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1. INTRODUCTION

We consider the nonlinear Dirichlet boundary value problem consisting of

(1.1)







−u′′(x) = λf(x, u(x)) + g(u(x)), a.e. x ∈ [0, T ],

u(0) = u(T ) = 0,

together with the impulsive conditions

(1.2) ∆u′(xj) = Ij(u(xj)), j = 1, . . . , p,

where λ is a positive parameter, T > 0, f : [0, T ] × R → R is an L1-Carathéodory

function, x0 = 0 < x1 < · · · < xp < xp+1 = T , and ∆u′(xj) is defined by

∆u′(xj) = u′(x+
j ) − u′(x−

j ) = lim
x→x+

j

u′(x) − lim
x→x−

j

u′(x).

Throughout this paper, we assume the following conditions hold without further

mention:

(H1) g : R → R is a Lipschitz continuous function with a Lipschitz constant L ∈
(0, 4/T 2), i.e., |g(t1) − g(t2)| ≤ L|t1 − t2| for all t1, t2 ∈ R, and g(0) = 0;

(H2) The impulsive functions Ij : R → R, j = 1, . . . , p, are continuous and satisfy the

condition
∑p

j=1(Ij(t1) − Ij(t2))(t1 − t2) ≥ 0 for all t1, t2 ∈ R;
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(H3) Ij , j = 1, . . . , p, have sublinear growth, i.e., there exist constants aj > 0, bj ≥ 0,

and γj ∈ [0, 1) such that |Ij(t)| ≤ aj + bj |t|γj for every t ∈ R and j = 1, . . . , p.

The impulsive problem (1.1), (1.2) will be referred to as (IP) in the remainder of this

paper.

By employing a consequence of a local minimum theorem due to Bonanno (see

Lemma 2.1 below), we establish the existence of nontrivial classical solutions to the

problem (IP). Under suitable algebraic assumptions on the nonlinear term f , we first

prove the existence of at least one nontrivial classical solution, and then we obtain

the existence of a second classical solution by further assuming that f(t, 0) 6= 0 for

all t ∈ [0, T ] and asking that the following condition of Ambrosetti-Rabinowitz (AR)

type holds:

(A1) there exist s > 2(4+LT 2)
4−LT 2 and R > 0 such that

0 < sF (x, t) ≤ tf(x, t) for all |t| ≥ R and x ∈ [0, T ].

The role of this condition is to ensure the boundedness of the Palais-Smale se-

quences for the Euler-Lagrange functional associated with the problem (IP). This

is important in applications of critical point theory. The purpose of the condition

f(t, 0) 6= 0 for all t ∈ [0, T ] is to avoid the existence of the trivial solution to the

problem (IP).

Impulsive differential equations arise from real world processes that describe the

dynamics in which sudden and discontinuous jumps occur. Because of the importance

of such problems, they have been studied by many authors; for example, see [2, 14,

18, 23] and the references therein. In particular, the existence and multiplicity of

solutions for impulsive differential equations have been examined in many works, and

for an overview on this subject, we refer the reader to the monographs [6, 12] and

the papers [1, 3, 4, 5, 8, 10, 16, 15, 17, 22, 24, 26, 27, 28]. We especially refer the

reader to the paper [9] in which, using Lemma 2.1 below, existence results for two

and three nontrivial solutions are established for a class of Sturm-Liouville problems

with mixed conditions and the p-Laplacian.

2. PRELIMINARIES

Our main tool, Lemma 2.1 below, is a consequence of an existence result for a

local minimum [7, Theorem 5.1] that in turn was inspired by Ricceri’s variational

principle [20]. In it, an inequality on the functionals Φ and Ψ is needed.

For a given nonempty set X and two functionals Φ, Ψ : X → R, we define

ϑ(r1, r2) = inf
v∈Φ−1(r1,r2)

supu∈Φ−1(r1,r2) Ψ(u) − Ψ(v)

r2 − Φ(v)
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and

ρ(r1, r2) = sup
v∈Φ−1(r1,r2)

Ψ(v) − supu∈Φ−1(−∞,r1) Ψ(u)

Φ(v) − r1

for all r1, r2 ∈ R with r1 < r2. In what follows, we let X∗ denote the dual space of

X.

Lemma 2.1 ([7, Theorem 5.1]). Let X be a real Banach space, Φ : X → R be a

sequentially weakly lower semicontinuous, coercive, and continuously Gâteaux differ-

entiable functional whose Gâteaux derivative admits a continuous inverse on X∗, and

let Ψ : X → R be a continuously Gâteaux differentiable functional whose Gâteaux

derivative is compact. Let Iλ = Φ − λΨ and assume that there exist r1, r2 ∈ R with

r1 < r2 such that

ϑ(r1, r2) < ρ(r1, r2).

Then, for each λ ∈
(

1
ρ(r1,r2)

, 1
ϑ(r1,r2)

)

, there exists u0,λ ∈ Φ−1(r1, r2) such that Iλ(u0,λ)

≤ Iλ(u) for all u ∈ Φ−1(r1, r2) and I ′
λ(u0,λ) = 0.

Let X = H1
0 (0, T ) and H2(0, T ) = {u ∈ C1[0, T ] : u′′ ∈ L2[0, T ]}. The inner

product

≺ u, v ≻=

∫ T

0

u′(x)v′(x)dx,

in X induces the norm

‖u‖ =
(

∫ T

0

|u′(x)|2dx
) 1

2

.

Definition 2.2. By a classical solution of the problem (IP), we mean a function

u ∈ {u(x) ∈ H1(0, T ) : u(x) ∈ H2(xj , xj+1), j = 0, 1, . . . , p} such that u satisfies

(1.1) and (1.2). We say that a function u ∈ X is a weak solution of the problem (IP)

if
∫ T

0

u′(x)v′(x)dx+

p
∑

j=1

Ij(u(xj))v(xj)−
∫ T

0

g(u(x))v(x)dx−λ

∫ T

0

f(x, u(x))v(x)dx = 0

for every v ∈ X.

Remark 2.3. Using standard methods, it is easy to verify that a weak solution of

(IP) is also a classical solution (e.g., see [3, Lemma 5]).

Definition 2.4. Let X be a real reflexive Banach space. If any sequence {un} ⊂ X,

such that {J(un)} is bounded and J ′(un) → 0 as n → ∞, possesses a convergent

subsequence, then we say that J satisfies the Palais-Smale (PS) condition. Here, the

sequence {un} is called a (PS) sequence.

Next, we let

F (x, t) =

∫ t

0

f(x, ξ)dξ for all (x, t) ∈ [0, T ] × R,
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G(t) = −
∫ t

0

g(ξ)dξ for all t ∈ R,

and define the functional J : X → R by

J(u) =
1

2

∫ T

0

(u′(x))2dx +

p
∑

j=1

∫ u(xj)

0

Ij(t)dt +

∫ T

0

G(u(x))dx − λ

∫ T

0

F (x, u(x))dx.

From the continuity of f , g, and Ij, we see that J(u) is strongly continuous in X,

J ∈ C1(X), and the Gâteaux derivative of J is

〈J ′(u), v〉 =

∫ T

0

u′(x)v′(x)dx +

p
∑

j=1

Ij(u(xj))v(xj)

−
∫ T

0

g(u(x))v(x)dx − λ

∫ T

0

f(x, u(x))v(x)dx

for every u, v ∈ X.

We need the following lemmas to prove our main result.

Lemma 2.5. Assume that (A1) holds. Then, J satisfies the (PS) condition.

Proof. Let {un} be a sequence in X such that limn→∞ J ′(un) = 0 and J(un) is

bounded. From (H3), we see that

(2.1) |Ij(un(xj))un(xj)| ≤ aj |un(xj)| + bj |un(xj)|γj+1.

Then, in view of the fact that

(2.2) ‖u‖∞ = max
t∈[0,T ]

|u(t)| ≤
√

T

2
‖u‖ for u ∈ X,

we have

Ij(un(xj))un(xj) ≤ aj |un(xj)| + bj |un(xj)|γj+1

≤ aj

√
T

2
‖un‖ + bj

(√
T

2

)γj+1

‖un‖γj+1.(2.3)

Again, by (H3), we have

∣

∣

∣

∣

∣

∫ u(xj)

0

Ij(x)dx

∣

∣

∣

∣

∣

≤ aj|u(xj)| +
bj

γj + 1
|u(xj)|γj+1.
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Thus, from (2.2), it follows that
∣

∣

∣

∣

∣

p
∑

j=1

∫ u(xj)

0

Ij(x)dx

∣

∣

∣

∣

∣

≤
p
∑

j=1

∣

∣

∣

∣

∣

∫ u(xj)

0

Ij(x)dx

∣

∣

∣

∣

∣

≤
p
∑

j=1

(

aj |u(xj)| +
bj

γj + 1
|u(xj)|γj+1

)

≤
p
∑

j=1



aj

√
T

2
||u||+ bj

γj + 1

(√
T

2

)γj+1

||u||γj+1



 .(2.4)

From (A1), (2.3), and (2.4), we see that there exists C > 0 such that

sJ(un) − 〈J ′(un), un〉 =
(s

2
− 1
)

‖un‖2 + λ

∫ T

0

[f(x, un(x))un(x) − sF (x, un(x))]dx

+

∫ T

0

[sG(un(x)) + g(un(x))un(x)]dx

+ s

p
∑

j=1

∫ u(xj)

0

Ij(x)dx −
p
∑

j=1

Ij(un(xj))un(xj)

≥
(s

2
− 1
)

‖un‖2 − 1

4
LT 2

(s

2
+ 1
)

‖un‖2

− s

p
∑

j=1



aj

√
T

2
‖un‖ +

bj

γj + 1

(√
T

2

)γj+1

‖un‖γj+1





−
p
∑

j=1



aj

√
T

2
‖un‖ + bj

(√
T

2

)γj+1

‖un‖γj+1



− C

=

[

s

2

(

1 − LT 2

4

)

−
(

1 +
LT 2

4

)]

‖un‖2

− s

p
∑

j=1



aj

√
T

2
‖un‖ +

bj

γj + 1

(√
T

2

)γj+1

‖un‖γj+1





−
p
∑

j=1



aj

√
T

2
‖un‖ + bj

(√
T

2

)γj+1

‖un‖γj+1



− C.

This implies that {un} is bounded in X.

Next, we show that {un} converges strongly to some u in X. Since {un} is

bounded in X, there exists a subsequence of {un} (denoted again by {un}) such that

{un} converges weakly to some u in X. Then, {un} converges uniformly to u on

[0, T ]. Thus,

un(0) → u(0), un(T ) → u(T ),
p
∑

j=1

(Ij(un(xj)) − Ij(u(xj)))(un(xj) − u(xj)) → 0,
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∫ T

0

(g(un(x)) − g(u(x)))(un(x) − u(x))dx → 0,

and
∫ T

0

(f(x, un(x)) − f(x, u(x)))(un(x) − u(x))dx → 0,

as n → ∞. Since limn→+∞ J ′(un) = 0 and {un} converges weakly to u ∈ X, we have

〈J ′(un) − J ′(u), un − u〉 → 0 as n → ∞.

Note that

〈J ′(un) − J ′(u), un − u〉 =

∫ T

0

|u′
n(x) − u′(x)|2dx

+

p
∑

j=1

(Ij(un(xj)) − Ij(u(xj)))(un(xj) − u(xj))

−
∫ T

0

(g(un(x)) − g(u(x)))(un(x) − u(x))dx

−λ

∫ T

0

(f(x, un(x)) − f(x, u(x)))(un(x) − u(x))dx.

Then, we have ||un − u|| → 0 as n → ∞. Thus, {un} converges weakly to u in X,

and so the functional J satisfies the (PS) condition.

The following lemma can be found in [11, Lemma 2.2].

Lemma 2.6. Let T : X → X∗ be the operator defined by

(2.5) T (u)v =

∫ T

0

u′(x)v′(x)dx +

p
∑

j=1

Ij(u(xj))v(xj) −
∫ T

0

g(u(x))v(x)dx

for every u, v ∈ X. Then T admits a continuous inverse on X∗.

We now recall the following classic mountain pass lemma of Ambrosetti and

Rabinowitz (see, for example, [13, Theorem 7.1]). Below, we denote by Br(u) the

open ball centered at u ∈ X with radius r > 0, Br(u) its closure, and ∂Br(u) its

boundary.

Lemma 2.7. Let (X, ‖ · ‖) be a real Banach space and I ∈ C1(X, R). Assume that I

satisfies the (PS) condition and there exist ū, û ∈ X and ρ > 0 such that

(I1) ū 6∈ Bρ(û);

(I2) max{I(ū), I(û)} < infu∈∂Bρ(û) I(u).

Then, I possesses a critical value which can be characterized as

c = inf
γ∈Γ

max
s∈[0,1]

I(γ(s)) ≥ inf
u∈∂Bρ(u0)

I(u),

where

Γ = {γ ∈ C([0, 1], X) : γ(0) = u0, γ(1) = u1} .
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3. MAIN RESULTS

We begin by defining the constants (see [3])

C1 =
1

2
−

p
∑

j=1

bj

γj + 1

(√
T

2

)γj+1

,

C2 =
1

2
+

p
∑

j=1

bj

γj + 1

(√
T

2

)γj+1

,

and

C3 =

√
T

2

p
∑

j=1

aj +

p
∑

j=1

bj

γj + 1

(√
T

2

)γj+1

,

and the functions H1, H2 : [0,∞) → R by

(3.1) H1(t) =

(

C1 −
LT 2

8

)

t2 − C3t and H2(t) =

(

C2 +
LT 2

8

)

t2 + C3t.

For u ∈ X, define the functionals Φ, Ψ : X → R by

(3.2) Φ(u) =
1

2

∫ T

0

(u′(x))2dx +

p
∑

j=1

∫ u(xj)

0

Ij(t)dt +

∫ T

0

G(u(x))dx

and

(3.3) Ψ(u) =

∫ T

0

F (x, u(x))dx.

In the sequel, given a non-negative constant ν1 and four positive constants ν2, τ ,

η, and δ with η, δ < T/2,

4

T

(

C1 −
LT 2

8

)

ν2
1 −

2√
T

C3ν1 6=
η + δ

ηδ

(

C2 +
LT 2

8

)

τ 2 +

√

η + δ

ηδ
C3τ,

and

4

T

(

C2 +
LT 2

8

)

ν2
3 +

2√
T

C3ν3 6=
η + δ

ηδ

(

C2 +
LT 2

8

)

τ 2 +

√

η + δ

ηδ
C3τ,

we let

aτ (ν1) =

∫ T

0
supt∈[−ν1,ν1] F (x, t)dx −

∫ T−δ

η
F (x, τ)dx

4

T

(

C1 − LT 2

8

)

ν2
1 − 2√

T
C3ν1 −

η + δ

ηδ

(

C2 + LT 2

8

)

τ 2 −
√

η+δ
ηδ

C3τ

and

bτ (ν2) =

∫ T

0
supt∈[−ν3,ν3] F (x, t)dx −

∫ T−δ

η
F (x, τ)dx

4

T

(

C2 + LT 2

8

)

ν2
2 + 2√

T
C3ν2 −

η + δ

ηδ

(

C2 + LT 2

8

)

τ 2 −
√

η+δ
ηδ

C3τ

,
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provided ν3 > 0 satisfies

(3.4) H2

(

2√
T

ν3

)

= sup
u∈Φ(−∞,r2]

H2(‖u‖)

and

(3.5) r2 = H2

(

2√
T

ν2

)

=
4

T

(

C2 +
LT 2

8

)

ν2
2 +

2√
T

C3ν2.

Remark 3.1. It is easy to see that if u ∈ Φ(−∞, r2], then ‖u‖ < B < ∞. Thus,

(3.4) is well defined. Moreover, it is easy to check that ν3 ≥ ν2.

We now present our main existence result.

Theorem 3.2. Assume that C1 − LT 2

8
> 0 and there exist five positive constants ν1,

ν2, τ , η, and δ with η, δ < T/2, τ > ν1 >
√

TC3

2
“

C1−LT2

8

” , and
√

η+δ
ηδ

τ < 2√
T
ν2 such that

(A2) F (x, t) ≥ 0 for all (x, t) ∈ ([0, η] ∪ [T − δ, T ]) × [0, τ ];

(A3) bτ (ν2) < aτ (ν1).

Then, for each λ ∈ Λ1 =
(

1
aτ (ν1)

, 1
bτ (ν2)

)

, the problem (IP) has at least one nontrivial

classical solution u1 ∈ X such that

(3.6) r1 <
1

2

∫ T

0

(u′
1(x))2dx +

p
∑

j=1

∫ u1(xj)

0

Ij(t)dt +

∫ T

0

G(u1(x))dx < r2,

where

(3.7) r1 =
4

T

(

C1 −
LT 2

8

)

ν2
1 −

2√
T

C3ν1.

If we further assume that f(t, 0) 6= 0 for all t ∈ [0, T ] and (A1) holds, then for

each λ ∈ Λ1, the problem (IP) has at least two distinct nontrivial classical solutions

u1, u2 ∈ X with u1 satisfying (3.6).

Proof. Let the functionals Φ and Ψ be given in (3.2) and (3.3), respectively. It is

well known that Ψ is a Gâteaux differentiable functional, is sequentially weakly lower

semicontinuous, and its Gâteaux derivative at u ∈ X is the functional Ψ′(u) ∈ X∗

defined by

Ψ′(u)(v) =

∫ T

0

f(x, u(x))v(x)dx for every v ∈ X.

To show that Ψ′ : X → X∗ is a compact operator, let un → u ∈ X weakly in X as

n → ∞. Then, un → u strongly in C([0, T ]). Since f(x, ·) is continuous in R for

every x ∈ [0, T ], we have f(x, un) → f(x, u) strongly as n → ∞. By the Lebesgue

dominated convergence theorem, we see that Ψ′(un) → Ψ′(u) strongly. Thus, Ψ′

is strongly continuous on X, which implies that Ψ′ is a compact operator by [25,

Proposition 26.2].
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We also know that Φ is a Gâteaux differentiable functional whose Gâteaux de-

rivative at u ∈ X is the functional Φ′(u) ∈ X∗ given by

Φ′(u)(v) =

∫ T

0

u′(x)v′(x)dx+

p
∑

j=1

Ij(u(xj))v(xj)−
∫ T

0

g(u(x))v(x)dx for every v ∈ X.

Moreover, Lemma 2.6 implies that Φ′ admits a continuous inverse on X∗. Since Φ′

is monotonic, Φ is sequentially weakly lower semicontinuous (see [25, Proposition

25.20]).

Since ‖u‖γj+1 ≤ ‖u‖2 for every ‖u‖ ≥ 1 and ‖u‖γj+1 ≤ ‖u‖ for every ‖u‖ < 1, we

have that ‖u‖γj+1 ≤ ‖u‖ + ‖u‖2 for all u ∈ X. Condition (H1) implies

(3.8) |g(t)| ≤ L|t| for all t ∈ R,

Hence, from (2.2), (2.4), and (3.8), we see that

(3.9)

(

C1 −
LT 2

8

)

‖u‖2 − C3‖u‖ ≤ Φ(u) ≤
(

C2 +
LT 2

8

)

‖u‖2 + C3‖u‖

and Φ is coercive.

Let

(3.10) w(x) =



















τ
η
x, x ∈ [0, η],

τ, x ∈ [η, T − δ],

τ
δ
(T − x), x ∈ [T − δ, T ].

It is clear that w ∈ X and

(3.11) ‖w‖ =

√

η + δ

ηδ
τ.

Since C1 − LT 2

8
> 0 and C3 > 0, we have H1(t) ≤ 0 for t ∈

[

0, C3

C1−LT2

8

]

, H1(t)

is strictly increasing on

[

C3

2(C1−LT2

8
)
,∞
)

, and H1(t) ≥ 0 on

[

C3

C1−LT2

8

,∞
)

. Now η,

δ ∈ (0, T/2) implies 1
η

+ 1
δ

> 4
T
. Since τ > ν1 >

√
TC3

2
“

C1−LT2

8

” > 0, we have
√

η+δ
ηδ

τ >
√

η+δ
ηδ

ν1 > 2√
T
ν1. Moreover, ν1 >

√
TC3

2
“

C1−LT2

8

” implies 2√
T
ν1 > C3

C1−LT2

8

. Hence, from

(3.11), we see that ‖w‖ > 2√
T
ν1 > C3

C1−LT2

8

, which, together with the fact that H1(t)

is strictly increasing on

[

C3

C1−LT2

8

,∞
)

, implies

H1(‖w‖) > H1

(

2√
T

ν1

)

> H1

(

C3

C1 − LT 2

8

)

= 0.
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Thus, r1 = H1

(

2√
T
ν1

)

, and so

(3.12)

(

C1 −
LT 2

8

)

‖w‖2 − C3‖w‖ > r1 > 0.

With H2 and r2 defined by (3.1) and (3.5), we see that H2(t) is strictly increasing

on

[

− C3

2
“

C1−LT2

8

” ,∞
)

. Since 0 <
√

η+δ
ηδ

τ < 2√
T
ν2, we have H2

(√

η+δ
ηδ

τ
)

< r2 =

H2(
2√
T
ν2), i.e.,

(3.13)

(

C2 +
LT 2

8

)

‖w‖2 + C3‖w‖ < r2.

Hence, from (3.9), (3.12), and (3.13), we obtain

r1 < Φ(w) < r2.

Since H1(t) is strictly increasing on the interval

[

C3

C1−LT2

8

,∞
)

, 2√
T
ν1 > C3

C1−LT2

8

, and

r1 = H1

(

2√
T
ν1

)

, we see that

(3.14)

[

C3

C1 − LT 2

8

,
2√
T

ν1

]

⊆ {t ∈ [0,∞) : H1(t) ≤ r1}

and

(3.15)

(

2√
T

ν1, ∞
)

∩ {t ∈ [0,∞) : H1(t) ≤ r1} = ∅.

Recalling that H1(t) ≤ 0 for t ∈
[

0, C3

C1−LT2

8

]

, we have

(3.16)

[

0,
C3

C1 − LT 2

8

]

⊆ {t ∈ [0,∞) : H1(t) ≤ r1}.

From (3.14)–(3.16), we have

(3.17) {t ∈ [0,∞) : H1(t) ≤ r1} =

[

0,
2√
T

ν1

]

.

For any u ∈ Φ−1(−∞, r1], from (3.9), we observe that

H1(‖u‖) ≤ Φ(u) ≤ r1.

Hence, using (3.17), we have ‖u‖ ≤ 2ν1√
T
. Then, in view of (2.2), we see that

Φ−1(−∞, r1] ⊆ {u ∈ X : ||u||∞ ≤ ν1} .

Thus,

sup
u∈Φ−1(−∞,r1]

Ψ(u) = sup
u∈Φ−1(−∞,r1]

∫ T

0

F (x, u(x))dx

≤
∫ T

0

sup
t∈[−ν1,ν1]

F (x, t)dx.
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Since 0 ≤ w(x) ≤ τ for each x ∈ [0, T ], condition (A2) implies

(3.18)

∫ η

0

F (x, u1(x))dx +

∫ T

T−δ

F (x, u1(x))dx ≥ 0.

Therefore,

ρ(r1, r2) ≥
Ψ(w) − supu∈Φ−1(−∞,r1] Ψ(u)

Φ(w) − r1

≥
Ψ(w) −

∫ T

0
supt∈[−ν1,ν1] F (x, t)dx

Φ(w) − r1

≥
∫ T−δ

η
F (x, τ)dx −

∫ T

0
supt∈[−ν1,ν1] F (x, t)dx

η + δ

ηδ
(C2 + LT 2

8
)τ 2 +

√

η+δ
ηδ

C3τ − 4

T
(C1 − LT 2

8
)ν2

1 + 2√
T
C3ν1

= aτ (ν1).

On the other hand, if we let r3 = supu∈Φ(−∞,r2] H2(‖u‖), then, for any u ∈
Φ(−∞, r2], H2(‖u‖) ≤ r3. This, together with (3.4) and the fact that H2 is increasing

on [0,∞), implies that ‖u‖ ≤ 2ν3√
T
. Thus, from (2.2), it follows that

Φ−1(−∞, r2] ⊆ {u ∈ X : ‖u‖∞ ≤ ν3} .

Then,

sup
u∈Φ−1(−∞,r2]

Ψ(u) = sup
u∈Φ−1(−∞,r2]

∫ T

0

F (x, u(x))dx

≤
∫ T

0

sup
t∈[−ν3,ν3]

F (x, t)dx.

Thus,

ϑ(r1, r2) ≤
supu∈Φ−1(−∞,r2) Ψ(u) − Ψ(u1)

r2 − Φ(u1)

≤
∫ T

0
supt∈[−ν3,ν3] F (x, t)dx − Ψ(u1)

r2 − Φ(u1)

≤
∫ T

0
supt∈[−ν3,ν3] F (x, t)dx −

∫ T−δ

η
F (x, τ)dx

4

T
(C1 − LT 2

8
)ν2

2 + 2√
T
C3ν2 −

η + δ

ηδ
(C2 + LT 2

8
)τ 2 −

√

η+δ
ηδ

C3τ

= bτ (ν2).

Hence, from (A3), we have ϑ(r1, r2) ≤ bτ (ν2) < aτ (ν1) ≤ ρ(r1, r2). Therefore, applying

Lemma 2.1, we obtain that for each λ ∈ Λ1, the functional J = Φ − λΨ has at least

one critical point u1 ∈ X that is a local minimum of J such that r1 < Φ(u1) < r2.

That is, (3.6) holds.

Now, we establish the existence of a second local minimum of J distinct from

u1. Without loss of generality, we may assume that u1 is a strict local minimum for
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the functional J in X. Then, there exists ρ > 0 such that inf‖u−u1‖=ρ J(u) > J(u1).

Choose ũ ∈ X \ {0}. From (A1), there exist a, b > 0 such that

J(tũ) =
1

2

∫ T

0

(tũ′(x))2dx +

p
∑

j=1

∫ tũ(xj)

0

Ij(t)dt +

∫ T

0

G(tũ(x))dx − λ

∫ T

0

F (x, tũ(x))dx

≤ t2

2

∫ T

0

(ũ′(x))2dx +

p
∑

j=1

∫ tũ(xj)

0

Ij(t)dt +
Lt2

2

∫ T

0

|ũ(x)|2dx

− λtsa

∫ T

0

|ũ(x)|sdx + Tb → −∞ as t → ∞.

Thus, there exists t̃ large enough so that J(t̃ũ) < inf‖u−u1‖=ρ J(u). Hence, in view of

Lemma 2.5, all the conditions of Lemma 2.7 are satisfied with û = u1 and ū = t̃ũ, so

there is a critical point u2 of J such that J(u2) > J(u1). Clearly, the condition that

f(t, 0) 6= 0 for all t ∈ [0, T ] implies that u2 is nontrivial. Finally, taking into account

Remark 2.3 and the fact that the weak solutions of the problem (IP) are exactly the

critical points of the functional J , completes the proof of the theorem.

Remark 3.3. From the proof of Theorem 3.2 (see (3.9)), we have

H1(‖u‖) ≤ Φ(u) ≤ H2(u) for u ∈ X.

We now apply Theorem 3.2 to the case where the function f in (IP) is separable.

Let α ∈ L1([0, T ]) be such that α(x) ≥ 0 a.e. x ∈ [0, T ], α 6≡ 0, and let h : R → R be

a continuous function such that h(t) ≥ 0 on [0,∞] and h(0) 6= 0. Set

H(t) =

∫ t

0

h(ξ)dξ for all t ∈ R.

Corollary 3.4. Assume that C1 − LT 2

8
> 0 and there exist five positive constants ν1,

ν2, τ , η, and δ with η, δ < T/2, τ > ν1 >
√

TC3

2
“

C1−LT2

8

” , and
√

η+δ
ηδ

τ < 2√
T
ν2 such that:

(A4) bτ (ν2) < aτ (ν1), where

aτ (ν1) =
‖α‖L1([0,T ])H(ν1) − ‖α‖L1([η,T−δ])H(τ)

4

T

(

C1 − LT 2

8

)

ν2
1 − 2√

T
C3ν1 −

η + δ

ηδ

(

C2 + LT 2

8

)

τ 2 −
√

η+δ
ηδ

C3τ

,

bτ (ν2) =
‖α‖L1([0,T ])H(ν3) − ‖α‖L1([η,T−δ])H(τ)

4

T

(

C2 + LT 2

8

)

ν2
2 + 2√

T
C3ν2 −

η + δ

ηδ

(

C2 + LT 2

8

)

τ 2 −
√

η+δ
ηδ

C3τ

,

and ν3 satisfies (3.4).

Then, for each λ ∈ Λ3 =
(

1
aτ (ν1)

, 1
bτ (ν2)

)

, the problem

(3.19)



















−u′′(x) = λα(x)h(u(x)) + g(u(x)), a.e. x ∈ [0, T ],

∆u′(xj) = Ij(u(xj)), j = 1, 2, . . . , p,

u(0) = u(T ) = 0,
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has at least one nontrivial classical solution u1 ∈ X satisfying (3.6).

If we further assume that

(A5) there exist s > 2(4+LT 2)
4−LT 2 and R > 0 such that

0 < sH(t) ≤ th(t) for all |t| ≥ R,

then, for each λ ∈ Λ3, the problem (3.19) has at least two distinct nontrivial classical

solutions u1, u2 ∈ X with u1 satisfying (3.6).

We conclude this paper with two examples to illustrate our results.

Example 3.5. Consider the problem

(3.20)



















−u′′(x) = λ
(

3
2
u1/2 + 1

)

+ 1
8
u, a.e. x ∈ [0, 4],

u(0) = u(4) = 0,

∆u′(x1) = 1, 0 < x1 < 4.

We claim that there exists λ∗ > 0 such that, for each λ > λ∗, the problem (3.20)

has at least one nontrivial classical solution.

In fact, with T = 4, p = 1, α(x) = 1, h(u) = 3
2
u1/2 +1, g(u) = 1

8
u, and I1(u) = 1,

we see that problem (3.20) is of the form of the problem (3.19) and the covering

assumptions (H1)–(H3) are satisfied. In particular, in (H1), we can take L = 1
8
, and

in (H3), we can choose a1 = 1 and b1 = γ1 = 0. From the definition of C1, C2, and

C3, we have C1 = C2 = 1
2

and C3 = 1. Clearly, C1 − LT 2

8
= 1

4
> 0.

Choose η = δ = 1 and ν1 >
√

TC3

2
“

C1−LT2

8

” = 4. Note that

aτ (ν1) =
4
(

ν
3/2
1 + ν1

)

− 2
(

τ 3/2 + τ
)

1
4
ν2

1 − ν1 − 3
2
τ 2 −

√
2τ

.

Then, there exists τ > ν1 large enough so that aτ (ν1) > 0.

For large ν2 > 0, let r2 be defined by (3.5). Then, for u ∈ Φ−1(−∞, r2], by (3.1)

and Remark 3.3, we have

H1(‖u‖) =
1

4
‖u‖2 − ‖u‖ ≤ φ(u) ≤ r2.

Thus,

(3.21) ‖u‖ ≤ 2
(

1 +
√

1 + r2

)

.

Again, by (3.1) and Remark 3.3, we see that

(3.22) H2(‖u‖) − φ(u) ≤ H2(‖u‖) − H1(‖u‖) =
1

4
‖u‖2 + 2‖u‖.
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In the remainder of this example, let Di, i = 1, . . . , 6, denote some appropriate

constants. For u ∈ Φ−1(−∞, r2], from (3.21) and (3.22), it follows that

H2(‖u‖) ≤ r2 +
1

4

(

2
(

1 +
√

1 + r2

))2
+ 4

(

1 +
√

1 + r2

)

≤ D1r2 + D2.

Then, in view of (3.4) and (3.5), we have

H2(ν3) = H2

(

2ν3√
T

)

≤ D1r2 + D2 = D1

(

3

4
ν2

2 + ν2

)

+ D2 ≤ D3ν
2
2 + D4,

i.e.,
3

4
ν2

3 + ν3 ≤ D3ν
2
2 + D4.

This, together with Remark 3.1, implies that

(3.23) ν2 ≤ ν3 ≤ D5ν2 + D6.

Hence,

4
(

ν
3/2
2 + ν2

)

− 2
(

τ 3/2 + τ
)

3
4
ν2

2 + ν2 − 3
2
τ 2 −

√
2τ

≤ bτ (ν2) =
4
(

ν
3/2
3 + ν3

)

− 2
(

τ 3/2 + τ
)

3
4
ν2

2 + ν2 − 3
2
τ 2 −

√
2τ

≤ 4
(

(D5ν2 + D6)
3/2 + (D5ν2 + D6)

)

− 2
(

τ 3/2 + τ
)

3
4
ν2

2 + ν2 − 3
2
τ 2 −

√
2τ

.

Thus bτ (ν2) ≥ 0 for ν2 large enough and bτ (ν2) → 0 as ν2 → ∞.

Note that 1
bτ (ν2)

→ ∞ as ν2 → ∞. Then, the claim follows from the first part of

Corollary 3.4.

Remark 3.6. In Example 3.5, since aτ (ν1) > 0 and bτ (ν2) → 0 as ν2 → ∞, then we

can fix a ν2 large enough so that
√

η+δ
ηδ

τ < 2√
T
ν2 and 0 ≤ bτ (ν2) < aτ (ν1).

Example 3.7. Let ν2 be fixed as in Remark 3.6. Then, 0 ≤ bτ (ν2) < aτ (ν1). Choose

ζ > 0 large enough so that ζ > D5ν2 + D6, where D5 and D6 are the constants given

in Example 3.5. Let h : R → R be continuous satisfying

h(t) =







3
2
t1/2 + 1, |t| ≤ ζ

3t8, |t| > 2ζ.

Consider the problem

(3.24)



















−u′′(x) = λh(u) + 1
8
u, a.e. x ∈ [0, 4],

u(0) = u(4) = 0,

∆u′(x1) = 1, 0 < x1 < 4.
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We claim that there exists λ > λ > 0 such that, for each λ ∈ (λ, λ), the problem

(3.24) has at least two nontrivial classical solutions.

In fact, since h(t) = 3
2
t1/2 + 1 for |t| ≤ ζ , from the reasoning in Example 3.5 and

the choice of ζ , we see that all the assumptions of the first part of Corollary 3.4 are

satisfied. Moreover, since h(t) = 3t8 for |t| > 2ζ , condition (A5) also holds. Thus,

the claim follows from the second part of Corollary 3.4.
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