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ABSTRACT. In this paper, a strong maximum principle for the fractional diffusion differential

equation is established. The differential equation being studied is defined in the sense of Riemann-

Liouville fractional derivative, which is used to formulate the heat diffusion in material with subd-

iffusive properties.
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1. INTRODUCTION

Let α and T be positive real numbers with 0 < α < 1, and N be a natural

number. Let x = (x1, x2, . . . , xN), Ω be a bounded open domain in RN , and ∂Ω

be the smooth boundary of Ω. Let ai > 0 for i = 1, . . . , N , c(x, t) be a continuous

function on Ω̄ × [0, T ], and

Lαu = ut −

N
∑

i=1

ai
∂2

∂x2
i

(

D1−α
t u

)

− c(x, t)u,

where D1−α
t u is the Riemann-Liouville fractional derivative defined as:

D1−α
t u(x, t) =

1

Γ(α)

d

dt

∫ t

0

(t− s)−1+αu(x, s)ds.

We consider the following fractional diffusion equation

(1.1) Lαu = F (x, t) in Ω × (0, T ],

subject to the initial and boundary conditions

(1.2)







u(x, 0) = φ(x) on Ω̄,

u(x, t) = ψ(t) on ∂Ω × (0, T ],

where F , φ, and ψ are continuous functions.
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It follows from a direct computation that for a positive integer k, if g is a non-

constant function with g ∈ Ck, then the Riemann-Liouville fractional derivatives of

order k ≥ 1 coincide with the conventional derivatives of order k (cf. Podlubny [7,

p. 69]), that is Dk
t g(t) = dk/dtkg(t).

Problems involving partial differential equations of fractional orders have been

used for modeling in engineering, science, economics and other fields (cf. Chechkin,

Gorenflo and Sokolov [1], Gorenflo and Mainmardi [3], and Podlubny [7]). In particu-

lar, problems of thermal diffusion with subdiffusive and superdiffusive properties are

formulated in terms of fractional diffusion equations (cf. Kirk and Olmstead [4], and

Olmstead and Roberts [6]). To investigate this type of problems, techniques (such as

fixed point theorems, and the method of lower and upper solutions) analogous to the

classical diffusion equation are used.

Recently, Chan and Liu [2] obtained a weak maximum principle for fractional dif-

fusion equations. In this paper, we establish a strong form of the maximum principle

for the fractional diffusion equations, which is comparable to the maximum principle

for the classical diffusion equation.

2. MAXIMUM PRINCIPLES

At the local extreme value of a function, Luchko [5] showed that the Riemann-

Liouville derivative may not be zero. We give an estimation of the derivative at the

local extrema as follow. The technique obtaining these results is similar to the proof

of Theorem 2.4 of Al-Refai [8].

Theorem 2.1. Let g(t) ∈ C[0, T ]. Assume that g′(t) exists and is continuous for

t ∈ (0, T ], and g(t) attains its minimum value over [0, T ] at the point t0 ∈ (0, T ].

Then for 0 < α < 1,

D1−α
t g(t0) ≤

tα−1
0

Γ(α)
g(t0).

Remark 2.2. By applying the above argument to −g(t), we obtain the result that

if g(t) attains its maximum at t0 ∈ (0, T ], then

D1−α
t g(t0) ≥

tα−1
0

Γ(α)
g(t0).
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The following result on positivity of the solution u is an extended result of The-

orem 2.3 of Chan and Liu [2].

Lemma 2.3. If u satisfies (1.1), u(x, 0) > 0 for x ∈ Ω̄, u > 0 on ∂Ω × (0, T ], and

F > 0 and c ≥ 0 for (x, t) ∈ Ω × (0, T ], then u > 0 on Ω̄ × [0, T ].

Proof. We multiply (τ − t)−α and integrate with respect to t from 0 to τ on both

sides of (1.1). By using F > 0, we obtain

(2.1)

∫ τ

0

(τ − t)−αut(x, t)dt −

∫ τ

0

(τ − t)−α
N
∑

i=1

ai
∂2

∂x2
i

(

D1−α
t u(x, t)

)

dt

−

∫ τ

0

(τ − t)−αc(x, t)u(x, t)dt > 0.

Let us rewrite
∫ τ

0

(τ − t)−αut(x, t)dt =
1

1 − α

d

dτ

∫ τ

0

(τ − t)1−αut(x, t)dt.

Upon integration by parts the term on the right-hand side, we get
∫ τ

0

(τ − t)−αut(x, t)dt = −τ−αu(x, 0) +
d

dτ

∫ τ

0

(τ − t)−αu(x, t)dt

= −τ−αu(x, 0) + Γ(1 − α)Dα
τ u.

For the second term on the left-hand side of the inequality (2.1), we interchange the

order of differentiation and integration, and get

∫ τ

0

(τ − t)−α
N
∑

i=1

ai
∂2

∂x2
i

(

D1−α
t u(x, t)

)

dt =

N
∑

i=1

ai
∂2

∂x2
i

∫ τ

0

(τ − t)−α
(

D1−α
t u(x, t)

)

dt

=

N
∑

i=1

ai
∂2

∂x2
i

u(x, τ).

From (2.1), u satisfies

(2.2) Γ(1 − α)Dα
τ u−

N
∑

i=1

ai
∂2

∂x2
i

u(x, τ) > τ−αu(x, 0) +

∫ τ

0

(τ − t)−αc(x, t)u(x, t)dt.

Suppose that u ≤ 0 somewhere on Ω̄ × [0, T ]. Let t0 = sup{s > 0 : u(x, t) > 0

for (x, t) ∈ Ω̄ × [0, s) }. Since u > 0 on ∂Ω × [0, T ] ∪ Ω̄ × {0}, we have t0 > 0,

and there is x0 in Ω such that u(x0, t0) = 0 and u(x, t) > 0 in Ω̄ × [0, t0). Hence

u attains its minimum value at (x0, t0) on Ω̄ × [0, t0]. It follows from Lemma 2.1

of Chan and Liu [2] that Dα
τ u(x0, t0) ≤ t−α

0 u(x0, t0)/Γ(1 − α) = 0. Since u attains

its minimum at (x0, t0) on Ω̄ × [0, t0], we get
∑N

i=1 ai∂
2/∂x2

iu(x0, t0) ≥ 0. Hence
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Γ(1−α)Dα
τ u(x0, t0)−

∑N
i=1 ai∂

2/∂x2
i u(x0, t0) ≤ 0. On the other hand, since u(x0, t) >

0 for t ∈ [0, t0), we have

∫ t0

0

(t0 − t)−αc(x0, t)u(x0, t)dt ≥ 0.

Therefore, it follows from (2.2) that

0 ≥ Γ(1 − α)Dα
τ u(x0, t0) −

N
∑

i=1

ai
∂2

∂x2
i

u(x0, t0)

> t−α
0 u(x0, 0) +

∫ t0

0

(t0 − t)−αc(x0, t)u(x0, t)dt > 0.

This contradiction shows that u > 0 on Ω̄ × [0, T ]. �

A more general case for non-strict inequality is given as follows.

Theorem 2.4. If u satisfies (1.1), u(x, 0) ≥ 0 for x ∈ Ω̄, u ≥ 0 on ∂Ω × (0, T ], and

F ≥ 0 and c ≥ 0 in Ω × (0, T ], then u(x, t) ≥ 0 on Ω̄ × [0, T ].

Proof. Let R be a positive real number and B = (−R,R) × (−R,R) · · · × (−R,R)

be a N -dimensional box with Ω̄ ( B. Let v(x, t) =
∑N

i=1 [(R2 − x2
i )E1−α,1(λt

1−α)],

where |xi| < R for i = 1, 2, . . . , N , Eµ,ν(z) is the Mittag-Leffler function which is a

bounded, positive, and nondecreasing function in z, and λ is a positive number to be

determined. Since E1−α,1(z) > 0 for any z ≥ 0, we have v > 0 in B × [0, T ]. Since

Ω̄ ( B, we obtain v > 0 on Ω̄× [0, T ]. The t derivative of Mittag-Leffler function can

be obtained by a direct computation,

d

dt

(

E1−α,1(λt
1−α)

)

=
(

E1−α,0(λt
1−α) − (1 − 1)E1−α,1(λt

1−α)
)

·
λ(1 − α)t−α

λt1−α

= (1 − α)t−1E1−α,0(λt
1−α).

Furthermore its fractional derivative is given as

D1−α
t

(

E1−α,1(λt
1−α)

)

(t) = t1−(1−α)−1E1−α,α(λt1−α) = t−1+αE1−α,α(λt1−α).

By using the identity t−1+αE1−α,α(λt1−α) = t−1+α/Γ(α) + λE1−α,1(λt
1−α), we get

vt =
N
∑

i=1

[

(R2 − x2
i )(1 − α)t−1E1−α,0(λt

1−α)
]

and

D1−α
t v =

N
∑

i=1

[

(R2 − x2
i )

(

t−1+α

Γ(α)
+ λE1−α,1(λt

1−α)

)]

.
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Hence v satisfies

Lαv =
N
∑

i=1

[

(R2 − x2
i )(1 − α)t−1E1−α,0(λt

1−α)
]

+ 2N
t−1+α

Γ(α)

N
∑

i=1

ai

+

{

2Nλ

N
∑

i=1

ai − c(x, t)

[

N
∑

i=1

(R2 − x2
i )

]}

E1−α,1(λt
1−α).

By taking λ > max(x,t)∈Ω̄×[0,T ] c(x, t)R
2/2
∑N

i=1 ai, we have

{

2Nλ

N
∑

i=1

ai − c(x, t)

[

N
∑

i=1

(R2 − x2
i )

]}

E1−α,1(λt
1−α) > 0.

Thus Lαv > 0 in Ω × (0, T ].

Now let w = u + ǫv for any ǫ > 0 on Ω̄ × [0, T ]. Then Lαw = Lαu + ǫLαv > 0

in Ω × (0, T ], w(x, 0) = u(x, 0) + ǫv(x, 0) > 0 for x ∈ Ω̄, and w = u + ǫv > 0 on

∂Ω× [0, T ]. It follows from Lemma 2.3 that w > 0 on Ω̄× [0, T ]. This gives u > −ǫv

for any ǫ > 0. Therefore u ≥ 0 on Ω̄ × [0, T ]. �

A similar result can be obtained for the negativity of the solution u(x, t) by

considering −u(x, t) for F ≤ 0, c ≥ 0, and u(x, t) ≤ 0 initially and on the boundary

∂Ω.

Theorem 2.5. If u satisfies (1.1), u(x, 0) ≤ 0 for x ∈ Ω̄, u ≤ 0 on ∂Ω × (0, T ], and

F ≤ 0 and c ≥ 0 in Ω × (0, T ], then u(x, t) ≤ 0 on Ω̄ × [0, T ].

Remark 2.6. Suppose that u satisfies Lαu > 0 in Ω × (0, T ] and other conditions

in Theorem 2.4 hold, then u(x, t) ≥ 0 on Ω̄ × [0, T ]. If u(x0, t0) = 0 for some

(x0, t0) ∈ Ω × (0, T ], then u(x0, t0) is a minimum of u(x, t) on Ω̄ × [0, T ]. It follows

from a similar argument as in the proof of Lemma 2.3 that Lαu 6> 0, which leads to

a contradiction. Hence u > 0 in Ω × (0, T ].

Similar to Theorem 2.4 of Chan and Liu [2], we can show that u attains its

minimum value on the parabolic boundary of Ω × (0, T ].

Theorem 2.7. Suppose u satisfies (1.1), u(x, 0) = φ(x) ≥ 0 on Ω̄, u(x, t) = ψ(t) ≥ 0

on ∂Ω×(0, T ]. If F ≥ 0 and c ≥ 0 in Ω×(0, T ], then u ≥ min{minΩ̄ φ(x),min[0,T ] ψ(t)}

on Ω̄ × [0, T ].
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Proof. Let m = min{minΩ̄ φ(x),min[0,T ] ψ(t)}, and ū = u − m. Then, ū(x, 0) =

φ(x) −m ≥ 0 for x ∈ Ω̄, ū = ψ(t) −m ≥ 0 on ∂Ω × [0, T ]. Since

∂

∂t
ū =

∂

∂t
u,

N
∑

i=1

ai
∂2

∂x2
i

D1−α
t ū =

N
∑

i=1

ai
∂2

∂x2
i

D1−α
t u,

and m ≥ 0, ū satisfies

(2.3) Lαū ≥ cm ≥ 0.

It follows from Theorem 2.4 that ū ≥ 0 on Ω̄ × [0, T ]. That is,

u ≥ min{min
Ω̄
φ(x),min

[0,T ]
ψ(t)} on Ω̄ × [0, T ].

�

We note that in the proof of Theorem 2.7, (2.3) with c ≡ 0 gives Lαū ≥ 0 for any

m. The following result holds.

Theorem 2.8. Suppose u satisfies (1.1) with c ≡ 0, u(x, 0) = φ(x) on Ω̄, u(x, t) =

ψ(t) on ∂Ω × (0, T ]. If F ≥ 0, then u ≥ min{minΩ̄ φ(x),min[0,T ] ψ(t)} on Ω̄ × [0, T ].

Similar to Theorems 2.7 and 2.8, we have the following results.

Theorem 2.9. Suppose u satisfies (1.1), u(x, 0) = φ(x) ≤ 0 on Ω̄, u(x, t) = ψ(t) ≤ 0

on ∂Ω×(0, T ]. If F ≤ 0 and c ≥ 0 in Ω×(0, T ], then u ≤ max{maxΩ̄ φ(x),max[0,T ] ψ(t)}

on Ω̄ × [0, T ].

Theorem 2.10. Suppose u satisfies (1.1) with c ≡ 0, u(x, 0) = φ(x) on Ω̄, u(x, t) =

ψ(t) on ∂Ω× (0, T ]. If F ≤ 0, then u ≤ max{maxΩ̄ φ(x),max[0,T ] ψ(t)} on Ω̄× [0, T ].

Suppose that the conditions in Theorem 2.4 hold. Then u ≥ 0 on Ω̄ × [0, T ].

For u 6≡ 0, assume that there is t1 > 0 such that u ≡ 0 on Ω̄ × [0, t1), and u > 0

somewhere on Ω̄ × {t1}. Then we have D1−α
t u = 0 for t in (0, t1) and x ∈ Ω̄. Hence,

for t1 ≤ t ≤ T ,

D1−α
t u =

1

Γ(α)

d

dt

∫ t

0

(t− s)−1+αu(x, s)ds =
1

Γ(α)

d

dt

∫ t

t1

(t− s)−1+αu(x, s)ds.

Let us denote

t1D
1−α
t u =

1

Γ(α)

d

dt

∫ t

t1

(t− s)−1+αu(x, s)ds.
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Then u satisfies

ut −
N
∑

i=1

ai
∂2

∂x2
i

(

t1D
1−α
t u

)

− cu ≥ 0

in Ω × (t1, T ) with u(x, t1) ≥ 0 for x ∈ Ω̄ and u(x, t) ≥ 0 on ∂Ω × [t1, T ]. By using

the change of variables τ = t− t1, we get

uτ −
N
∑

i=1

ai
∂2

∂x2
i

(

D1−α
τ u

)

− cu ≥ 0

in Ω×(0, T−t1) with u(x, 0) ≥ 0 for x ∈ Ω̄, u(x̃, 0) > 0 for some x̃ ∈ Ω and u(x, t) ≥ 0

on ∂Ω× [0, T − t1]. Thus, without loss of generality, we can assume that t1 = 0, that

is, there is x ∈ Ω̄ such that u(x, t) > 0 for t > 0 if u 6≡ 0.

The following theorem gives a strong form of the maximum principle similar to

the classical cases.

Theorem 2.11. Suppose u satisfies (1.1), u(x, 0) ≥ 0 on Ω̄, u(x, t) ≥ 0 on ∂Ω×(0, T ]

with F ≥ 0 and c ≥ 0 in Ω × (0, T ]. If u(x, t) = 0 for some (x, t) ∈ Ω × (0, T ), then

u ≡ 0 on Ω̄ × [0, T ].

Proof. Since u satisfies the conditions of Theorem 2.4, we have u ≥ 0 on Ω̄ × [0, T ].

Firstly, we assume that there is x̃ = (x̃1, x̃2, . . . , x̃i, . . . , x̃N ) ∈ Ω such that u(x̃, t) > 0

for 0 < t ≤ t̃, and we claim that u(Xi, t) > 0 for any Xi = (x̃1, x̃2, . . . , x̃i−1,

xi, x̃i+1, . . . , x̃N) on line segment along the i-th component direction in Ω passing

through the point x̃, and 0 < t ≤ t̃. Suppose the claim is false. Let Yi = (x̃1, x̃2, . . . , x̃i−1,

yi, x̃i+1, . . . , x̃N) ∈ Ω and 0 < t̂ ≤ t̃ such that u(Yi, t̂) = 0. Then u attains its min-

imum value zero at (Yi, t̂) in Ω̄ × [0, t̃]. Without loss of generality, we assume that

yi < x̃i. We take δ > 0 such that Xi = (x̃1, . . . , x̃i−1, xi, x̃i+1, . . . , x̃N) ∈ Ω for

any yi − δ ≤ xi ≤ x̃i. We now consider the one-dimensional spatial case as Di =

(yi − δ, x̃i) × (0, t̂], and ∂Di = ([yi − δ, x̃i] × {0}) ∪
(

{yi − δ, x̃i} × [0, t̂]
)

. Then u ≥ 0

on ∂Di. Let v(xi, t) = E1,3(λt) ·
(

eβyi − t2

t̂2
eβxi

)

where λ, β are positive numbers to

be determined. Then v(xi, 0) = eβyi > 0, v(yi − δ, t) = E1,3(λt)e
βyi

(

1 − t2

t̂2
e−βδ

)

> 0,

v(x̃i, t) = E1,3(λt)
(

eβyi − t2

t̂2
eβx̃i

)

for 0 < t ≤ t̂, and v(yi, t̂) = 0. By a direct compu-

tation, we get

vt(xi, t) =

(

E1,2(λt) − 2E1,3(λt)

t

)

·

(

eβyi −
t2

t̂2
eβxi

)

− E1,3(λt)
2t

t̂2
eβxi ,
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and
(

D1−α
t v(xi, t)

)

xixi
= −

β2eβxi

t̂2

(

t1+αE1,2+α(λt)
)

.

Then,

Lαv(xi, t) =

(

E1,2(λt) − 2E1,3(λt)

t

)

·

(

eβyi −
t2

t̂2
eβxi

)

− E1,3(λt)
2t

t̂2
eβxi

+
aiβ

2eβxi

t̂2

(

t1+αE1,2+α(λt)
)

− c(Xi, t)E1,3(λt) ·

(

eβyi −
t2

t̂2
eβxi

)

.

This gives

(2.4)

Lαv(xi, t) ≥

(

E1,2(λt) − 2E1,3(λt)

t

)

eβyi − c(Xi, t)E1,3(λt)e
βyi

−

(

E1,2(λt) − 2E1,3(λt)

t

)

t2

t̂2
eβxi −E1,3(λt)

2t

t̂2
eβxi

+
β2eβxi

t̂2

(

t1+αE1,2+α(λt)
)

.

It follows from the series representation form of Mittag-Leffler function Eµ,ν that

E1,2(λt) − 2E1,3(λt)

t
=

∞
∑

n=1

nλntn−1

(n+ 1)Γ(n+ 2)
.

The first two terms on the right-hand side of (2.4) can be estimated as follows:

(

E1,2(λt) − 2E1,3(λt)

t

)

eβyi − c(Xi, t)E1,3(λt)e
βyi

=

(

∞
∑

n=1

nλntn−1

(n+ 1)Γ(n+ 2)
− c(Xi, t)

∞
∑

n=0

λntn

Γ(n + 3)

)

eβyi

≥

(

∞
∑

n=1

nλntn−1

(n + 1)Γ(n+ 2)
− max c(Xi, t)

∞
∑

n=1

λn−1tn−1

Γ(n + 2)

)

eβyi

=

(

∞
∑

n=1

λn−1tn−1

Γ(n+ 2)

(

λ
n

n+ 1
− max c(Xi, t)

)

)

eβyi.

By taking λ > 2 maxyi−δ≤xi≤x̃i,0≤t≤t̂ c(Xi, t), we have
(

E1,2(λt) − 2E1,3(λt)

t

)

eβyi − c(Xi, t)E1,3(λt)e
βyi > 0 on D̄i.

Since the last three terms on the right-hand side of (2.4) approach zero as t tends to

zero, there is t̄ > 0 such that Lαv(xi, t) > 0 for xi ∈ (yi − δ, x̃i), and t ∈ (0, t̄). If

t̄ ≥ t̂, then the proof is complete. Otherwise, if t̂ > t̄, we choose β > 0 sufficiently

large such that

eβxi

(

aiβ
2

t̂2

(

t̄1+αE1,2+α(λt̄)
)

−

(

E1,2(λt̂) − 2E1,3(λt̄)

t̄

)

t̂2

t̂2
− E1,3(λt̂)

2t̂

t̂2

)

> 0.
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This gives that Lαv(xi, t) > 0 for xi ∈ (yi − δ, x̃i) and t ∈ [t̄, t̂). Since Lαv(xi, t) > 0

for xi ∈ (yi − δ, x̃i) and t ∈ (0, t̄), we get Lαv(xi, t) > 0 in Di. Next we let ṽ(Xi, t) =

v(xi, t) for Xi = (x̃1, . . . , x̃i−1, xi, x̃i+1, . . . , x̃N). Then ṽ(Yi, t̂) = 0, and Lαṽ(Xi, t) > 0

for xi ∈ (yi − δ, x̃i) and t ∈ (0, t̂). At Xi = x̃, we get ṽ(x̃, t) > 0 for t < t̂eβ(yi−x̃i)/2.

For t ∈ [t̂eβ(yi−x̃i)/2, t̂], since u(x̃, t) > 0 for t > 0, let m = mint̂eβ(yi−x̃i)/2≤t≤t̂ u(x̃, t), we

have m > 0. Let us pick ǫ > 0 such that m+ ǫE1,3(λt̂)e
βyi
(

1 − eβ(yi−x̃i)
)

> 0. Then

u(x̃, t) + ǫṽ(x̃, t) > 0 for t ∈ [t̂eβ(yi−x̃i)/2, t̂]. Let w(Xi, t) = u(Xi, t) + ǫṽ(Xi, t). Then

w(Xi, t) > 0 for (xi, t) ∈ ∂Di. Also Lαw(Xi, t) = Lα (u(Xi, t) + ǫṽ(Xi, t)) > 0. An

argument similar to the proof of Theorem 2.4 shows that w(Xi, t) > 0 for (xi, t) ∈ D̄i.

But w(Yi, t̂) = u(Yi, t̂) + ǫṽ(Yi, t̂) = 0; this leads to a contradiction. This shows that

u(Xi, t) > 0 for any Xi on line segment parallel to the spatial axis in Ω passing

through the point x̃, and 0 < t ≤ t̃. Then for any (x, t) ∈ Ω × (0, T ], the point x

is joined to x̃ with line segment parallel to the spatial axis. Then u(x, t) > 0 for

0 < t ≤ t̃. This proves our claim.

Next, we assume that there is (x1, t1) ∈ Ω × (0, T ) such that u(x1, t1) = 0 and

u > 0 somewhere in Ω × (0, T ). Using the above argument, we can assume that

u(x, t1) = 0 for x ∈ Ω and u(x, t) > 0 in Ω × (0, t1). For F ≥ 0 and c ≥ 0, u(x, t)

satisfies

(2.5) ut −
N
∑

i=1

ai
∂2

∂x2
i

(

D1−α
t u

)

≥ 0 in Ω × (0, t1).

For any 0 < η < t1, we recall the operator

ηD
α
t u(x, t) =

1

Γ(1 − α)

d

dt

∫ t

η

(t− s)−αu(x, s)ds.

Then, a similar argument as in the proof of Lemma 2.3 on (2.2) shows that (2.5)

becomes

Γ(1 − α)ηD
α
t u−

N
∑

i=1

ai
∂2

∂x2
i

u ≥ (t− η)−αu(x, η) > 0 in Ω × (η, t1).

Hence from Remark 2.6, we have u(x, t) > 0 in Ω× (η, t1], which leads to a contradic-

tion. In other word, if u = 0 somewhere in Ω× (0, T ], then u(x, t) cannot be positive

anywhere inside. Therefore u ≡ 0 in Ω × (0, T ]. Since u is continuous, we obtain

u ≡ 0 on Ω̄ × [0, T ]. �

It follows from a modification of Theorem 2.11, a general result holds.
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Theorem 2.12. Suppose u(x, t) satisfies (1.1), u(x, 0) ≥ 0 on Ω̄, u(x, t) ≥ 0 on

∂Ω × (0, T ]. If F (x, t) ≥ 0 and c(x, t) ≥ 0 for (x, t) ∈ Ω × (0, T ], and there is

(x0, t0) ∈ Ω × (0, T ] such that u(x0, t0) = m = minΩ̄×[0,T ] u(x, t), then u(x, t) ≡ m for

(x, t) ∈ Ω̄ × [0, T ].

Proof. Let w(x, t) = u(x, t) − m. Then w(x, t) satisfies the conditions in Theorem

2.11 and w(x0, t0) = 0. Therefore w(x, t) ≡ 0 on Ω̄× [0, T ], and hence u(x, t) ≡ m. �

Similar to Theorem 2.8 for the case c ≡ 0, if u attains its minimum value in

Ω × (0, T ), then u is a constant.

Theorem 2.13. Suppose u(x, t) satisfies (1.1) with c ≡ 0. If F (x, t) ≥ 0 and there

is (x0, t0) ∈ Ω × (0, T ] such that u(x0, t0) = m = minΩ̄×[0,T ] u(x, t), then u(x, t) ≡ m

for (x, t) ∈ Ω̄ × [0, T ].

The following results about the maximum values of the solution u can be proved

similarly.

Theorem 2.14. Suppose u(x, t) satisfies (1.1), u(x, 0) ≤ 0 on Ω̄, u(x, t) ≤ 0 on

∂Ω × (0, T ]. If F (x, t) ≤ 0 and c(x, t) ≥ 0 for (x, t) ∈ Ω × (0, T ], and there is

(x0, t0) ∈ Ω × (0, T ] such that u(x0, t0) = M = maxΩ̄×[0,T ] u(x, t), then u(x, t) ≡ M

for (x, t) ∈ Ω̄ × [0, T ].

Theorem 2.15. Suppose u(x, t) satisfies (1.1) with c ≡ 0. If F (x, t) ≤ 0 and there

is (x0, t0) ∈ Ω× (0, T ] such that u(x0, t0) = M = maxΩ̄×[0,T ] u(x, t), then u(x, t) ≡M

for (x, t) ∈ Ω̄ × [0, T ].
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