a positive real number less than a. The classical solution to the problem (1.1)–(1.2) is the limiting solution of δ equation when $\delta \to 0$. In Section 3, a sufficient condition for u quenching at a finite time shall be given through constructing a lower solution. Then, we shall prove that the quenching set for u is a compact subset of [0, a].

2. EXISTENCE AND UNIQUENESS OF THE CLASSICAL SOLUTION

Let L be a degenerate semilinear parabolic operator such that

$$Lu = \xi^q u_\tau - (\xi^\gamma u_\xi)_\xi \,.$$

In the beginning of this section, let us recall the following comparison lemma (c.f. [2]).

Lemma 2.1. For any $s \in (0, \Gamma)$ and a bounded nonnegative function $B(\xi, \tau)$ on $[0, a] \times [0, s]$, if u and $v \in C([0, a] \times [0, s]) \cap C^{2,1}((0, a) \times (0, s])$, and

 $(L-B) u \ge (L-B) v \text{ in } (0,a) \times (0,s],$

 $u \geq v$ on the parabolic boundary $([0, a] \times \{0\}) \cup (\{0, a\} \times (0, s]),$

then $u \ge v$ on $[0, a] \times [0, s]$.

Let $\theta = \xi^{\nu} (a - \xi)^{\nu}$ where $\nu \in (0, 1)$ and $\nu + \gamma < 1$. Suppose that h_0 is a positive constant such that $h_0 \theta(\xi) < c$ on [0, a]. We also assume that $\tilde{\delta}$ is a positive constant with $\tilde{\delta} < a/2$ and $h(\tau)$ is a positive increasing solution to the following initial value problem:

$$h'(\tau) = \frac{f\left(\left(\frac{a^2}{4}\right)^{\nu} h(\tau)\right)}{\tilde{\delta}^{q+\nu} \left(a-\tilde{\delta}\right)^{\nu}} \text{ for } \tau \in (0, t_0] \text{ and } h(0) = h_0,$$

where t_0 is a positive constant satisfying $(a^2/4)^{\nu} h(t_0) < c$. Furthermore, we let

$$\zeta = \min\left\{\nu\left(1 - \gamma - \nu\right)\tilde{\delta}^{\gamma+\nu-2}\left(a - \tilde{\delta}\right)^{\nu}, \ \nu\left(1 - \nu\right)\left(a - \tilde{\delta}\right)^{\gamma+\nu}\tilde{\delta}^{\nu-2}\right\},\right.$$

which satisfies

$$\zeta \geq \frac{f\left(\left(\frac{a^2}{4}\right)^{\nu} h\left(\tau\right)\right)}{h_0} \text{ for } \tau \in (0, t_0].$$

The above inequality holds in some interval $(0, t_0]$ because $\tilde{\delta}^{\gamma+\nu-2}$ and $\tilde{\delta}^{\nu-2}$ tend to large numbers when $\tilde{\delta}$ is close to 0. Suppose that $\psi(\xi, \tau) = \theta(\xi) h(\tau)$, the next lemma shows that u is bounded above by ψ on $[0, a] \times [0, t_0]$.

Lemma 2.2. $\psi \ge u \text{ on } [0, a] \times [0, t_0].$

Proof. The function ψ satisfies the following expression:

$$\begin{split} L\psi &- f\left(\psi\right) \\ &= \xi^{q+\nu} \left(a-\xi\right)^{\nu} h'\left(\tau\right) - \nu h\left(\tau\right) \frac{d}{d\xi} \left[\xi^{\gamma+\nu-1} \left(a-\xi\right)^{\nu} - \xi^{\gamma+\nu} \left(a-\xi\right)^{\nu-1}\right] \\ &- f\left(\xi^{\nu} \left(a-\xi\right)^{\nu} h\left(\tau\right)\right) \\ &= \xi^{q+\nu} \left(a-\xi\right)^{\nu} h'\left(\tau\right) + \nu \left(1-\gamma-\nu\right) \xi^{\gamma+\nu-2} \left(a-\xi\right)^{\nu} h\left(\tau\right) \\ &+ \nu \left(\gamma+2\nu\right) \xi^{\gamma+\nu-1} \left(a-\xi\right)^{\nu-1} h\left(\tau\right) + \nu \left(1-\nu\right) \xi^{\gamma+\nu} \left(a-\xi\right)^{\nu-2} h\left(\tau\right) \\ &- f\left(\xi^{\nu} \left(a-\xi\right)^{\nu} h\left(\tau\right)\right). \end{split}$$

We rewrite the interval (0, a) as $\left(0, \tilde{\delta}\right] \cup \left(\tilde{\delta}, a - \tilde{\delta}\right) \cup \left[a - \tilde{\delta}, a\right)$. When $(\xi, \tau) \in \left(0, \tilde{\delta}\right] \times [0, t_0]$,

$$L\psi - f(\psi)$$

$$\geq \nu h(\tau) (1 - \gamma - \nu) \xi^{\gamma + \nu - 2} (a - \xi)^{\nu} - f(\xi^{\nu} (a - \xi)^{\nu} h(\tau))$$

$$\geq \nu h_0 (1 - \gamma - \nu) \tilde{\delta}^{\gamma + \nu - 2} \left(a - \tilde{\delta}\right)^{\nu} - f\left(\left(\frac{a^2}{4}\right)^{\nu} h(\tau)\right)$$

$$\geq h_0 \left[\zeta - \frac{f\left(\left(\frac{a^2}{4}\right)^{\nu} h(\tau)\right)}{h_0}\right] \geq 0.$$

When $(\xi, \tau) \in \left[a - \tilde{\delta}, a\right) \times [0, t_0],$

$$L\psi - f(\psi)$$

$$\geq \nu h(\tau) (1 - \nu) \xi^{\gamma + \nu} (a - \xi)^{\nu - 2} - f(\xi^{\nu} (a - \xi)^{\nu} h(\tau))$$

$$\geq \nu h_0 (1 - \nu) \left(a - \tilde{\delta}\right)^{\gamma + \nu} \tilde{\delta}^{\nu - 2} - f\left(\left(\frac{a^2}{4}\right)^{\nu} h(\tau)\right)$$

$$\geq h_0 \left[\zeta - \frac{f\left(\left(\frac{a^2}{4}\right)^{\nu} h(\tau)\right)}{h_0}\right] \geq 0.$$

When $(\xi, \tau) \in \left(\tilde{\delta}, a - \tilde{\delta}\right) \times [0, t_0],$

$$L\psi - f(\psi) \ge \tilde{\delta}^{q+\nu} \left(a - \tilde{\delta}\right)^{\nu} h'(\tau) - f\left(\left(\frac{a^2}{4}\right)^{\nu} h(\tau)\right) = 0.$$

When $\tau = 0$, $\psi(\xi, 0) = h_0 \theta \ge 0$ on [0, a]. At $\xi = 0$ and $\xi = a$, $\psi(\xi, \tau) = 0$ for $\tau \ge 0$. By Lemma 2.1, $\psi(\xi, \tau) \ge u(\xi, \tau)$ on $[0, a] \times [0, t_0]$.

Since f > 0, by Lemma 2.1 $u \ge 0$ on $[0, a] \times [0, \Gamma)$. Let δ be a positive constant less than a and u_{δ} denote the solution of the Dirichlet initial-boundary value problem:

(2.1)
$$\xi^{q} u_{\tau} - \left(\xi^{\gamma} u_{\xi}\right)_{\xi} = f\left(u\right) \text{ for } \delta < \xi < a, 0 < \tau < \Gamma,$$

(2.2) $u(\xi, 0) = 0 \text{ for } \delta \le \xi \le a, \ u(\delta, \tau) = 0 = u(a, \tau) \text{ for } 0 < \tau < \Gamma.$

Let $\omega = (0, a) \times (0, t_0]$, $\bar{\omega} = [0, a] \times [0, t_0]$, $D_{\delta} = (\delta, a)$, $\omega_{\delta} = D_{\delta} \times (0, t_0]$, $\bar{D}_{\delta} = [\delta, a]$, $\bar{\omega}_{\delta} = \bar{D}_{\delta} \times [0, t_0]$, and $\partial \omega_{\delta} = (\bar{D}_{\delta} \times \{0\}) \cup (\{\delta, a\} \times (0, t_0])$, we prove the existence and uniqueness of the solution to the problem (1.1)–(1.2).

Theorem 2.3. The problem (1.1)–(1.2) has a unique nonnegative solution

$$u \in C\left(\bar{\omega}\right) \cap C^{2+\alpha,1+\alpha/2}\left(\left(0,a\right] \times \left[0,t_0\right]\right)$$

Proof. We prove $u_{\delta_2} \geq u_{\delta_1}$ over the domain $[\delta_1, a] \times [0, \Gamma)$ when $0 < \delta_2 < \delta_1 < a$. We note that $\xi^{-q+\gamma}$ and $\xi^{-q+\gamma-1} \in C^{\alpha,\alpha/2}(\bar{\omega}_{\delta})$ for some $\alpha \in (0,1)$. $\xi^{-q}f(u_{\delta}) \leq f(\psi)/\delta^q$ for some $(\xi, \tau, u_{\delta}) \in \bar{\omega}_{\delta} \times [0, c)$. It follows from Theorem 4.2.2 of Ladde, Lakshmikantham, and Vatsala [8, p. 143] that the problem (2.1)-(2.2) has a unique solution $u_{\delta} \in C^{2+\alpha,1+\alpha/2}(\bar{\omega}_{\delta})$. When $\tau \geq 0$ and $\delta_1 > \delta_2 > 0$, $u_{\delta_2}(\delta_1, \tau) \geq u_{\delta_1}(\delta_1, \tau) = 0$. It follows from Lemma 2.1 that $u_{\delta_1} \leq u_{\delta_2}$ on $\bar{\omega}_{\delta_1}$. Therefore, $\lim_{\delta \to 0} u_{\delta}$ exists for all $(\xi, \tau) \in \bar{\omega}$. Let $u(\xi, \tau) = \lim_{\delta \to 0} u_{\delta}(\xi, \tau)$. We want to show that u is a solution. Let $\tilde{E} = \left[\tilde{b}_1, \tilde{b}_2\right] \times \left[0, \tilde{t}_1\right]$ and $\hat{E} = \left[\hat{b}_1, \hat{b}_2\right] \times \left[0, \hat{t}_1\right]$ such that $\tilde{E} \subset \hat{E} \subset \bar{\omega}$ (where $\tilde{b}_1 > \tilde{b}_1 > 0$, $\tilde{b}_2 < \tilde{b}_2 \leq a$, and $\tilde{t}_1 \leq \tilde{t}_1 \leq t_0$). Since $u_{\delta} \leq \psi$ in \hat{E} , we have for any constant $\tilde{q} > 1$, the following three conditions are satisfied:

i. $||u_{\delta}||_{L^{\tilde{q}}(\hat{E})} \leq ||\psi||_{L^{\tilde{q}}(\hat{E})} \leq k_1$ for some positive constant k_1 . ii. For s > 0,

$$\left| \left| \gamma \xi^{-q+\gamma-1} \right| \right|_{L^{\tilde{q}} \left(\left[\hat{b}_{1}, \hat{b}_{2} \right] \times (\tau, \tau+s) \right)} \leq \gamma \hat{b}_{1}^{-q+\gamma-1} \left(\hat{b}_{2} - \hat{b}_{1} \right)^{1/\tilde{q}} s^{1/\tilde{q}}$$

tends to 0 when s approaches 0.

iii. As f(u) is an increasing function, it gives $||\xi^{-q}f(u_{\delta})||_{L^{\tilde{q}}(\hat{E})} \leq \hat{b}_{1}^{-q} ||f(\psi)||_{L^{\tilde{q}}(\hat{E})}$.

If we choose $\tilde{q} > 3/(2-\alpha)$, by Theorem 4.9.1 of Ladyženskaja, Solonnikov, and Ural'ceva [9, pp. 341–342] $u_{\delta} \in W_{\tilde{q}}^{2,1}(\hat{E})$. By Theorem 2.3.3 there [9, p. 80],

 $W_{\tilde{q}}^{2,1}\left(\hat{E}\right) \hookrightarrow H^{\alpha,\alpha/2}\left(\hat{E}\right)$. Thus, $||u_{\delta}||_{H^{\alpha,\alpha/2}\left(\hat{E}\right)} \leq k_2$ for some positive constant k_2 . By the triangular inequality, it yields

$$\begin{split} \left| \left| \xi^{-q} f\left(u_{\delta}\right) \right| \right|_{H^{\alpha,\alpha/2}\left(\hat{E}\right)} \\ &\leq \hat{b}_{1}^{-q} \left| \left| f\left(\psi\right) \right| \right|_{\infty} + \sup_{\substack{(\xi,\tau) \in \hat{E} \\ (\tilde{\xi},\tau) \in \hat{E}}} \frac{\xi^{-q} \left| f\left(u_{\delta}\left(\xi,\tau\right)\right) - f\left(u_{\delta}\left(\tilde{\xi},\tau\right)\right) \right|}{\left| \xi - \tilde{\xi} \right|^{\alpha}} \\ &+ \sup_{\substack{(\xi,\tau) \in \hat{E} \\ (\tilde{\xi},\tau) \in \hat{E}}} \frac{\left| f\left(u_{\delta}\left(\tilde{\xi},\tau\right)\right) \right| \left| \xi^{-q} - \tilde{\xi}^{-q} \right|}{\left| \xi - \tilde{\xi} \right|^{\alpha}} + \sup_{\substack{(\xi,\tau) \in \hat{E} \\ (\xi,\tau) \in \hat{E}}} \frac{\xi^{-q} \left| f\left(u_{\delta}\left(\xi,\tau\right)\right) - f\left(u_{\delta}\left(\xi,\tau\right)\right) \right|}{\left| \tau - \tilde{\tau} \right|^{\alpha/2}}. \end{split}$$

By the mean value theorem, we have

$$\begin{aligned} \left| \left| \xi^{-q} f(u_{\delta}) \right| \right|_{H^{\alpha,\alpha/2}(\hat{E})} \\ &\leq \hat{b}_{1}^{-q} \left| \left| f(\psi) \right| \right|_{\infty} + \hat{b}_{1}^{-q} \left| \left| f'(\psi) \right| \right|_{\infty} \left| \left| u_{\delta} \right| \right|_{H^{\alpha,\alpha/2}(\hat{E})} + \left| \left| f(\psi) \right| \right|_{\infty} \left| \left| \xi^{-q} \right| \right|_{H^{\alpha,\alpha/2}(\hat{E})} \\ &\leq k_{3} \end{aligned}$$

for some positive constant k_3 which is independent of δ . In addition, $||\xi^{-q+\gamma}||_{H^{\alpha,\alpha/2}(\hat{E})}$ and $||\gamma\xi^{-q+\gamma-1}||_{H^{\alpha,\alpha/2}(\hat{E})}$ are bounded. Then, by Theorem 4.10.1 of Ladyženskaja, Solonnikov, and Ural'ceva [9, pp. 351–352], we have

$$\left|\left|u_{\delta}\right|\right|_{H^{2+\alpha,1+\alpha/2}\left(\tilde{E}\right)} \le k_4$$

for some positive constant k_4 which is independent of δ . This implies that u_{δ} , $(u_{\delta})_{\tau}$, $(u_{\delta})_{\xi}$, and $(u_{\delta})_{\xi\xi}$ are equicontinuous in \tilde{E} . By the Ascoli-Arzela theorem, $||u||_{H^{2+\alpha,1+\alpha/2}(\tilde{E})} \leq k_4$, and the partial derivatives of u are the limits of the corresponding partial derivatives of u_{δ} . From Lemma 2.2, $\psi \geq u \geq 0$ on $\bar{\omega}$, by the Sandwich theorem $u(0,\tau) = 0 = u(a,\tau)$ for $\tau \in [0,t_0]$. Thus, $u \in C(\bar{\omega}) \cap C^{2+\alpha,1+\alpha/2}((0,a] \times [0,t_0])$. By Lemma 2.1, there exists a unique nonnegative solution u to the problem (1.1)–(1.2) on $\bar{\omega}$.

We follow Theorem 3 of Chan and Liu [1] to obtain the following result.

Theorem 2.4. Let Γ be the supremum over t_0 for which there is a unique nonnegative solution $u \in C(\bar{\omega}) \cap C^{2+\alpha,1+\alpha/2}((0,a] \times [0,t_0])$. Then, there is a unique nonnegative solution $u \in C([0,a] \times [0,\Gamma)) \cap C^{2+\alpha,1+\alpha/2}((0,a] \times [0,\Gamma))$. If $\Gamma < \infty$, then u is unbounded in $(0,a) \times (0,\Gamma)$.

3. QUENCHING SET OF THE SOLUTION

Let $x = \xi/a$ and $t = a^{\gamma - 2 - q}\tau$. Problem (1.1)–(1.2) becomes

(3.1)
$$x^{q}u_{t} - (x^{\gamma}u_{x})_{x} = a^{2-\gamma}f(u), \ (x,t) \in (0,1) \times (0,T),$$

(3.2)
$$u(x,0) = 0$$
 on $[0,1]$, and $u(0,t) = u(1,t) = 0$ in $(0,T)$,

where $T = a^{\gamma - 2 - q} \Gamma$. Then, let *b* be a positive constant less than or equal to 1 and $\hat{u}(x,t) = a^{2-\gamma} f(0) m(t) x (1-x) / 8 \ge 0$ in $[0,1] \times (0,T)$ where

$$m(t) = \frac{8b}{3} \left(1 - e^{-12t} \right)$$

In the following lemma, we prove that u quenches in a finite time if a is sufficient large through showing $\hat{u}(x,t) \leq u(x,t)$ in $[0,1] \times [0,T)$.

Lemma 3.1. If a is sufficient large, u quenches in a finite time.

Proof. To obtain this result, we use the method of the lower solution. With $\hat{u}(x,t) = a^{2-\gamma}f(0)m(t)x(1-x)/8$ where m(t) being a positive increasing function for t > 0 and m(0) = 0, $\hat{u}(0,t) = \hat{u}(1,t) = 0$ for $t \ge 0$ and $\hat{u}(x,0) = 0$ for $x \in [0,1]$. Substitute $\hat{u}(x,t)$ into (3.1) to obtain the differential inequality below:

$$\begin{aligned} x^{q}\hat{u}_{t} - x^{\gamma}\hat{u}_{xx} - \gamma x^{\gamma-1}\hat{u}_{x} \\ &\leq \frac{m'(t)}{8}a^{2-\gamma}f(0) x (1-x) + \frac{2a^{2-\gamma}f(0)}{8}m(t) - \frac{\gamma a^{2-\gamma}f(0)}{8}m(t) (1-2x) \\ &\leq \frac{m'(t)}{8}a^{2-\gamma}f(0) \frac{1}{4} + \frac{a^{2-\gamma}f(0)}{4}m(t) + \frac{a^{2-\gamma}f(0)}{8}m(t) . \end{aligned}$$

If the last expression of this inequality is less than or equal to $a^{2-\gamma} f(0)$, it is equivalent that m(t) satisfies the following differential equation

$$\frac{m'(t)}{32} + \frac{3}{8}m(t) = b, \ m(0) = 0$$

where b is a positive constant less than or equal to 1. The solution of the above differential equation is

$$m(t) = \frac{8}{3}b\left(1 - e^{-12t}\right)$$

Then, from f' > 0, $\hat{u} \ge 0$, and the above equation, we obtain

$$x^{q}\hat{u}_{t} - x^{\gamma}\hat{u}_{xx} - \gamma x^{\gamma-1}\hat{u}_{x} \le a^{2-\gamma}f(0) \le a^{2-\gamma}f(\hat{u}).$$

By Lemma 2.1,

$$u(x,t) \ge \hat{u}(x,t) = \frac{a^{2-\gamma}f(0)}{8}m(t)x(1-x)$$

for $(x,t) \in [0,1] \times [0,T)$. In particular at x = 1/2 and $t = \tilde{T}$ where $0 < \tilde{T} < T$

$$u\left(\frac{1}{2},\tilde{T}\right) \ge \frac{a^{2-\gamma}f\left(0\right)}{32}m\left(\tilde{T}\right).$$

Since $\gamma < 1$ and $m\left(\tilde{T}\right) > 0$, there exists an *a* such that $a^{2-\gamma}f(0)m\left(\tilde{T}\right)/32 \ge c$. Hence, *u* quenches in a finite time \tilde{T} if *a* is sufficient large. In the following, we are going to prove that the quenching set of u is a compact subset of (0, 1). Let $z^{1/(1-\gamma)} = x$. Then, $dz/dx = (1 - \gamma) z^{-\gamma/(1-\gamma)}$,

$$u_x = u_z \frac{1-\gamma}{z^{\gamma/(1-\gamma)}},$$
$$u_{xx} = (1-\gamma)^2 z^{-2\gamma/(1-\gamma)} u_{zz} - \frac{\gamma (1-\gamma) u_z}{z^{(1+\gamma)/(1-\gamma)}}$$

Having the above expressions, $x^{\gamma}u_{xx} + \gamma x^{\gamma-1}u_x$ is represented by

$$\begin{aligned} x^{\gamma} u_{xx} + \gamma x^{\gamma - 1} u_{x} \\ &= z^{\gamma/(1 - \gamma)} \left[(1 - \gamma)^{2} z^{-2\gamma/(1 - \gamma)} u_{zz} - \frac{\gamma (1 - \gamma) u_{z}}{z^{(1 + \gamma)/(1 - \gamma)}} \right] + \gamma z^{(\gamma - 1)/(1 - \gamma)} u_{z} \frac{1 - \gamma}{z^{\gamma/(1 - \gamma)}} \\ &= (1 - \gamma)^{2} z^{-\gamma/(1 - \gamma)} u_{zz} - \gamma (1 - \gamma) z^{-1/(1 - \gamma)} u_{z} + \gamma (1 - \gamma) z^{-1/(1 - \gamma)} u_{z} \\ &= (1 - \gamma)^{2} z^{-\gamma/(1 - \gamma)} u_{zz}. \end{aligned}$$

Therefore, $x^{q}u_{t} = (x^{\gamma}u_{x})_{x} + a^{2-\gamma}f(u)$ transforms to

(3.3)
$$z^{q/(1-\gamma)}u_t = (1-\gamma)^2 z^{-\gamma/(1-\gamma)}u_{zz} + a^{2-\gamma}f(u) .$$

Let

$$E(t) = \frac{1}{2} (1-\gamma)^2 \int_0^1 u_z^2 dz - \int_0^1 \int_0^{u(z,t)} z^{\gamma/(1-\gamma)} a^{2-\gamma} f(u) \, du dz,$$

and $\int_{0}^{u(z,t)} f(u) du = F(u(z,t))$. We modify Theorem 2 of Kong [7] to obtain the following result.

Lemma 3.2. The quenching points of the solution u are in the interval

$$\left[\left\{\frac{c^{2}\left(1-\gamma\right)^{2}}{2\left[F\left(c\right)\left(1-\gamma\right)+E\left(0\right)\right]}\right\}^{1/(1-\gamma)},\left\{1-\frac{c^{2}\left(1-\gamma\right)^{2}}{2\left[F\left(c\right)\left(1-\gamma\right)+E\left(0\right)\right]}\right\}^{1/(1-\gamma)}\right].$$

Proof: We differentiate E(t) with respect to t,

$$E'(t) = \frac{1}{2} (1-\gamma)^2 \int_0^1 2u_z u_{zt} dz - \int_0^1 z^{\gamma/(1-\gamma)} a^{2-\gamma} f(u) u_t dz.$$

Use integration by parts, $u_t(0,t) = u_t(1,t) = 0$, and (3.3) to obtain

$$\begin{split} E'(t) &= (1-\gamma)^2 \left(u_z u_t |_0^1 - \int_0^1 u_{zz} u_t dz \right) - \int_0^1 z^{\gamma/(1-\gamma)} a^{2-\gamma} f(u) \, u_t dz \\ &= -(1-\gamma)^2 \int_0^1 u_{zz} u_t dz - \int_0^1 z^{\gamma/(1-\gamma)} a^{2-\gamma} f(u) \, u_t dz \\ &= -\int_0^1 z^{\gamma/(1-\gamma)} u_t \left[(1-\gamma)^2 \, z^{-\gamma/(1-\gamma)} u_{zz} + a^{2-\gamma} f(u) \right] dz \\ &= -\int_0^1 z^{\gamma/(1-\gamma)} u_t z^{q/(1-\gamma)} u_t dz \\ &= -\int_0^1 z^{(\gamma+q)/(1-\gamma)} u_t^2 dz < 0. \end{split}$$

Since E'(t) < 0, we know that $E(t) < E(0) = \frac{1}{2} (1 - \gamma)^2 \int_0^1 u_z^2(z, 0) dz$. Equivalently,

$$\left(\int_{0}^{1} u_{z}^{2} dz\right)^{1/2} < \frac{2^{1/2}}{(1-\gamma)} \left[\int_{0}^{1} \int_{0}^{u(z,t)} z^{\gamma/(1-\gamma)} f(u) \, du dz + E(0)\right]^{1/2}.$$

Then, by the Schwarz inequality, it yields

$$\begin{split} u(z,t) &= \int_0^z u_z(z,t) \, dz \\ &\leq \left(\int_0^z dz \right)^{1/2} \left(\int_0^z u_z^2 dz \right)^{1/2} \\ &\leq \left(\int_0^z dz \right)^{1/2} \left(\int_0^1 u_z^2 dz \right)^{1/2} \\ &< z^{1/2} \frac{2^{1/2}}{(1-\gamma)} \left[\int_0^1 \int_0^{u(z,t)} z^{\gamma/(1-\gamma)} f(u) \, du dz + E(0) \right]^{1/2}. \end{split}$$

As $\int_{0}^{u(z,t)} f(u) du < F(c)$, this leads to

$$\begin{split} u\left(z,t\right) &< z^{1/2} \frac{2^{1/2}}{(1-\gamma)} \left[F\left(c\right) \int_{0}^{1} z^{\gamma/(1-\gamma)} dz + E\left(0\right) \right]^{1/2} \\ &= z^{1/2} \frac{2^{1/2}}{(1-\gamma)} \left[F\left(c\right) \frac{1}{\frac{\gamma}{(1-\gamma)} + 1} + E\left(0\right) \right]^{1/2} \\ &= z^{1/2} \frac{2^{1/2}}{(1-\gamma)} \left[F\left(c\right) (1-\gamma) + E\left(0\right) \right]^{1/2}. \end{split}$$

Set the right side of the above inequality less than c, we obtain

$$z^{1/2} \frac{2^{1/2}}{(1-\gamma)} \left[F(c) \left(1-\gamma\right) + E(0) \right]^{1/2} < c.$$

Then, solve for z

$$z < \frac{c^2 (1 - \gamma)^2}{2 \left[F(c) (1 - \gamma) + E(0) \right]}.$$

Since $z^{1/(1-\gamma)} = x$, the upper bound of x is given by

$$x < \left\{ \frac{c^2 (1-\gamma)^2}{2 \left[F(c) (1-\gamma) + E(0)\right]} \right\}^{1/(1-\gamma)}.$$

When we integrate $-u_{z}(z,t)$ with respect to z from z to 1,

$$\begin{split} u\left(z,t\right) &= \int_{z}^{1} -u_{z}\left(z,t\right) dz \\ &\leq \left(\int_{z}^{1} dz\right)^{1/2} \left(\int_{z}^{1} u_{z}^{2} dz\right)^{1/2} \\ &\leq \left(\int_{z}^{1} dz\right)^{1/2} \left(\int_{0}^{1} u_{z}^{2} dz\right)^{1/2} \\ &< (1-z)^{1/2} \frac{2^{1/2}}{(1-\gamma)} \left[\int_{0}^{1} \int_{0}^{u(z,t)} z^{\gamma/(1-\gamma)} f\left(u\right) du dz + E\left(0\right)\right]^{1/2}. \end{split}$$

Using the similar calculation above, we obtain

$$1 - z < \frac{c^2 (1 - \gamma)^2}{2 \left[F(c) (1 - \gamma) + E(0) \right]}.$$

This leads to

$$1 - \frac{c^2 (1 - \gamma)^2}{2 \left[F(c) (1 - \gamma) + E(0) \right]} < z = x^{1 - \gamma}.$$

Equivalently,

$$\left\{1 - \frac{c^2 \left(1 - \gamma\right)^2}{2 \left[F\left(c\right) \left(1 - \gamma\right) + E\left(0\right)\right]}\right\}^{1/(1-\gamma)} < x.$$

The proof is complete.

Theorem 3.3. If a is sufficiently small, there is a global solution to the problem (1.1)-(1.2).

Proof. Suppose that $g(x) = k_5 x^{\beta}$ for some positive constants β and k_5 such that $\beta + \gamma < 1$ and $k_5 < c$. It is noticed that $g(x) \ge 0$ in [0, 1]. Then, we compute

$$\begin{aligned} x^{q}g_{t} - (x^{\gamma}g_{x})_{x} - a^{2-\gamma}f(g) \\ &= -\left[k_{5}x^{\gamma}\beta\left(\beta-1\right)x^{\beta-2} + \gamma k_{5}x^{\gamma-1}\beta x^{\beta-1}\right] - a^{2-\gamma}f\left(k_{5}x^{\beta}\right) \\ &= -k_{5}x^{\gamma+\beta-2}\beta\left(\beta-1+\gamma\right) - a^{2-\gamma}f\left(k_{5}x^{\beta}\right) \\ &= k_{5}x^{\gamma+\beta-2}\beta\left(1-\beta-\gamma\right) - a^{2-\gamma}f\left(k_{5}x^{\beta}\right) \\ &\geq k_{5}\beta\left(1-\beta-\gamma\right) - a^{2-\gamma}f\left(k_{5}x^{\beta}\right). \end{aligned}$$

We choose a sufficiently small such that $k_5\beta(1-\beta-\gamma)-a^{2-\gamma}f(k_5x^\beta) \ge 0$ in (0,1). Hence,

$$x^{q}g_{t} - (x^{\gamma}g_{x})_{x} - a^{2-\gamma}f(g) \ge 0 \text{ in } (0,1)$$

By Lemma 2.1, $g(x) \ge u(x,t)$ on $[0,1] \times [0,\infty)$. Therefore, u(x,t) exists globally. \Box

REFERENCES

- C. Y. Chan and H. T. Liu, Global existence of solutions for degenerate semilinear parabolic problems, *Nonlinear Anal.*, 34:617–628, 1998.
- [2] W. Y. Chan, Existence and uniqueness of the solution of degenerate semilinear parabolic equations, Journal of Concrete and Applicable Mathematics, 8:528–539, 2010.
- [3] Y. Chen, Q. Liu, and C. Xie, Blow-up for degenerate parabolic equations with nonlocal source, Proc. Amer. Math. Soc., 132:135–145, 2004.
- [4] W. A. Day, Parabolic equations and thermodynamics, Quart. Appl. Math., 50:523–533, 1992.
- [5] M. S. Floater, Blow-up at the boundary for degenerate semilinear parabolic equations, Arch. Rational Mech. Anal., 114:57–77, 1991.
- [6] L. Ke and S. Ning, Quenching for degenerate parabolic equations, Nonlinear Anal., 34:1123– 1135, 1998.
- [7] P. C. Kong, Quenching behavior for degenerate parabolic problems, Dynamics of Continuous, Discrete and Impulsive Systems, Series A: Mathematical Analysis, 8:69–76, 2001.
- [8] G. S. Ladde, V. Lakshmikantham, and A. S. Vatsala, Monotone Iterative Techniques for Nonlinear Differential Equations, Pitman, Boston, Massachusetts, 1985, p. 143.
- [9] O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural'ceva, *Linear and Quasilinear Equations of Parabolic Type*, Amer. Math. Soc., Providence, Rhode Island, 1968, pp. 80, 341–342, and 351–352.