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ABSTRACT. In this paper we study the Wasserstein distance between the distributions of the

n-point motions of one-dimensional Harris flows whose covariance functions have compact support.

We prove that it can be estimated by the diameters of the support of the covariance functions

provided the latter are sufficiently small.

AMS (MOS) Subject Classification. 60G57, 60G60, 60K35.

1. INTRODUCTION

In this paper we study the Wasserstein distance between the distributions of

the n-point motions of one-dimensional Harris flows whose covariance functions have

compact support. For convenience let us recall the definition of a Harris flow.

Definition 1.1. A random field {x(u, t), u ∈ R, t > 0} is called a Brownian stochastic

flow if it satisfies the following conditions:

1) for any u ∈ R the stochastic process {x(u, t), t > 0} is a Brownian motion with

respect to the common filtration (Ft := σ{x(v, s), v ∈ R, 0 6 s 6 t})t>0 such

that x(u, 0) = u;

2) for any u, v ∈ R, if u 6 v, then x(u, t) 6 x(v, t) for all t > 0.

Definition 1.2. A Brownian stochastic flow {x(u, t), u ∈ R, t > 0} is called a Harris

flow with covariance function Γ if for any u, v ∈ R the joint quadratic variation of the

martingales {x(u, t), t > 0} and {x(v, t), t > 0} is given by

〈x(u, ·), x(v, ·)〉t =

∫
0tΓ(x(u, s) − x(v, s)) ds, t > 0.

Note that the function Γ is necessarily non-negatively definite, symmetric, and

Γ(0) = 1.
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The historically first example of a Brownian stochastic flow was constructed by

R. A. Arratia in [1] as a weak limit of families of coalescing simple random walks.

For the Arratia flow {x0(u, t), u ∈ R, t > 0} one has

∀u, v ∈ R : 〈x0(u, ·), x0(v, ·)〉t =

∫ t

0

1I{0}(x0(u, s) − x0(v, s)) ds, t > 0,

where 1I{0} stands for the indicator function of the set {0}, and so,

Γ = 1I{0}.

Informally one can describe the Arratia flow as a flow of Brownian particles in which

any two particles move independently until they meet and after that coalesce and

move together.

Later, in [5] T. E. Harris proved the existence of a generalisation (in some sense)

of the Arratia flow for covariance functions Γ which are continuous on R and satisfy

the Lipschitz condition on all sets of the form R\(−δ; δ), δ > 0.

In the case when Γ is smooth enough the corresponding Harris flow can be ob-

tained as the flow of solutions of a stochastic differential equation. To be more precise,

let us take a function ϕ ∈ C2
0 (R) (i. e. ϕ belongs to C2(R) and has compact support)

such that ∫

R

ϕ2(q) dq = 1,

and for u ∈ R consider the following Cauchy problem:




dx(u, t) =

∫
R

ϕ(x(u, t) − q) W (dq, dt), t > 0,

x(u, 0) = u,

where W is a Wiener sheet on R × [0; +∞) (on integration with respect to a Wiener

sheet see [3], [8], [11]). The conditions on the function ϕ imply that for every u ∈ R

this Cauchy problem has a unique (strong) solution {x(u, t), t > 0}. It is easy to

check that the random field {x(u, t), u ∈ R, t > 0} is a Harris flow with covariance

function Γ given by

Γ(z) =

∫

R

ϕ(z − q)ϕ(−q) dq ≡
∫

R

ϕ(z + q)ϕ(q) dq, z ∈ R.

Indeed, from the properties of the integral with respect to a Wiener sheet it follows

that for any u, v ∈ R the joint quadratic variation of the continuous square-integrable

martingales {x(u, t), t > 0} and {x(v, t), t > 0} is given by

〈x(u, ·), x(v, ·)〉t =

∫ t

0

Γ(x(u, s) − x(v, s)) ds, t > 0.
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In particular, for any u ∈ R we have

〈x(u, ·)〉t = t, t > 0,

and hence, by Lévy’s characterising theorem [7, Theorem 3.3.16], the stochastic pro-

cess {x(u, t), t > 0} is a Brownian motion. Finally, it remains to note that the

condition ϕ ∈ C2
0(R) implies that the random mappings

x(·, t) : R → R, t > 0,

are diffeomorphisms (see [9]), and so, if u 6 v, then x(u, t) 6 x(v, t) for all t > 0.

Let us note that

Γ(z) = 0, |z| >
1

2
d(Γ),

where

d(Γ) := diam (supp Γ),

and hence

〈x(u, ·), x(v, ·)〉t∧τ =

∫ t∧τ

0

Γ(x(u, s) − x(v, s)) ds = 0, t > 0,

where

τ := inf{t > 0 | |x(u, t) − x(v, t)| 6
1

2
d(Γ)}.

So, informally one can say that any two particles of this Harris flow move indepen-

dently until the distance between them does not reach 1
2
d(Γ). Thus, when d(Γ) is

close to zero its n-point motions are similar to those of the Arratia flow. Moreover,

it was proved in [2] that when d(ϕ) := diam (supp ϕ) (or, equivalently, d(Γ)) tends

to zero they converge weakly to the n-point motions of the Arratia flow. Our aim in

this paper is to estimate the rate of this convergence.

To formulate our main result we need some notations. They will be used through-

out the rest of the paper.

For a complete separable metric space (X, d) let P(X) denote the set of all Borel

probability measures on X and define

M1(X) := {µ ∈ P(X) |
∫

X

d(u, u0) µ(du) < +∞},

where u0 is a fixed point in X. It can be easily checked that the set M1(X) does

not depend on the choice of this point. On M1(X) we will consider the standard

Wasserstein metric W1 defined by

W1(µ
′, µ′′) := inf

κ∈C(µ′,µ′′)

∫∫

X2

d(u, v) κ(du, dv), µ′, µ′′ ∈ M1(X),
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where C(µ′, µ′′) is the set of all Borel probability measures on X2 ≡ X × X with

marginals µ′ and µ′′. It is well known that (M1(X), W1) is also a complete separable

metric space (see, for instance, [10, Theorem 6.18]).

For a Brownian stochastic flow {x(u, t), u ∈ R, t > 0} and a measure µ ∈ P(R)

set

λ := µ ◦ x−1(·, 1),

where x−1(·, 1) stands for the (‘omegawise’, i. e. for every fixed ω ∈ Ω) inverse of

the mapping x(·, 1) : R → R. It can be easily shown that if µ ∈ M1(R), then λ is a

random element in M1(R). So, we can consider its distribution Λ in this space. Note

that Λ is an element of M1(M1(R)). With some abuse of notation we will use W1 to

denote the Wasserstein distance in both spaces M1(R) and M1(M1(R)).

To avoid defining the corresponding measures each time we need them, we will

use the following rule: if not stated otherwise, measures λ with an upper and/or lower

index will always be defined as above with µ having the same upper index and/or x

having the same lower index, and measures Λ with these indices will always denote

their distributions in the space M1(R).

The main result of this paper is the following theorem.

Theorem 1.3. Let {x(u, t), u ∈ R, t > 0} be a Harris flow with covariance function Γ,

which has compact support, and {x0(u, t), u ∈ R, t > 0} be the Arratia flow. Assume

that

supp µ ⊂ [0; 1]

and

d(Γ) <
1

100
.

Then

W1(Λ, Λ0) 6 C · d(Γ)1/22,

where the constant C > 0 does not depend on µ and Γ.

Using the triangle’s inequality one obtains the following corollary.

Corollary 1.4. Let {x1(u, t), u ∈ R, t > 0} and {x2(u, t), u ∈ R, t > 0} be two Harris

flows with covariance functions Γ1 and Γ2 respectively, which have compact support.

Assume that

supp µ ⊂ [0; 1]
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and

max{d(Γ1), d(Γ2)} <
1

100
.

Then

W1(Λ1, Λ2) 6 2C · max{d(Γ1), d(Γ2)}1/22,

where C > 0 is the constant from Theorem 1.3.

To prove Theorem 1.3 we approximate the initial measure µ by discrete measures

µn and divide the proof into three steps. In the first step we estimate the Wasserstein

distance between Λ and Λn for an arbitrary Brownian stochastic flow. In the second

step we use some recursive procedure to construct a suitable coupling of λn and λn
0

allowing to estimate the Wasserstein distance between their distributions Λn and Λn
0 .

In the third step we combine these results and, optimising with respect to n, arrive

at the desired assertion.

2. PROOF OF THE MAIN RESULT: FIRST STEP

Let measure µ ∈ P(R) be such that supp µ ⊂ [0; 1]. Then, obviously, µ belongs

to M1(R) and it can be approximated by a sequence {µn}∞n=1 ⊂ M1(R) of discrete

measures defined by

µn :=
n∑

k=1

pn
kδ 2k−1

2n
, n > 1,

where

pn
k := µ (In

k ) , 1 6 k 6 n, n > 1,

with

In
k :=

[
k − 1

n
;
k

n

)
, 1 6 k 6 n − 1, n > 2,

In
n :=

[
n − 1

n
; 1

]
, n > 1.

Theorem 2.1. Let {x(u, t), u ∈ R, t > 0} be an arbitrary Brownian stochastic flow.

Then

W1(Λ, Λn) 6
K√
n

,

where K =
√

64
3
√

2π
+ 1

4
.

For the proof of this theorem we use the following lemma proved in [4] (there it

was formulated for the case when t = 1, but the proof, mutatis mutandis, is valid for

all t > 0).
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Lemma 2.2 ([4, Lemma 5]). Let {x(u, t), u ∈ R, t > 0} be an arbitrary Brownian

stochastic flow. Then

E(x(u, t) − x(v, t))2
6 Ct · |u − v| + |u − v|2, u, v ∈ R, t > 0,

where Ct = 128t3/2

3
√

2π
.

Proof of Theorem 2.1. By the definition of the Wasserstein distance W1 we have

W1(Λ, Λn) = inf
κ∈C(Λ,Λn)

∫∫

M2

1
(R)

W1(µ
′, µ′′) κ(dµ′, dµ′′) 6 EW1(λ, λn),

where for convenience we set

M2
1(R) := M1(R) ×M1(R).

However,

EW1(λ, λn) = E inf
κ∈C(λ,λn)

∫∫

R2

|u − v|κ(du, dv) 6

6 E

n∑

k=1

∫

In
k

∣∣∣∣x(u, 1) − x

(
2k − 1

2n
, 1

)∣∣∣∣ µ(du) 6

6

n∑

k=1

∫

In
k

√

E

∣∣∣∣x(u, 1) − x

(
2k − 1

2n
, 1

)∣∣∣∣
2

µ(du).

Thus, using Lemma 2.2 we obtain that

EW1(λ, λn) 6

n∑

k=1

∫

In
k

√

C1 ·
∣∣∣∣u − 2k − 1

2n

∣∣∣∣+
∣∣∣∣u − 2k − 1

2n

∣∣∣∣
2

µ(du) 6

6

n∑

k=1

pn
k ·
√

C1 ·
1

2n
+

1

4n2
6

K√
n

,

where K :=
√

C1

2
+ 1

4
. The theorem is proved.

3. PROOF OF THE MAIN RESULT: SECOND STEP

Let {x(u, t), u ∈ R, t > 0} be a Harris flow with covariance function Γ, which has

compact support. Fix some ε > 0 such that ε >
1
2
d(Γ) and arbitrary initial points

u1 < u2 < · · · < un, n > 2, such that the distance between any two of them is strictly

greater than ε.

Set

(z1(u1, t), . . . , z1(un, t)) := (x(u1, t), . . . , x(un, t)), t > 0,

and associate with this stochastic process a family {Π1(t), t > 0} of random partitions

of the set {1, 2, . . . , n} defined by the following condition: indices i and i + 1 belong
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to the same element of the partition Π1(t) if and only if |z1(ui, t) − z1(ui+1, t)| 6 ε.

Obviously, Π1(0) = {{1}, {2}, . . . , {n}}. Also, let σ1 be the first time t > 0 when the

partition Π1(t) changes.

Now for all k ∈ {1, . . . , n} set

z2(uk, t) :=





z1(uk, t), 0 6 t < σ1,

z1(uj, t) + (k − j) · ε, t > σ1,

where j is the least index in the element of Π1(σ1) to which k belongs (if σ1 is

infinite, the lower expression is just omitted). Similarly, with the stochastic process

{(z2(u1, t), . . . , z2(un, t)), t > 0} we associate the corresponding family {Π2(t), t > 0}
of random partitions of the set {1, 2, . . . , n} and the random time σ2 which is equal

to the first time t > σ1 when the partition Π2(t) changes (if σ1 is infinite, σ2 is also

set to be infinite).

Continuing in this way we can construct at most n distinct n-dimensional sto-

chastic processes.

To study the stochastic processes {(zi(u1, t), . . . , zi(un, t)), t > 0}, 1 6 i 6 n, we

need to describe their construction more formally.

Fix ε > 0 such that ε >
1
2
d(Γ) and let u1, u2, . . . , un ∈ R, n > 2, be such that

u1 < u2 < · · · < un,

uk+1 − uk > ε, 1 6 k 6 n − 1.

We define recursively

z1(uk, t) := x(uk, t), t > 0, 1 6 k 6 n,

zi+1(uk, t) := zi(uk, t ∧ σi) +
k∑

j=1

(zi(uj, t) − zi(uj, t ∧ σi)) · 1IAi
kj

, t > 0,

1 6 k 6 n, 1 6 i 6 n − 1.

Here

Ai
k1 := {σi < +∞} ∩ {zi(uk, σi) − zi(uk−1, σi) = ε, . . . , zi(u3, σi) − zi(u2, σi) = ε,

zi(u2, σi) − zi(u1, σi) = ε}, 2 6 k 6 n, 1 6 i 6 n − 1,

Ai
kj := {σi < +∞} ∩ {zi(uk, σi) − zi(uk−1, σi) = ε, . . . , zi(uj+1, σi) − zi(uj, σi) = ε,

zi(uj, σi) − zi(uj−1, σi) > ε}, 2 6 j 6 k − 1, 3 6 k 6 n, 1 6 i 6 n − 1,
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Ai
11 := Ω, Ai

kk :=

k−1⋃

j=1

Ai
kj , 2 6 k 6 n, 1 6 i 6 n − 1,

and for i ∈ {1, . . . , n − 1} the random time σi is set to be equal to

inf{t > σi−1 | ♯{ l ∈ {1, . . . , n − 1} | zi(ul+1, t) − zi(ul, t) 6 ε} >

> ♯{ l ∈ {1, . . . , n − 1} | zi(ul+1, σi−1) − zi(ul, σi−1) 6 ε} + 1},

where the sign ♯ denotes the number of elements of the corresponding set, if σi−1 is

finite and to +∞ otherwise, with σ0 := 0.

Note that

x(u1, t) = z1(u1, t) = z2(u1, t) = · · · = zn(u1, t), t > 0.

We will also use the following simple generalisation of [6, Lemma 6.2]. (Recall

that random variables ξ and η are said to be equal almost surely on a (measurable)

set A ⊂ Ω if P({ξ 6= η} ∩ A) = 0.)

Lemma 3.1. Let ξ ∈ L1(Ω,F ,P) and let σ-fields G1,G2 ⊂ F be such that

A ∩ G1 ⊂ A ∩ G2

for some A ∈ G1 ∩ G2. Then

E[ξ|G1] = E[E[ξ|G2]|G1] a. s. on A.

The proof is similar to that of [6, Lemma 6.2], and therefore it is omitted.

Lemma 3.2. For any i ∈ {1, . . . , n} the stochastic processes {zi(uk, t), t > 0}, 1 6

k 6 n, are Wiener processes with respect to the initial filtration (Ft)t>0.

Proof. We will use the principle of mathematical induction with respect to i.

For i = 1 the assertion is obvious, since

z1(uk, t) = x(uk, t), t > 0, 1 6 k 6 n.

Now suppose that the assertion holds true for any i′ ∈ {1, . . . , i}. We need to

show that then it holds true for i′ = i + 1. To do this, let us fix k ∈ {2, . . . , n} and

show that the stochastic process {zi+1(uk, t), t > 0} satisfies the conditions of Lévy’s

characterising theorem.

Firstly, from its definition it can be easily seen that it has a. s. continuous tra-

jectories and that

E |zi+1(uk, t)|2 < +∞, t > 0.
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Secondly, the progressive measurability of the Wiener processes {zi(uj, t), t > 0},
1 6 j 6 n, implies that the sets Ai

kj, 1 6 j 6 n, belong to the σ-field Fσi
(see [6,

Lemma 7.5]). So, from the representation

zi+1(uk, t) = zi(uk, t ∧ σi) +
k∑

j=1

(zi(uj, t) − zi(uj, t ∧ σi)) · 1IAi
kj

=

= zi(uk, t ∧ σi) +

k∑

j=1

(zi(uj, t) − zi(uj, t ∧ σi)) · 1IAi
kj
· 1I{σi 6 t}, t > 0,

we conclude that the stochastic process {zi+1(uk, t), t > 0} is (Ft)t>0-adapted.

Thirdly, to prove that it is a martingale with respect to the filtration (Ft)t>0 we

note that for any t > s > 0

E [zi+1(uk, t) | Fs] = E [zi+1(uk, t) · 1I{σi 6 s} | Fs] + E [zi+1(uk, t) · 1I{σi > s} | Fs] .

On the one hand,

E [zi+1(uk, t) · 1I{σi 6 s} | Fs] = E [zi(uk, t ∧ σi) · 1I{σi 6 s} | Fs] +

+

k∑

j=1

E
[
(zi(uj, t) − zi(uj, t ∧ σi)) · 1IAi

kj
· 1I{σi 6 s} | Fs

]
=

= E [zi(uk, t ∧ σi) |,Fs] · 1I{σi 6 s}+

+
k∑

j=1

E [(zi(uj, t) − zi(uj, t ∧ σi)) | Fs] · 1IAi
kj
· 1I{σi 6 s} =

= zi(uk, s ∧ σi) · 1I{σi 6 s} +

k∑

j=1

(zi(uj, s) − zi(uj, s ∧ σi)) · 1IAi
kj
· 1I{σi 6 s} =

= zi+1(uk, s) · 1I{σi 6 s}.

On the other hand,

E [zi+1(uk, t) | Fσi
] =

= E [zi(uk, t ∧ σi) | Fσi
] +

k∑

j=1

E
[
(zi(uj, t) − zi(uj, t ∧ σi)) · 1IAi

kj
| Fσi

]
=

= E [zi(uk, t ∧ σi) | Fσi
] +

k∑

j=1

E [(zi(uj, t) − zi(uj, t ∧ σi)) | Fσi
] · 1IAi

kj
=

= zi(uk, t ∧ σi),
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and so, using Lemma 3.1 in the second equality below, we obtain that

E [zi+1(uk, t) · 1I{σi > s} | Fs] = E [zi+1(uk, t) | Fs] · 1I{σi > s} =

= E [E [zi+1(uk, t) | Fσi
] | Fs] · 1I{σi > s} = E [zi(uk, t ∧ σi) | Fs] · 1I{σi > s} =

= zi(uk, s ∧ σi) · 1I{σi > s} = zi(uk, s) · 1I{σi > s} = zi+1(uk, s) · 1I{σi > s}.

Thus,

E [zi+1(uk, t) | Fs] = zi+1(uk, s).

Finally, it remains to show that

〈zi+1(uk, ·)〉t = t, t > 0.

However, from the equalities

zi+1(uk, t) = zi(uk, t ∧ σi) +
k∑

j=1

(zi(uj, t) − zi(uj, t ∧ σi)) · 1IAi
kj

=

= zi(uk, t ∧ σi) +
k∑

j=1

zi(uj, t) · 1IAi
kj
−

k∑

j=1

zi(uj, t ∧ σi) · 1IAi
kj

it follows that

〈zi+1(uk, ·)〉t = 〈zi(uk, ·)〉t∧σi
+

k∑

j1,j2=1

〈zi(uj1, ·), zi(uj2, ·)〉t · 1IAi
kj1

· 1IAi
kj2

+

+
k∑

j1,j2=1

〈zi(uj1, ·), zi(uj2, ·)〉t∧σi
· 1IAi

kj1
· 1IAi

kj2
+ 2

k∑

j=1

〈zi(uk, ·), zi(uj, ·)〉t∧σi
· 1IAi

kj
−

−2

k∑

j=1

〈zi(uk, ·), zi(uj, ·)〉t∧σi
· 1IAi

kj
− 2

k∑

j1,j2=1

〈zi(uj1, ·), zi(uj2, ·)〉t∧σi
· 1IAi

kj1
· 1IAi

kj2
=

= t ∧ σi +

k∑

j=1

(t − t ∧ σi) · 1IAi
kj

= t.

Thus, all conditions of Lévy’s theorem are satisfied. The lemma is proved.

Lemma 3.3. For any n > 2 we have

n∑

k=1

E sup
06t61

|z1(uk, t) − z2(uk, t)| 6
2n3

3
·
√

ε,

n∑

k=1

E sup
06t61

|zi(uk, t) − zi+1(uk, t)| 6
2n4

3
·
√

ε, 2 6 i 6 n − 1.
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Proof. Let us set

σ̃i := σi ∧ 1, 1 6 i 6 n − 1.

To prove the first estimate let us fix k ∈ {2, 3, . . . , n} and note that

E sup
06t61

|z1(uk, t) − z2(uk, t)| = E sup
eσ16t61

|z1(uk, t) − z2(uk, t)| =

= E sup
eσ16t61

k∑

j=1

(
|x(uk, t) − [x(uj, t) + [x(uk, σ̃1) − x(uj , σ̃1)]]| · 1IA1

kj

)
=

=

k∑

j=1

E

(
sup

eσ16t61

|x(uk, t) − [x(uj, t) + [x(uk, σ̃1) − x(uj , σ̃1)]]| · 1IA1

kj

)
6

6

k∑

j=1

E

(
sup

06t61
|[x(uk, t + σ̃1) − x(uk, σ̃1)] − [x(uj, t + σ̃1) − x(uj, σ̃1)]| · 1IA1

kj

)
.

Let us estimate a separate term. To do this, fix an arbitrary j ∈ {1, . . . , k − 1} (the

kth term is obviously equal to zero) and set

β1(t) := x(uk, t + σ̃1) − x(uk, σ̃1), t > 0,

β2(t) := x(uj, t + σ̃1) − x(uj, σ̃1), t > 0.

Due to the strong Markov property of the Brownian motion, the stochastic processes

{β1(t), t > 0} and {β2(t), t > 0} are Wiener processes. By [6, Theorem 18.4] there

exists (maybe on an extended probability space) a Wiener process {β(t), t > 0} such

that the representation

β1(t) − β2(t) = β(〈β1 − β2〉t), t > 0, a. s.,

takes place. Furthermore,

〈β1 − β2〉0 = 0,

〈β1 − β2〉· ∈ C([0; +∞)),

and on the set A1
kj for all t > 0 we have

β1(t) − β2(t) =

= [x(uk, t + σ̃1) − x(uk, σ̃1)] − [x(uj , t + σ̃1) − x(uj , σ̃1)] =

= [x(uk, t + σ̃1) − x(uj, t + σ̃1)] − (k − j) · ε > −(k − j) · ε.

It is easy to check that this implies that

〈β1 − β2〉t 6 τβ(ckj), t > 0, a. s. on A1
kj,



388 A. A. DOROGOVTSEV AND V. V. FOMICHOV

where

τβ(c) := inf{s > 0 | β(s) = c}, c ∈ R,

and

ckj := −(k − j) · ε < 0.

Hence

β1(t) − β2(t) = β(〈β1 − β2〉t ∧ τβ(ckj)), t > 0, a. s. on A1
kj.

In addition,

0 6 〈β1 − β2〉t = 2t − 2 〈β1, β2〉t 6 4t, t > 0.

Therefore,

E

(
sup

06t61
|[x(uk, t + σ̃1) − x(uk, σ̃1)] − [x(uj , t + σ̃1) − x(uj , σ̃1)]| · 1IA1

kj

)
=

= E

(
sup

06t61
|β1(t) − β2(t)| · 1IA1

kj

)
= E

(
sup

06t61
|β(〈β1 − β2〉t ∧ τβ(ckj))| · 1IA1

kj

)
6

6 E

(
sup

06t64
|β(t ∧ τβ(ckj))| · 1IA1

kj

)
6 E sup

06t64
|β(t ∧ τβ(ckj))| .

Applying Doob’s inequality to the martingale {β(t ∧ τβ(ckj)), 0 6 t 6 4} and the

second Wald identity, we obtain that

E sup
06t64

|β(t ∧ τβ(ckj))| 6

√
E sup

06t64
|β(t ∧ τβ(ckj))|2 6 2

√
E |β(4 ∧ τβ(ckj))|2 =

= 2
√

E (4 ∧ τβ(ckj)) 6 2

√
4
√

2√
π

· |ckj| 6 4(k − j) ·
√

ε

(the last but one inequality follows from a simple estimate of the density of the

distribution of τβ(ckj); for details see the proof of [4, Lemma 5], where a similar case

was considered).

Thus, we conclude that

n∑

k=1

E sup
06t61

|z1(uk, t) − z2(uk, t)| 6

n∑

k=1

k∑

j=1

4(k− j) ·
√

ε =
2n(n2 − 1)

3
·
√

ε 6
2n3

3
·
√

ε.

To prove the second estimate let us fix i ∈ {2, . . . , n− 1} and k ∈ {2, . . . , n} and

set

Bi
jl := Ai

kj ∩ Ai−1
kl , 1 6 j 6 l 6 k.
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Then we note that

E sup
06t61

|zi(uk, t) − zi+1(uk, t)| = E sup
eσi6t61

|zi(uk, t) − zi+1(uk, t)| =

= E sup
eσi6t61

k∑

l=1

l∑

j=1

(
|[zi(ul, t) − zi(uj, t)] − [zi(ul, σ̃i) − zi(uj, σ̃i)]| · 1IBi

jl

)
=

=

k∑

l=1

l∑

j=1

E

(
sup

eσi6t61

|[zi(ul, t) − zi(ul, σ̃i)] − [zi(uj, t) − zi(uj, σ̃i)]| · 1IBi
jl

)
6

6

k∑

l=1

l∑

j=1

E

(
sup

06t61
|[zi(ul, t + σ̃i) − zi(ul, σ̃i)] − [zi(uj, t + σ̃i) − zi(uj, σ̃i)]| · 1IBi

jl

)
.

Further we proceed just as in the previous case, noting that for 1 6 l 6 k and

1 6 j 6 l on the set Bi
jl we have

zi(ul, t) − zi(uj, t) = x(ul, t) − x(uj, t) > 0, t > 0.

Thus, we conclude that

n∑

k=1

E sup
06t61

|zi(uk, t) − zi+1(uk, t)| 6

n∑

k=1

k∑

l=1

l∑

j=1

4(l − j) ·
√

ε =

=
n∑

k=1

2k(k2 − 1)

3
·
√

ε 6

n∑

k=1

2k3

3
·
√

ε 6
2n4

3
·
√

ε.

The lemma is proved.

Theorem 3.4. If n > 2 is such that

1

2
d(Γ) <

1

n
,

then

W1(Λ
n, Λn

0) 6

√
2n5

3
·
√

d(Γ).

Proof. Clearly, we may assume that d(Γ) > 0. If we set

uk :=
2k − 1

2n
, 1 6 k 6 n,

then

uk+1 − uk =
1

n
> ε, 1 6 k 6 n − 1,

where

ε :=
1

2
d(Γ) > 0 = d(1I{0}).

Let us note that the stochastic processes {(zn(u1, t), . . . , zn(un, t)), t > 0} and

{(z0,n(u1, t), . . . , z0,n(un, t)), t > 0} constructed according to the procedure described
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above (with the just defined ε) for the Harris flow {x(u, t), u ∈ R, t > 0} and the Ar-

ratia flow {x0(u, t), u ∈ R, t > 0} respectively have the same distribution. Therefore,

the distributions Λ̃n and Λ̃n
0 of the random measures

λ̃n :=

n∑

k=1

pn
kδzn(uk ,1)

and

λ̃n
0 :=

n∑

k=1

pn
kδz0,n(uk,1)

coincide. So, by the triangle’s inequality

W1(Λ
n, Λn

0) 6 W1(Λ
n, Λ̃n) + W1(Λ̃

n, Λ̃n
0) + W1(Λ̃

n
0 , Λ

n
0 ) = W1(Λ

n, Λ̃n) + W1(Λ̃
n
0 , Λ

n
0).

However, using Lemma 3.3 we obtain that

W1(Λ
n, Λ̃n) = inf

κ∈C(Λn,eΛn)

∫∫

M2

1
(R)

W1(µ
′, µ′′) κ(dµ′, dµ′′) 6 EW1(λ

n, λ̃n) =

= E inf
κ∈C(λn,eλn)

∫∫

R2

|u − v|κ(du, dv) 6 E

n∑

k=1

pn
k |x(uk, 1) − zn(uk, 1)| 6

6

n∑

k=1

E sup
06t61

|z1(uk, t) − zn(uk, t)| 6

n∑

k=1

n−1∑

i=1

E sup
06t61

|zi(uk, t) − zi+1(uk, t)| =

=

n−1∑

i=1

n∑

k=1

E sup
06t61

|zi(uk, t) − zi+1(uk, t)| 6
2n5

3
·
√

ε

and, similarly,

W1(Λ̃
n
0 , Λ

n
0 ) 6

2n5

3
·
√

ε.

This implies the desired result.

4. PROOF OF THE MAIN RESULT: THIRD STEP

Proof of Theorem 1.3. Let n > 2 be such that

1

2
d(Γ) <

1

n
.

By the triangle’s inequality we have

W1(Λ, Λ0) 6 W1(Λ, Λn) + W1(Λ
n, Λn

0) + W1(Λ
n
0 , Λ0).

On the one hand, by Theorem 2.1,

W1(Λ, Λn) 6
K√
n

,

W1(Λ
n
0 , Λ0) = W1(Λ0, Λ

n
0) 6

K√
n

.
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On the other hand, by Theorem 3.4,

W1(Λ
n, Λn

0) 6

√
2n5

3
·
√

d(Γ).

Thus, we obtain

W1(Λ, Λ0) 6 2K ·
(

1√
n

+ n5 ·
√

d(Γ)

)
,

since

2K >

√
2

3
.

The function

h(y) =
1√
y

+ y5 ·
√

d(Γ), y > 1,

attains its minimum at the point

y0 =
1

(10
√

d(Γ))2/11
.

Therefore, we set

n0 :=

([
1

(10
√

d(Γ))2/11

]
+ 1

)
∈ N

and note that the assumption d(Γ) < 1
100

implies that n0 > 2 and 1
2
d(Γ) < 1

n0

. So,

W1(Λ, Λ0) 6 2K ·
(

1√
n0

+ n5
0 ·
√

d(Γ)

)
6

6 2K ·



√

(10
√

d(Γ))2/11 +

(
2 · 1

(10
√

d(Γ))2/11

)5

·
√

d(Γ)


 =

= 2K ·
(

101/11 · d(Γ)1/22 +

(
512

25

)5/11

· d(Γ)1/22

)
= C · d(Γ)1/22,

where C := 2K ·
(
101/11 + (512/25)5/11

)
> 0. The theorem is proved.
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