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ABSTRACT. Let x = (x1, x2, . . . , xN ) be a point in the N -dimensional Euclidean space R
N , B

be a N -dimensional ball
{

x ∈ R
N : |x| < R

}

centered at the origin with a radius R, ∂B be the

boundary of B, ν(x) denote the unit inward normal at x ∈ ∂B, and χB(x) be the characteristic

function, which is 1 for x ∈ B and 0 for x ∈ R
N \ B. We study the following multi-dimensional

semilinear parabolic problem with a concentrated source on the surface of the ball ∂B:

ut −△u = α
∂χB(x)

∂ν
(1 + |x|)

β
f(u) in R

N × (0, T ],

u(x, 0) = ψ(x) for x ∈ R
N , u(x, t) → 0 as |x| → ∞ for 0 < t ≤ T,

where α, β and T are real numbers such that α > 0 and T > 0, and f and ψ are given functions.

For N ≤ 2, u always blows up in a finite time. For N ≥ 3, effects of α, R, β, f (u) and ψ (x) for u

to blow up are given.
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1. INTRODUCTION

Let H = ∂/∂t−△, T be a positive real number, x = (x1, x2, . . . , xN) be a point in

theN -dimensional Euclidean space R
N , B be aN -dimensional ball

{

x ∈ R
N : |x| < R

}

centered at the origin with a radius R, ∂B be the boundary of B, ν(x) denote the unit

inward normal at x ∈ ∂B, and χB(x) be the characteristic function, which is 1 for

x ∈ B and 0 for x ∈ R
N \B. We would like to study the following multi-dimensional

semilinear parabolic problem with a concentrated source on the surface of the ball

∂B:

(1.1)







Hu = α
∂χB(x)

∂ν
(1 + |x|)β f(u) in R

N × (0, T ],

u(x, 0) = ψ(x) for x ∈ R
N , u(x, t) → 0 as |x| → ∞ for 0 < t ≤ T,

where α, β and T are real numbers such that α > 0 and T > 0, f is a given func-

tion such that f (0) ≥ 0, f (u) and f ′ (u) are positive for u > 0, and f ′′ (u) ≥
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0 for u > 0, and ψ is a given function such that ψ is nontrivial on ∂B, non-

negative, and continuous such that ψ → 0 as |x| → ∞,
∫

RN ψ (x) dx < ∞, and

△ψ + α (∂χB (x) /∂ν) (1 + |x|)β f (ψ (x)) ≥ 0 in R
N .

A solution u is said to blow up at the point (x, tb) if there exists a sequence

{(xn, tn)} such that u (xn, tn) → ∞ as (xn, tn) → (x, tb) .

The integral equation corresponding to the problem (1.1) is given by

(1.2)
u(x, t)

=

∫

RN

g (x, t; ξ, 0)ψ (ξ) dξ + α

∫ t

0

∫

∂B

g(x, t; ξ, τ) (1 + |ξ|)β f(u(ξ, τ))dSξdτ

(cf. Chan and Tragoonsirisak [2]), where

g(x, t; ξ, τ) =
1

[4π(t− τ)]N/2
exp

(

−
|x− ξ|2

4(t− τ)

)

.

Let M (t) denote supx∈RN u (x, t), and tb denote the supremum of all t1 such that the

integral equation (1.2) has a unique continuous nonnegative solution for 0 ≤ t ≤ t1.

The results given in the next two theorems were proved by Chan and Tragoon-

sirisak [2].

Theorem 1.1. There exists some tb such that for 0 ≤ t < tb, the integral equation

(1.2) has a unique continuous nonnegative solution u. Furthermore, u is the solution

of the problem (1.1), and is a nondecreasing function of t. If

(1.3) ψ (x) = M (0) > ψ (y) for x ∈ ∂B and y /∈ ∂B,

then for any t > 0,

u (x, t) = M (t) for x ∈ ∂B, M (t) > u (y, t) for any y /∈ ∂B.

If tb is finite, then at tb, u blows up everywhere on ∂B; if in addition, ψ is radially

symmetric about the origin, then u blows up everywhere on ∂B only.

We note that a quenching problem in R
N with a concentrated nonlinear source

α (1 + |x|)β f (u) was investigated by Chan and Tragoonsirisak [1]. Quenching phe-

nomena in R
N without a concentrated source was studied by Dai and Zeng [3] for the

source α (1 + |x|)β / (1 − u).

Since for given α, R and β, the term α(1 + R)β is a constant, it follows from

Theorem 3.1 of Chan and Tragoonsirisak [2] that we have the following result.

Theorem 1.2. For N ≤ 2, u always blows up in a finite time.

Henceforth, we consider N ≥ 3. In Section 2, we give a formula for the critical

value α∗ such that u exists globally for α ≤ α∗ and blows up in a finite time for

α > α∗. Effects of R and β on the blow-up problem are investigated. We study the
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case f(u) = up where p > 1 in Section 3. We prove that the solution exists globally

when the initial value M (0) from (1.3) is small enough and the solution blows up in

a finite time when M (0) is large enough. The effect of the exponent p is also studied.

2. EFFECTS OF α, R AND β

The following result follows from Theorem 4.2 of Chan and Tragoonsirisak [2].

Theorem 2.1. If u(x, t) ≤ C for some positive constant C, then u(x, t) converges

from below to a solution U(x) = limt→∞ u(x, t) of the nonlinear integral equation,

U(x) = α (1 +R)β

∫

∂B

G(x− ξ)f(U(ξ))dSξ,

where

G (x) =
Γ
(

N
2

+ 1
)

N (N − 2)πN/2
·

1

|x|N−2
.

The next result follows from Theorems 4.3 to 4.4 of Chan and Tragoonsirisak [2].

Theorem 2.2. There exists a unique

α∗ =
(N − 2)π(N−3)/2

R (1 +R)β Γ
(

N−1
2

)

(

∏N−3
i=1

∫ π

0
sini ϕdϕ

) · sup
M(0)<s<∞

(

s

f (s)

)

,

where for N = 3,
∏N−3

i=1

∫ π

0
sini ϕdϕ = 1, such that u exists globally for α ≤ α∗, and

u blows up in a finite time for α > α∗. If f (0) = 0, then

α∗ =
(N − 2) π(N−3)/2

R (1 +R)β Γ
(

N−1
2

)

(

∏N−3
i=1

∫ π

0
sini ϕdϕ

) ·

(

M (0)

f (M (0))

)

.

Let sup0<s<∞
(s/f (s)) occur at s = s̃ ∈ (0,∞). If f (0) > 0, then

α∗ =







(N−2)π(N−3)/2

R(1+R)βΓ(N−1
2 )(

QN−3
i=1

R π
0 sini ϕdϕ)

·
(

s̃
f(s̃)

)

if M (0) < s̃,

(N−2)π(N−3)/2

R(1+R)βΓ(N−1
2 )(

QN−3
i=1

R π
0

sini ϕdϕ)
·
(

M(0)
f(M(0))

)

if M (0) ≥ s̃.

We study the effects of R and β.

Lemma 2.3. (i) If

(2.1) R (1 +R)β ≤
(N − 2) π(N−3)/2

αΓ
(

N−1
2

)

(

∏N−3
i=1

∫ π

0
sini ϕdϕ

) · sup
M(0)<s<∞

(

s

f (s)

)

,

then u exists globally.

(ii) If

(2.2) R (1 +R)β >
(N − 2)π(N−3)/2

α Γ
(

N−1
2

)

(

∏N−3
i=1

∫ π

0
sini ϕdϕ

) · sup
M(0)<s<∞

(

s

f (s)

)

,

then u blows up in a finite time.
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Proof. (i) (2.1) is equivalent to α ≤ α∗. By Theorem 2.2, u exists globally.

(ii) Since (2.2) is equivalent to α > α∗, it follows from Theorem 2.2 that u blows up

in a finite time.

Let ϕ (R) = R (1 +R)β. We have

(2.3) ϕ′ (R) = (1 +R)β−1 [1 + (β + 1)R] .

Theorem 2.4. For a given α, if β > −1, then there exists a unique R∗ such that u

exists globally for R ≤ R∗ and blows up in a finite time for R > R∗.

Proof. Using (2.3), we have for β > −1,

(2.4)











ϕ′ (R) > 0 for R > 0,

ϕ (0) = 0,

limR→∞ ϕ (R) = ∞.

By solving

R (1 +R)β =
(N − 2)π(N−3)/2

α Γ
(

N−1
2

)

(

∏N−3
i=1

∫ π

0
sini ϕdϕ

) · sup
M(0)<s<∞

(

s

f (s)

)

for R, it follows from (2.4) that there exists exactly one solution, denoted by R∗. The

theorem then follows from Lemma 2.3.

Theorem 2.5. For β = −1,

(i) if

(2.5) α ≤
(N − 2)π(N−3)/2

Γ
(

N−1
2

)

(

∏N−3
i=1

∫ π

0
sini ϕdϕ

) · sup
M(0)<s<∞

(

s

f (s)

)

,

then u exists globally for any R.

(ii) if

(2.6) α >
(N − 2)π(N−3)/2

Γ
(

N−1
2

)

(

∏N−3
i=1

∫ π

0
sini ϕdϕ

) · sup
M(0)<s<∞

(

s

f (s)

)

,

then there exists a unique R∗ such that u exists globally for R ≤ R∗ and blows

up in a finite time for R > R∗.

Proof. (i) It follows from (2.3) that for β = −1,

(2.7)











ϕ′ (R) > 0 for R ≥ 0,

ϕ (0) = 0,

limR→∞ ϕ (R) = 1.

Then, (2.5) is equivalent to α < α∗. By Theorem 2.2, u exists globally for any R.
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(ii) From (2.6),

(N − 2)π(N−3)/2

α Γ
(

N−1
2

)

(

∏N−3
i=1

∫ π

0
sini ϕdϕ

) · sup
M(0)<s<∞

(

s

f (s)

)

< 1.

By solving

R

1 +R
=

(N − 2)π(N−3)/2

α Γ
(

N−1
2

)

(

∏N−3
i=1

∫ π

0
sini ϕdϕ

) · sup
M(0)<s<∞

(

s

f (s)

)

for R, it follows from (2.7) that there exists only one solution denoted by R∗. The

result then follows from Lemma 2.3.

Theorem 2.6. For β < −1,

(i) if

(2.8) α ≤
(N − 2)π(N−3)/2 (−β − 1)

Γ
(

N−1
2

)

(

∏N−3
i=1

∫ π

0
sini ϕdϕ

)(

β
β+1

)β
· sup

M(0)<s<∞

(

s

f (s)

)

,

then u exists globally for any R.

(ii) if

(2.9) α >
(N − 2)π(N−3)/2 (−β − 1)

Γ
(

N−1
2

)

(

∏N−3
i=1

∫ π

0
sini ϕdϕ

)(

β
β+1

)β
· sup

M(0)<s<∞

(

s

f (s)

)

,

then there exist R∗∗ and R∗∗∗ such that u exists globally for R ≤ R∗∗ or R ≥ R∗∗∗,

and blows up in a finite time for R∗∗ < R < R∗∗∗.

Proof. (i) From (2.3), we have for β < −1,

(2.10)











ϕ (R) attains its maximum at R = − 1
β+1

,

ϕ′ (R) > 0 for R < − 1
β+1

,

ϕ′ (R) < 0 for R > − 1
β+1

.

(2.8) is equivalent to α ≤ α∗. By Theorem 2.2, u exists globally.

(ii) From (2.9),

(N − 2)π(N−3)/2

α Γ
(

N−1
2

)

(

∏N−3
i=1

∫ π

0
sini ϕdϕ

) · sup
M(0)<s<∞

(

s

f (s)

)

< ϕ

(

−
1

β + 1

)

.

By solving

(1 +R)β R =
(N − 2)π(N−3)/2

α Γ
(

N−1
2

)

(

∏N−3
i=1

∫ π

0
sini ϕdϕ

) · sup
M(0)<s<∞

(

s

f (s)

)

for R, it follows from (2.10) that there exist two solutions. Let us denote the solution

less than (−β−1)−1 by R∗∗, and the one larger than (−β−1)−1 by R∗∗∗. The theorem

then follows from Lemma 2.3.
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3. EFFECTS OF THE INITIAL CONDITION M(0) AND f(u)

From now on, let f(u) = up where p > 1. We study the effect of the initial value

M (0) (in (1.3)) on the boundary of the ball. For convenience, let M = M (0).

Lemma 3.1. (i) If

(3.1) Mp−1 ≤
(N − 2)π(N−3)/2

αR (1 +R)β Γ
(

N−1
2

)

(

∏N−3
i=1

∫ π

0
sini ϕdϕ

) ,

then u exists globally.

(ii) If

(3.2) Mp−1 >
(N − 2)π(N−3)/2

αR (1 +R)β Γ
(

N−1
2

)

(

∏N−3
i=1

∫ π

0
sini ϕdϕ

) ,

then u blows up in a finite time.

Proof. Since (3.1) is equivalent to α ≤ α∗, and (3.2) is equivalent to α > α∗, the

lemma follows from Theorem 2.2.

Let µ (M) = Mp−1. We have

(3.3) µ′ (M) = (p− 1)Mp−2.

Theorem 3.2. There exists a unique M∗ such that u exists globally for M ≤M∗ and

blows up in a finite time for M > M∗.

Proof. From (3.3), µ′ (M) is positive for p > 1 and M > 0. By solving

(3.4) Mp−1 =
(N − 2)π(N−3)/2

αR (1 +R)β Γ
(

N−1
2

)

(

∏N−3
i=1

∫ π

0
sini ϕdϕ

)

for M , there exists exactly one solution, denoted by M∗:

M∗ =





(N − 2)π(N−3)/2

αR (1 +R)β Γ
(

N−1
2

)

(

∏N−3
i=1

∫ π

0
sini ϕdϕ

)





1
p−1

.

Let ω (p) = Mp−1. We have

(3.5) ω′ (p) = Mp−1 lnM.

Theorem 3.3. If M > 1, then there exists a unique p∗ such that u exists globally for

p ≤ p∗ and blows up in a finite time for p > p∗.
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Proof. From (3.5), we have ω′ (p) > 0 for M > 1. It follows from Lemma 3.1 that

there exists exactly one solution, denoted by p∗, such that u exists globally for p ≤ p∗

and blows up in a finite time for p > p∗. By solving (3.4) for p, we have

(3.6)

p∗ = 1 +
ln
[

(N − 2)π(N−3)/2
]

− ln
[

αR (1 +R)β Γ
(

N−1
2

)

(

∏N−3
i=1

∫ π

0
sini ϕdϕ

)]

lnM
.

Theorem 3.4. If M < 1, then there exists a unique p∗ such that u exists globally for

p ≥ p∗ and blows up in a finite time for p < p∗.

Proof. From (3.5), we have ω′ (p) < 0 for M < 1. It follows from Lemma 3.1 that

there exists exactly one solution, denoted by p∗, such that u exists globally for p ≥ p∗

and blows up in a finite time for p < p∗. By solving (3.4) for p, we have (3.6).

For the case M = 1, the results do not depend on the exponent p. From

Lemma 3.1, we have the following results.

Corollary 3.5. For M = 1,

(i) if

α ≤
(N − 2)π(N−3)/2

R (1 +R)β Γ
(

N−1
2

)

(

∏N−3
i=1

∫ π

0
sini ϕdϕ

) ,

then u exists globally for any p.

(ii) if

α >
(N − 2)π(N−3)/2

R (1 +R)β Γ
(

N−1
2

)

(

∏N−3
i=1

∫ π

0
sini ϕdϕ

) ,

then u blows up in a finite time for any p.
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