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ABSTRACT. We develop a piecewise quadratic projection algorithm for the approximation of

an absolutely continuous invariant measure associated with a given chaotic mapping S : [0, 1] →
[0, 1]. The idea is to approximate the corresponding Frobenius-Perron operator PS : L1(0, 1) →
L1(0, 1) via the projection principle on the subspace of continuous piecewise quadratic functions.

The convergence of the method for the Lasota-Yorke class of mappings is proved, and numerical

results are also presented.
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1. Introduction

The statistical study of chaotic mappings has been shown to be an effective way

of investigating complicated deterministic dynamics. Natural measures, in particular

absolutely continuous invariant measures, give the quantitative description of the

statistical property of the individual orbits of the underlying mappings, but in almost

all practical applications of ergodic theory, analytic expressions of such measures are

not available or difficult to determine. This makes it a desirable task to develop

efficient numerical scheme for the computation of invariant measures [1, 2, 3, 9].

It is Ulam who proposed in 1960 [13] the first numerical method for the com-

putation of the stationary density of the Frobenius-Perron operator associated with

the mapping. Stationary densities are density functions which are fixed points of the

Frobenius-Perron operator and they are nothing but the density functions of abso-

lutely continuous invariant measures of the underlying mapping. Since the pioneering

work [12] of Li on the convergence of Ulam’s method for the Lasota-Yorke class of

piecewise C2 and stretching mappings, there have been many works on the numerical
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study of the statistical properties of chaotic systems in mathematical and physical

sciences.

Ulam’s method belongs to two categories of numerical methods for bounded linear

operators defined on an L1 space. One is the so-called Markov finite approximations,

that is, the discrete Frobenius-Perron operator shares the same Markov property of

the Frobenius-Perron operator, and the other is the Gelerkin projection principle.

In the first kind of approach, both positivity and integral are preserved via the ap-

proximation, while the second approach is based on the principle that the residual is

“orthogonal” to the finite dimensional subspace from the partition of the domain.

So far, piecewise quadratic functions have been used in both the Markov finite

approximations and the projection approximations of Frobenius-Perron operators.

However, one can see from the numerical results of [5] that the piecewise quadratic

Markov method does not increase the convergence order over the piecewise linear

Markov method. The reason is that the piecewise quadratic function is only contin-

uous, but not differentiable on the whole domain, which has the same smoothness

feature as the piecewise linear one. Thus the structure-preserving approach to approx-

imating Frobenius-Perron operators via the continuous piecewise quadratic functions

may not gain much over that via continuous piecewise linear functions. On the other

hand, the piecewise quadratic projection method developed in [6] with numerical re-

sults in [4] employed only discontinuous piecewise quadratic functions, so it may not

achieve the maximal possible convergence rate for smooth stationary density func-

tions. A Gelerkin projection method using continuous piecewise linear functions has

been developed in [8], which gives a better convergence rate than the piecewise linear

Markov approximation method in [5] from the numerical comparisons.

In this paper we propose a new piecewise quadratic method for the computation

of absolutely continuous invariant measures, using the Gelerkin projection principle

applied to subspaces spanned by continuous piecewise quadratic functions, unlike

the discontinuous piecewise quadratic polynomials mentioned above. It is expected

that because of the increase of continuity of the approximating functions, a better

convergence result would be achieved when the stationary density has some regularity.

The paper is organized as follows. In the next section we review basic concepts

related to Frobenius-Perron operators. In Section 3 we introduce the continuous piece-

wise quadratic functions and propose our new algorithm. The convergence theorem

will be given in Section 4, following the consistency and stability analysis. Numerical

results will be presented in Section 5, and we conclude in Section 6.

2. Preliminaries

In order to perform the statistical investigation of chaotic mappings S on the in-

terval [0, 1], one is interested in absolutely continuous invariant probability measures.
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The density function of an absolutely continuous invariant measure with respect to

the Lebesgue measure m of [0, 1], often referred to as a stationary density, is a fixed

point of the Frobenius-Perron operator PS : L1(0, 1) → L1(0, 1) associated with the

mapping.

For the rigorous definition of the Frobenius-Perron operator associated with a

mapping S : [0, 1] → [0, 1], we first assume that S is nonsingular, that is, m(A) = 0

implies that m(S−1(A)) = 0 for any Borel measurable subset A of [0, 1]. The L1-

norm of a function f ∈ L1(0, 1) is denoted as ‖f‖1 =
∫ 1

0
|f |dm. A nonnegative

function f ∈ L1(0, 1) with ‖f‖1 = 1 is called a density. If g ∈ L∞(0, 1), then

‖g‖∞ ≡ ess supx∈[0,1] |g(x)|. The set of all L1-functions of bounded variation is denoted

as BV (0, 1). This becomes a Banach space under the BV -norm ‖f‖BV ≡ ‖f‖1+
∨1

0 f .

When f ∈ L1(0, 1) and g ∈ L∞(0, 1) we denote 〈f, g〉 =
∫ 1

0
fgdm.

The Frobenius-Perron operator PS : L1(0, 1) → L1(0, 1) associated with S is

defined (implicitly) by
∫

A

PSfdm =

∫

S−1(A)

fdm(2.1)

for all Borel measurable subsets A of [0, 1], because of the non-singularity assumption

on S and the Radon-Nikodym theorem in measure theory (see, e.g., [9] for more

details). Let A = [0, x] and apply the fundamental theorem of calculus to the both

sides of (2.1), we have the explicit definition

PSf(x) =
d

dx

∫

S−1([0,x])

f(t)dt

of PS. It is well known [9] that an L1 function f ∗ is a stationary density of PS

if and only if the absolutely continuous probability measure µ, defined by µ(A) =∫
A

f ∗dm, is S-invariant, that is, µ(S−1(A)) = µ(A) for all measurable sets A ⊂ [0, 1].

Invariant measures describe statistical properties of the dynamics of S, and their

efficient computation is very important in applications. See [7] for a survey of the

state of the arts in this area.

Frobenius-Perron operators constitute a special class of Markov operators which

are defined as linear operators on L1 spaces that map densities to densities, thus their

norm is 1, which means that they are weak contractions. Various existence results

of stationary densities are referred to [9, 10]. Here we are only interested in the

computational problem for a stationary density of the Frobenius-Perron operator.

3. The Piecewise Quadratic Projection Method

Although the piecewise quadratic Markov approximations method has the ad-

vantage of approximating the exact stationary density with density functions, it lacks

some good features of the projection method, for example, it does not keep piecewise
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quadratic functions fixed. In other words, it approximates a piecewise quadratic func-

tion with a different piecewise quadratic function. This may cause a relatively large

error of the approximate stationary density for a normal partition of the interval.

In the piecewise quadratic Gelerkin projection method, every function is pro-

jected onto a finite dimensional subspace of L1(0, 1) consisting of piecewise quadratic

functions related to the partition of [0, 1], and thus each piecewise quadratic function

in the subspace is kept fixed after projection. In the following we first construct the

space of continuous piecewise quadratic functions and study their basic properties.

For the sake of simplicity and convenience of computation, we divide the interval

[0, 1] into n equal subintervals with xi = ih for i = 0, 1, . . . , n, where h = 1/n is the

length of each subinterval. Denote by ∆n the corresponding space of all continuous

piecewise quadratic functions. Then the dimension of ∆n is 2n + 1, and a canonical

basis of ∆n consists of e0, e1, . . . , e2n, where

e2k = τ

(
x − xk

h

)

for k = 0, 1, . . . , n and

e2k−1(x) = ρ

(
x − xk−1

h

)

for k = 1, 2, . . . , n. Here the two basic functions τ and ρ are

τ(x) =






(x + 1)2, −1 ≤ x ≤ 0,

(x − 1)2, 0 < x ≤ 1,

0, otherwise

and

ρ(x) =

{
2x(1 − x), 0 ≤ x ≤ 1,

0, otherwise.

It is clear that ‖e0‖1 = ‖e2n‖1 = h/3, ‖e2k‖1 = 2h/3 for k = 1, 2, . . . , 2(n − 1),

and ‖e2k−1‖1 = h/3 for k = 1, 2, . . . , n. By definition, the support of a function

g, denoted suppg, is the closure of the set of all x in the domain of g such that

g(x) 6= 0. So, suppe0 = [0, h], suppe2n = [1 − h, 1], suppe2k = [(k − 1)h, (k + 1)h] for

k = 1, 2, . . . , n − 1, and suppe2k−1 = [(k − 1)h, kh] for k = 1, 2, . . . , n. In addition,

the basis functions satisfy the identity

(3.1)

2n∑

i=0

ei(x) ≡ 1, ∀ x ∈ [0, 1],

which is called the partition of unity in the theory of finite elements.

Now we are ready to define a projection operator Qn from L1(0, 1) onto the

subspace ∆n by requiring that the residual function f − Qnf is “orthogonal” to ∆n.
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Namely, for a given function f ∈ L1(0, 1), we let Qnf be the unique function in ∆n

such that

(3.2) 〈Qnf, ei〉 = 〈f, ei〉, i = 0, 1, . . . , 2n.

If we write Qnf =
∑2n

i=0 ciei, then the coefficients c0, c1, . . . , c2n are the unique solu-

tions of the following linear equations

(3.3)

2n∑

j=0

cj〈ej, ei〉 = 〈f, ei〉, i = 0, 1, . . . , 2n.

If we restrict f to be in L2(0, 1), then Qnf is exactly the orthogonal projection of

L2(0, 1) onto ∆n ⊂ L2(0, 1) under the L2-norm ‖f‖2 =
√∫ 1

0
|f |2dm of L2(0, 1). In

this case, the unique solution Qnf is also the least squares solution to the least squares

problem

‖f − Qnf‖2 = min{‖f − g‖2 : g ∈ ∆n}

= min

{∥∥∥∥∥f −
2n∑

i=0

ciei

∥∥∥∥∥
2

: (c0, c1, . . . , c2n)T ∈ R2n+1

}

.

By letting B = (bij), where bij = 〈ej, ei〉 for 0 ≤ i, j ≤ 2n, we find that

(3.4) B =
h

30





6 3 1 0 0 0 0 0 · · · 0

3 4 3 0 0 0 0 · · · 0

1 3 12 3 1 0 0 0 · · · 0

0 0 3 4 3 0 0 0 · · · 0

0 0 1 3 12 3 1 0 · · · 0

· · · ·
· · · ·
0 · · · 0 0 1 3 12 3 1

0 · · · 0 0 0 0 0 3 4 3

0 · · · 0 0 0 0 0 1 3 6





.

Substituting (3.4) into (3.3), we obtain the system of linear equations




6 3 1 0 0 0 0 0 · · · 0

3 4 3 0 0 0 0 · · · 0

1 3 12 3 1 0 0 0 · · · 0

0 0 3 4 3 0 0 0 · · · 0

0 0 1 3 12 3 1 0 · · · 0

· · · ·
· · · ·
0 · · · 0 1 3 0 12 3 1

0 · · · 0 0 0 0 0 3 4 3

0 · · · 0 0 0 0 0 1 3 6









c0

c1

c2

·
·
·
·

c2n−2

c2n−1

c2n




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=
30

h





∫ 1

0
f(x)e0(x)dx∫ 1

0
f(x)e1(x)dx∫ 1

0
f(x)e2(x)dx

·
·
·
·∫ 1

0
f(x)e2n−2(x)dx∫ 1

0
f(x)e2n−1(x)dx∫ 1

0
f(x)e2n(x)dx





.(3.5)

Our piecewise quadratic projection method for numerically computing a station-

ary density of the Frobenius-Perron operator PS : L1(0, 1) → L1(0, 1) is to solve the

finite dimensional fixed point equation

(3.6) Pnf = f, f ∈ ∆n,

where Pn ≡ QnPS : ∆n → ∆n in which Qn is defined by (3.2).

The finite dimensional operator equation (3.6) can be written as

〈QnPSf, ei〉 = 〈f, ei〉, i = 0, 1, . . . , 2n

for f ∈ ∆n. Since Qn is an “orthogonal” projection,

(3.7) 〈QnPSf, ei〉 = 〈PSf, ei〉, i = 0, 1, . . . , 2n

for all f ∈ L1(0, 1), so the above equations are simplified to

(3.8) 〈PSf, ei〉 = 〈f, ei〉, i = 0, 1, . . . , 2n.

If we write f =
∑2n

j=0 vjej , then (3.8) can be written as

(3.9)

2n∑

j=0

vj〈PSej , ei〉 =

2n∑

j=0

vj〈ej, ei〉, i = 0, 1, . . . , 2n.

Define a (2n+1)× (2n+1) matrix A = (aij) by aij = 〈PSej , ei〉 for i, j = 0, 1, . . . , 2n.

Then the linear algebraic equations (3.9) has the matrix form

(3.10) (A − B)v = 0, v = (v0, v1, . . . , v2n)T ∈ R2n+1.

Because of the partition of unity property (3.1) and the orthogonality (3.7) with

f = ej for all indices i and j, and the fact that
∫ 1

0
PSgdm =

∫ 1

0
gdm for any g ∈

L1(0, 1),

2n∑

i=0

aij =
2n∑

i=0

〈QnPSej , ei〉 =
2n∑

i=0

〈PSej , ei〉 =

〈
PSej ,

2n∑

i=0

ei

〉
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= 〈PSej , 1〉 = 〈ej , 1〉 =

2n∑

i=0

〈ej , ei〉 =

2n∑

i=0

bij .

Therefore, (1, 1, . . . , 1) is a left eigenvector of A−B associated with eigenvalue 0. So

there is a right eigenvector v with the same eigenvalue, that is, (3.10) has a nonzero

solution. This proves the following result.

Proposition 3.1. The discrete fixed point equation (3.6) has a nontrivial solution

fn ∈ ∆n for any n.

We can normalize the above solution fn by selecting a nonzero solution (v∗
0, v

∗
1, . . .,

v∗
2n)T of (3.10) so that the resulting function

fn =
2n∑

i=0

v∗
i ei

satisfies the condition ‖fn‖1 = 1, which gives a continuous piecewise quadratic ap-

proximation of a stationary density of the original Frobenius-Perron operator. In the

next section we shall investigate the convergence of the numerical sequence fn to the

exact stationary density f ∗ as n → ∞.

4. Convergence Analysis

We analyze the convergence of our new piecewise quadratic algorithm in this

section that is divided into three parts. First we study the consistency problem of

the projection sequence Qn in subsection 4.1, and the stability issue of Qn in terms of

the variation sequence
∨1

0 Qnf will be examined in the second subsection. Then we

prove the L1-norm convergence result for the numerical solution sequence fn in the

last subsection.

4.1. The Strong Convergence of {Qn}. We show that the sequence Qn converges

strongly to the identity operator by first showing that the sequence ‖Qn‖1 is bounded.

The uniform boundedness of ‖Qn‖1 is equivalent to that of the 1-norm of the

inverse of the matrix in (3.5). Unlike the matrix in the case of projections to the

space of continuous piecewise linear functions, which is strictly diagonally dominant

so that the 1-norm of its inverse matrix is uniformly bounded by 1 for all partitions of

[0, 1], the matrix of (3.5) is not strictly diagonally dominant. To establish the uniform

boundedness of the inverse matrix, we rearrange the order of the basis functions of

∆n so that the corresponding matrix has a better structure to estimate the norm of

its inverse.

To do so, we put all e1, e3, . . . , e2n−1 before all the remaining basis functions.

Thus, we let φk = e2k+1 for k = 0, 1, . . . , n − 1 and φn+k = e2k for k = 0, . . . , n. If we
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write Qnf =
∑2n

i=0 diφi, then the vector d = (d0, d1, . . . , d2n)T satisfies the following

system of linear equations

(4.1) Md =
30

h
f̂ ,

where f̂ = (〈f, φ0〉, 〈f, φ1〉, . . . , 〈f, φ2n〉)T and M is the 2 × 2 block matrix

M =

[
4I 3J

3JT H

]

in which I is the n × n identity matrix, J is the n × (n + 1) matrix whose main

diagonal and sup-diagonal entries are 1 and all other entries are zero, and H is the

(n + 1) × (n + 1) matrix




6 1 0 0 0 · · · 0

1 12 1 0 0 · · · 0

0 1 12 1 0 · · · 0

· · ·
· · ·
0 · · · 0 0 1 12 1

0 · · · 0 0 0 1 6





.

The generalized Gaussian elimination gives the block matrix decomposition

M =

[
4I 3J

3JT H

]

=

[
I 0

3
4
JT I

][
4I 3J

0 H − 9
4
JT J

]

,

where I is an identity matrix of size n or n+1, depending on its location in the block

matrices. Denote V = H − 9
4
JT J . Then

V =
5

4





3 −1 0 0 0 · · · 0

−1 6 −1 0 0 · · · 0

0 −1 6 −1 0 · · · 0

· · ·
· · ·
0 · · · 0 0 −1 6 −1

0 · · · 0 0 0 −1 3





,

so it is invertible because of its strictly diagonal dominance. It follows that

(4.2) M−1 =

[
1
4
I −3

4
JV −1

0 V −1

][
I 0

−3
4
JT I

]
.

Lemma 1. Let C be an m-by-m matrix such that

|cjj| >
∑

i6=j

|cij | , for any j.
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Then
∥∥C−1

∥∥
1
≤ 1

min1≤j≤m

(
|cjj| −

∑
i6=j |cij |

) .

Proof. Since C is columnwise diagonally dominant, it is invertible. Note that there

exists y = (y1, . . . , yn)
T with ‖y‖1 = 1 such that ‖C−1‖1 = ‖C−1y‖1. Let x = C−1y.

Note that

‖Cx‖1 =

m∑

i=1

m∑

j=1

|cijxj | ≥
m∑

i=1

[

|ciixi| −
∑

j 6=i

|cijxj |
]

=
m∑

i=i

|cii| |xi| −
m∑

i=1

∑

j 6=i

|cij | |xj| =
m∑

j=1

[
|cjj| −

∑

i6=j

|cij|
]
|xj |

≥ min
1≤j≤m

(
|cjj| −

∑

i6=j

|cij |
)

m∑

j=1

|xj | = min
1≤j≤m

(
|cjj| −

∑

i6=j

|cij|
)
‖x‖1.

Since Cx = y, we have

‖y‖1 ≥ min
1≤j≤m

(

|cjj| −
∑

i6=j

|cij|
)

‖x‖1.

Because ‖y‖1 = 1 and ‖x‖1 = ‖C−1y‖1 = ‖C−1‖1, the result follows.

Lemma 4.1 implies that ‖V −1‖1 ≤ 2/5. Partition dT = (d̄T , d̃T ) and f̂T =

(f̄T , f̃T ) into two blocks of size n and n + 1. Then (4.1) and (4.2) give

h

30

[
d̄

d̃

]
= M−1

[
f̄

f̃

]
=

[
1
4
I −3

4
JV −1

0 V −1

][
I 0

−3
4
JT I

][
f̄

f̃

]

=

[
1
4
I −3

4
JV −1

0 V −1

][
f̄

f̃ − 3
4
JT f̄

]

=




1
4
f̄ − 3

4
JV −1

(
f̃ − 3

4
JT f̄

)

V −1
(
f̃ − 3

4
JT f̄

)





=

[ (
1
4

+ 9
16

JV −1JT
)
f̄ − 3

4
JV −1f̃

V −1
(
f̃ − 3

4
JT f̄

)
]

,

from which we see that

h

30
‖d̄‖1 ≤

(
1

4
+

9

16
· 2 · 2

5
· 2
)
‖f̄‖1 +

3

4
· 2 · 2

5
‖f̃‖1 =

23

20
‖f̄‖1 +

3

5
‖f̃‖1

and
h

30
‖d̃‖1 ≤

2

5

(
‖f̃‖1 +

3

4
· 2‖f̄‖1

)
=

3

5
‖f̄‖1 +

2

5
‖f̃‖1.

Lemma 2.

∥∥∥f̂
∥∥∥

1
≤ ‖f‖1 for any f ∈ L1 (0, 1).
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Proof. Since f̂ = (〈f, φ0〉, 〈f, φ1〉, . . . , 〈f, φ2n〉)T ,

‖f̂‖1 =
2n∑

i=0

|〈f, φi〉| ≤
2n∑

i=0

〈|f |, φi〉 =

〈
|f |,

2n∑

i=0

φi

〉
= 〈|f |, 1〉 = ‖f‖1.

Proposition 4.1. The sequence Qn : L1 (0, 1) → L1 (0, 1) is uniformly bounded by

47/2 in norm and converges to the identity operator strongly.

Proof. Let f ∈ L1(0, 1). Since ‖φi‖1 = h/3 for i = 0, . . . , n − 1 and ‖φi‖1 = 2h/3 for

i = n, . . . , 2n, the above lemmas imply that

‖Qnf‖1 =

∥∥∥∥∥

2n∑

i=0

diφi

∥∥∥∥∥
1

≤
2n∑

i=0

|di|‖φi‖1 ≤
h

3
(‖d̄‖1 + 2‖d̃‖1)

≤ h

3
· 30

h

(
23

20
‖f̄‖1 +

3

5
‖f̃‖1 +

6

5
‖f̄‖1 +

4

5
‖f̃‖1

)

= 10

(
47

20
‖f̄‖1 +

7

5
‖f̃‖1

)
≤ 10 · 47

20
‖f̂‖1 ≤

47

2
‖f‖1,

which shows that ‖Qn‖1 ≤ 47/2 uniformly.

Now let f ∈ C3[0, 1]. Then by the Cauchy-Schwartz inequality and the least

squares property of the Qn for L2 functions,

‖Qnf − f‖1 ≤ ‖Qnf − f‖2 ≤ ‖Lnf − f‖2 ≤ ‖Lnf − f‖∞ = O(h3),

where Lnf is the piecewise quadratic Lagrange interpolation function for f with nodes

xi’s and the midpoints of all the subintervals [xi−1, xi], and the last equality is from

the standard error result for Lagrange interpolations. In fact, one can verify that

Lnf =
n∑

i=0

f(xi)e2i +
n∑

i=1

[
−1

2
f(xi−1) + 2f(xi− 1

2

) − 1

2
f(xi)

]
e2i−1,

where xi−1/2 is the midpoint of the subinterval [xi−1, xi] for 1 ≤ i ≤ n.

Finally, since C3[0, 1] is dense in L1(0, 1), that limn→∞ ‖Qnf − f‖1 = 0 for any

f ∈ L1(0, 1) comes from the uniform boundedness of ‖Qn‖1.

4.2. A Variation Inequality for {Qn}. Next we establish an upper bound on
∨1

0 Qnf in terms of
∨1

0 f . Since Qnf is continuous and piecewise quadratic,

1∨

0

Qnf =

∫ 1

0

|(Qnf)′(x)|dx =

n−1∑

i=0

∫ xi+1

xi

|(Qnf)′(x)|dx.

Since Qnf = diφi + dn+iφn+i + dn+i+1φn+i+1 on [xi, xi+1], and since φi(x) = ρ((x −
xi)/h) for i = 0, . . . , n − 1 and φn+i(x) = τ((x − xi)/h) for i = 0, . . . , n,

∫ xi+1

xi

|(Qnf)′(x)|dx =

∫ xi+1

xi

|diφ
′
i(x) + dn+iφ

′
n+i(x) + dn+i+1φ

′
n+i+1(x)|dx
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=
1

h

∫ xi+1

xi

∣∣∣∣diρ
′

(
x − xi

h

)
+ dn+iτ

′

(
x − xi

h

)
+ dn+i+1τ

′

(
x − xi+1

h

)∣∣∣∣ dx

=

∫ 1

0

|diρ
′(t) + dn+iτ

′(t) + dn+i+1τ
′(t − 1)|dt

=

∫ 1

0

|di(2 − 4t) + dn+i2(t − 1) + dn+i+12t|dt

= 2

∫ 1

0

|(dn+i + dn+i+1 − 2di)(t − 1) + dn+i+1 − di|dt

≤ |dn+i + dn+i+1 − 2di| + 2|dn+i+1 − di| ≤ |di − dn+i| + 3|dn+i+1 − di|.

Summing up the above for i = 0, . . . , n − 1, we obtain

(4.3)
1∨

0

Qnf ≤
n−1∑

i=0

|di − dn+i| + 3
n−1∑

i=0

|dn+i+1 − di|.

From the system (4.1) we obtain





3 2 0 0 0 0 0 0 · · · 0

5 10 4 1 0 0 0 0 · · · 0

1 4 10 5 0 0 0 0 · · · 0

0 0 5 10 4 1 0 0 · · · 0

0 0 1 4 10 5 0 0 · · · 0
...

...
...

...

0 · · · 0 0 0 0 5 10 4 1

0 · · · 0 0 0 0 1 4 10 5

0 · · · 0 0 0 0 0 0 2 3









d0 − dn

dn+1 − d0

d1 − dn+1

dn+2 − d1

d2 − dn+2

...

d2n−1 − dn−2

dn−1 − d2n−1

d2n − dn−1





=
30

h





f̂0 − f̂n

f̂n+1 − 2f̂0

2f̂1 − f̂n+1

f̂n+2 − 2f̂1

2f̂2 − f̂n+2

...

f̂2n−1 − 2f̂n−2

2f̂n−1 − f̂2n−1

f̂2n − f̂n−1





.(4.4)

Rearranging the above equations according to the permutation (0, 2, . . . , 2n − 2, 1, 3,

. . . , 2n − 1) of (0, 1, . . . , 2n − 1) and reordering the columns of the above coefficient

matrix with the same permutation, the system (4.4) becomes

(4.5) Zv ≡
[

P Q

R S

][
v̄

ṽ

]
=

30

h

[
w̄

w̃

]
,
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where

P =





3 0 0 0 0 · · · 0

1 10 0 0 0 · · · 0

0 1 10 0 0 · · · 0

· · ·
· · ·
0 · · · 0 0 1 10 0

0 · · · 0 0 0 1 10





, Q =





2 0 0 0 0 · · · 0

4 5 0 0 0 · · · 0

0 4 5 0 0 · · · 0

· · ·
· · ·
0 · · · 0 0 4 5 0

0 · · · 0 0 0 4 5





,

R =





5 4 0 0 0 · · · 0

0 5 4 0 0 · · · 0

0 0 5 4 0 · · · 0

· · ·
· · ·
0 · · · 0 0 0 5 4

0 · · · 0 0 0 0 2





, S =





10 1 0 0 0 · · · 0

0 10 1 0 0 · · · 0

0 0 10 1 0 · · · 0

· · ·
· · ·
0 · · · 0 0 0 10 1

0 · · · 0 0 0 0 3





,

v̄T = (d0 − dn, d1 − dn+1, . . . , dn−1 − d2n−1),

ṽT = (dn+1 − d0, dn+2 − d1, . . . , d2n − dn−1),

w̄T = (f̂0 − f̂n, 2f̂1 − f̂n+1, 2f̂2 − f̂n+2, . . . , 2f̂n−2 − f̂2n−2, 2f̂n−1 − f̂2n−1),

w̃T = (f̂n+1 − 2f̂0, f̂n+2 − 2f̂1, f̂n+3 − 2f̂2, . . . , f̂2n−1 − 2f̂n−2, f̂2n − f̂n−1).

Partitioning

P =

[
3 0

e1 C

]
,

where e1 is the first column of the identity matrix of size n− 1, and using the gener-

alized Gaussian elimination, we have

P−1 =

[
1
3

0

−1
3
C−1e1 C−1

]
,

where C−1 is a lower triangular matrix with its (i, j)-entry (−1)j−i × 10j−i−1 for

1 ≤ j ≤ i ≤ n − 1.

Denote K = S − RP−1Q. After some computations we find the following about

the entries of K:

• All the entries above the super-diagonal are zero.

• All of the super-diagonal entries are −1.

• All of the diagonal entries are 6.1 except K11 = 16/3 and Knn = 2.

• Ki1 = (−1)i−1×(23/15)×10−i+2 for 2 ≤ i ≤ n−1 and Kn1 = (−1)n−1×(20/3)×
101−n (the entries in the first column except K11).

• Knj = (−1)n−j × 7× 10j−n for 2 ≤ j ≤ n− 1 (the entries in the last row except

Kn1 and Knn).
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• Kij = (−1)i−j × 1.61 × 10j−i+1 for 2 ≤ j ≤ i − 1 ≤ n − 2 (the entries in the

triangular region bounded by the diagonal, the first column and the last row).

Using Lemma 4.1, we see that

‖K−1‖1 ≤ 1

uniformly. It is easy to see that

‖P−1‖1 ≤
10

27
, ‖P−1Q‖1 ≤

28

27
, ‖RP−1‖1 ≤

46

27

uniformly. Since

Z−1 =

[
P Q

0 K

]−1 [
I 0

−RP−1 I

]
=

[
P−1 −P−1QK−1

0 K−1

][
I 0

−RP−1 I

]
,

from (4.5) we have

h

30

[
v̄

ṽ

]

= Z−1

[
w̄

w̃

]

=

[
P−1 −P−1QK−1

0 K−1

][
I 0

−RP−1 I

][
w̄

w̃

]

=

[
P−1 −P−1QK−1

0 K−1

][
w̄

w̃ − RP−1w̄

]

=

[
(P−1 + P−1QK−1RP−1)w̄ − P−1QK−1w̃]

K−1(w̃ − RP−1w̄)

]

,

from which

h

30
‖v̄‖1 ≤ (‖P−1‖1 + ‖P−1Q‖1‖K−1‖1‖RP−1‖1)‖w̄‖1 + ‖P−1Q‖1‖K−1‖1‖w̃‖1

≤
(

10

27
+

28

27
· 46

27

)
‖w̄‖1 +

28

27
‖w̃‖1 =

1558

729
‖w̄‖1 +

28

27
‖w̃‖1

and
h

30
‖ṽ‖1 ≤

46

27
‖w̄‖1 + ‖w̃‖1.

Applying the above inequalities to (4.3) gives

1∨

0

Qnf ≤ ‖v̄‖1 + 3‖ṽ‖1

≤ 30

h

(
1558

729
‖w̄‖1 +

28

27
‖w̃‖1 +

46

9
‖w̄‖1 + 3‖w̃‖1

)

=
30

h

(
5284

729
‖w̄‖1 +

2943

729
‖w̃‖1

)

=
52840

243 h
‖w̄‖1 +

29430

243h
‖w̃‖1(4.6)

We are ready to prove our stability result in terms of the variation of the sequence

Qnf .
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Proposition 4.2. Let f ∈ BV (0, 1) be absolutely continuous. Then

1∨

0

Qnf ≤ 327

1∨

0

f, for any n.

Proof. We need to estimate the 1-norm of wT = (w̄T , w̃T ) in terms of the variation of

f . First of all, using integration by parts,

|w̄0| = |f̂0 − f̂n| =

∣∣∣∣
∫ h

0

f(x)(φ0(x) − φn(x))dx

∣∣∣∣

=

∣∣∣∣f(x)Φ(x)|h0 −
∫ h

0

f ′(x)Φ(x)dx

∣∣∣∣

= h

∣∣∣∣

∫ h

0

f ′(x)

[
−x

h
+ 2

(x

h

)2

−
(x

h

)3
]

dx

∣∣∣∣

≤ h

∫ h

0

|f ′(x)|
∣∣∣∣
x

h
− 2

(x

h

)2

+
(x

h

)3
∣∣∣∣ dx

= h2

∫ 1

0

|f ′2 + y3|dy

≤ 4h2

27

∫ 1

0

|f ′(hy)|dy =
4h

27

∫ h

0

|f ′(z)|dz =
4h

27

x1∨

x0

f.

Here we used the facts that

• Φ(x) = h [−x/h + 2(x/h)2 − (x/h)3] is an antiderivative of φ0(x) − φn(x) on

[0, h].

• Φ(0) = Φ(h) = 0.

• y = x/h.

• |y − 2y2 + y3| ≤ 4/27 on [0, 1].

• z = hy.

For i = 1, . . . , n − 1,

w̄i =2f̂i − f̂n+i = 2

∫ xi+1

xi

f(x)φi(x)dx −
∫ xi+1

xi−1

f(x)φn+i(x)dx

=

∫ xi+1

xi

f(x)φi(x)dx −
∫ xi

xi−1

f(x)φn+i(x)dx

+

∫ xi+1

xi

f(x)φi(x)dx −
∫ xi+1

xi

f(x)φn+i(x)dx

=

∫ xi

xi−1

[f(x + h)φi(x + h) − f(x)φn+i(x)] dx

+

∫ xi+1

xi

f(x)[φi(x) − φn+i(x)]dx

=

∫ xi

xi−1

[f(x + h) − f(x)]φi(x + h)dx +

∫ xi

xi−1

f(x)[φi(x + h) − φn+i(x)]dx
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+

∫ xi+1

xi

f(x)[φi(x) − φn+i(x)]dx.

Note that
∣∣∣∣

∫ xi

xi−1

[f(x + h) − f(x)]φi(x + h)dx

∣∣∣∣ ≤
∫ xi

xi−1

|f(x + h) − f(x)|φi(x + h)dx ≤ h

3

xi+1∨

xi−1

f.

One can verify that
∣∣∣∣

∫ xi

xi−1

f(x)[φi(x + h) − φn+i(x)]dx

∣∣∣∣ ≤
4h

27

xi∨

xi−1

f

and ∣∣∣∣

∫ xi+1

xi

f(x)[φi(x) − φn+i(x)]dx

∣∣∣∣ ≤
4h

27

xi+1∨

xi

f.

It follows that for i = 1, . . . , n − 1,

|w̄i| ≤
h

3

xi+1∨

xi−1

f +
4h

27

xi∨

xi−1

f +
4h

27

xi+1∨

xi

f =
13h

27

xi+1∨

xi−1

f.

So we have

||w̄||1 ≤
4h

27

x1∨

x0

+

n−1∑

i=1

13h

27

xi+1∨

xi−1

f ≤ 26h

27

1∨

0

f.

Similarly, one can show that

||w̃||1 ≤
26h

27

1∨

0

f.

Using these two inequalities together with (4.6) we obtain the result.

4.3. The Norm Convergence of the Method. It is time to prove the convergence

of our projection method for the Lasota-Yorke class of piecewise C2 and stretching

interval mappings S : [0, 1] → [0, 1] with a sufficiently large stretching factor. We also

assume that the corresponding Frobenius-Perron operator PS has a unique stationary

density f ∗. Then from [9, 10, 11] there are two constants α = 2/inf|S ′| and β > 0

such that for all functions f of bounded variation

(4.7)
1∨

0

PSf ≤ α
1∨

0

f + β‖f‖1.

Theorem 4.1. If the constant α in (4.7) satisfies α < 1/327, then the sequence

fn ∈ ∆n from the piecewise quadratic projection method converges to f ∗ under the

L1-norm as n approaches infinity.

Proof. Since fn = Pnfn and ‖fn‖1 = 1, by Proposition 4.2 and (4.7),

1∨

0

fn =
1∨

0

Pnfn =
1∨

0

QnPSfn ≤ 327
1∨

0

PSfn
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≤ 327α

1∨

0

fn + 327β‖fn‖1 = 327α

1∨

0

fn + 327β.

Since 327α < 1,
1∨

0

fn ≤ 327β

1 − 327α
, ∀ n.

So Helly’s lemma implies that there is a subsequence of fn that converges to a function

of norm 1 under the L1-norm. Since f ∗ is the unique stationary density of PS, a

standard argument (see, e.g., [9]) ensures that the sequence fn itself converges to f ∗

in norm.

Remark When the condition α < 1/327 is not satisfied for a piecewise C2 and

stretching mapping S, we can consider some iterate Sk of S so that the condition

is satisfied by Sk, so the convergence can still be proved, a strategy as used in the

classic paper [12].

5. Numerical Results

In this section we apply our continuous piecewise quadratic projection method

(PQ-PM2) to two test problems for the comparison of the performance against the

previous piecewise quadratic methods, including the continuous piecewise quadratic

Markov method (PQ-MM) [5] and the discontinuous piecewise quadratic projection

method (PQ-PM1) [4]. We also compare our new method with the continuous piece-

wise linear projection method (PL-PM) [8]. We used such methods for the computa-

tion of stationary densities of two chaotic mappings of the unit interval.

The first mapping S1 is defined by

S1(x) =

{
2x

1−x2 , 0 ≤ x ≤
√

2 − 1
1−x2

2x
,

√
2 − 1 ≤ x ≤ 1

,

and the stationary density of the corresponding Frobenius-Perron operator PS1
is

given by

f ∗
1 (x) =

4

π(1 + x2)
.

The second mapping S2 is defined by

S2(x) =

{
2x

1−x
, 0 ≤ x ≤ 1

3
1−x
2x

, 1
3
≤ x ≤ 1

with the corresponding stationary density

f ∗
2 (x) =

2

(1 + x)2
.

In Tables 1 and 2 we present the L1-norm errors ‖fn − f ∗‖1 of the computed

densities fn to the exact density f ∗
1 and f ∗

2 for S1 and S2, respectively.
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Table 1. L1−norm errors comparison for S1.

n PL-PM PQ-MM PQ-PM1 PQ-PM2

4 2.7 × 10−3 1.2 × 10−2 1.0 × 10−2 4.4 × 10−4

8 6.5 × 10−4 5.0 × 10−3 2.5 × 10−3 4.6 × 10−5

16 1.7 × 10−4 1.9 × 10−3 6.2 × 10−4 6.1 × 10−6

32 4.3 × 10−5 6.6 × 10−4 1.5 × 10−4 8.2 × 10−7

64 1.1 × 10−5 2.1 × 10−4 3.8 × 10−5 3.4 × 10−7

128 2.7 × 10−6 6.4 × 10−5 * 2.3 × 10−7

256 6.4 × 10−7 1.9 × 10−5 * 1.8 × 10−7

Table 2. L1−norm errors comparison for S2.

n PL-PM PQ-MM PQ-PM1 PQ-PM2

4 7.7 × 10−3 6.9 × 10−2 3.7 × 10−2 8.0 × 10−4

8 1.9 × 10−3 2.7 × 10−2 1.0 × 10−2 1.3 × 10−4

16 5.4 × 10−4 9.7 × 10−3 2.7 × 10−3 1.9 × 10−5

32 1.4 × 10−4 3.3 × 10−3 7.8 × 10−4 2.3 × 10−6

64 3.6 × 10−5 1.0 × 10−3 1.8 × 10−4 5.1 × 10−7

128 8.5 × 10−6 3.2 × 10−4 * 2.5 × 10−7

256 2.2 × 10−6 9.5 × 10−5 * 2.2 × 10−7

With n = 4, 8, 16, and 32 we see that our piecewise quadratic projection method

greatly outperformed the piecewise quadratic Markov method. For n ≥ 64 numerical

instability of our algorithm prevented from reaching its optimal accuracy. Also the

symbol * in the tables indicates that the results were not reported in [4].

6. Conclusions

We have developed a projection method based on the continuous piecewise qua-

dratic functions, and its convergence was established for the Lasota-Yorke class of

interval mappings. The numerical results show a faster convergence than the current

numerical Markov methods and projection methods.

More precisely speaking, our new method performs much better than the continu-

ous piecewise linear Markov method and projection method under the same partition

of the interval so that the dimension of the numerical problem is about the same. On

the other hand, even though the dimension of the numerical problem in the discontin-

uous piecewise quadratic projection method doubles that of the continuous piecewise

quadratic projection one, the latter is still considerably faster with less computational

cost. This is compatable with our general belief that least squares idea usually leads

to a higher order approximation accuracy than more restrictive structure-preserving
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approaches and higher smooth basis functions normally give better approximations

when the exact solution is smooth enough.
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