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ABSTRACT. We investigate in this paper an ill-posed backward heat conduction problem of de-

termining the unknown initial temperature and heat source from given observation at a fixed internal

location and the solution value at terminal time. Unlike the classical single parameter identification

problems, this ill-posed problem requires the determination of two independent unknown functions

from scattered measurement of noisy data. Proof on the uniqueness of the solution is obtained by

transforming the original heat conduction equation into an operator equation of the first kind. A

new algorithm for the construction of the solution to the backward problem is derived by using the

Landweber iteration method for the solution of the corresponding conjugate operator equation. Nu-

merical verification on the efficiency and accuracy of the proposed algorithm is performed by solving

several benchmark examples. The proposed method is readily extendable to solve more general

multi-parameter identification problems.

AMS (MOS) Subject Classification. 35R30; 49J20.

1. Introduction

In the modelling of physical phenomena, heat conduction problems are com-

monly encountered in many branches of engineering and sciences. For real industrial

application, there is a need to determine some thermo-physical properties of a heat

conducting body from given measurements of initial temperature value, diffusion co-

efficient, source term and/or boundary conditions. These measurements, however,

are in general very difficult to obtain and hence some kinds of indirect methods are

proposed as inverse heat conduction problems [3–5,7–11]. It is well known that these

kinds of inverse heat conduction problems are ill-posed in the sense that a small noise

in the given data can induce enormous error in the approximation of the solution.

Inverse problems for determining single parameter in heat conduction equations

have been well studied in the literatures (see, for instance [6, 15, 23, 26, 30, 34]). It is
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well-known that the inverse problem of identifying the unknown initial temperature

from final observation data is severely ill-posed in the Hadamard sense that any

arbitrarily small changes in the input data may lead to arbitrarily enormous changes

in the solution (see [17, 25]). For inverse problem of identifying the unknown heat

source, on the other hand, the level of ill-posedness is not too severe. It has been

proven that the problem can be transformed to a numerical differentiation problem

(see [29]). The inverse initial value problems for parabolic equations have attracted

the attention of many authors (see [6, 23]), whilst the inverse source problems are

interested to many engineers (see [2, 3, 18, 19]). To obtain stable solutions for these

ill-posed problems, proper regularization techniques are necessary. For instance, the

authors in [6] proposed a quasi Tikhonov regularization method to treat the two-

dimensional backward heat conduction problem by fundamental solutions.

The identification of unknown heat source for heat conduction equation with

variable coefficients has been studied in [18] by using the boundary element method.

A similar problem is also discussed in [30] using the optimal control method, in

which the global uniqueness and stability of the minimizer are proven. Numerical

reconstruction for the case of time-dependent heat source is obtained by using the

Landweber iteration in [32]. In [16], the method of fundamental solutions (MFS)

is firstly proposed to tackle the inverse heat conduction problem and later applied

in [24,29] to handle the inverse source problem. Refer [31,33] for the case of space and

time dependent heat source for simple 1D heat conduction equation with constant

coefficient.

In this paper, we investigate an ill-posed backward heat conduction problem of

simultaneously identifying the unknown initial temperature and heat source term as

stated in the following:

Problem P Consider an initial-boundary value problem of heat conduction

equation:

(1.1)





ut − ∆u = f(t), (x, t) ∈ Q = (0, l) × (0, T ],

ux|x=0 = ux|x=l = 0, t ∈ (0, T ],

u|t=0 = φ(x), x ∈ (0, l),

where the initial temperature value φ(x) and the time-dependent heat source term

f(t) are unknown. Given the following two additional conditions

(1.2) u(x, T ) = ψ(x), x ∈ [0, l],

and

(1.3) u(x0, t) = g(t), t ∈ [0, T ],

where x0 ∈ [0, l] is a fixed point and the functions g, ψ satisfy the admissible condition

g(T ) = ψ(x0), g(0) = φ(x0).
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The inverse problem P is to determine the unknown functions φ, f and u satisfying

(1.1)–(1.3). As mentioned above, this problem is coupled by a severely ill-posed

problem and a mildly ill-posed one.

In [28], the inverse problem of simultaneously reconstructing the initial value φ(x)

and the heat radiative coefficient p(x) in the following heat conduction equation:




ut − ∆u+ p(x)u = 0, (x, t) ∈ Q = Ω × (0, T ],

u|∂Ω = 0, t ∈ (0, T ],

u|t=0 = φ(x), x ∈ Ω,

has been studied, in which the measurements of the temperature are given at a fixed

time and a subregion of the physical domain. The uniqueness of this inverse problem is

proven by using the Carleman-type estimation and the numerical solution is obtained

by the finite element method. In [20, 27], the inverse problem of simultaneously

identifying two spatial dependent coefficients f(x) and φ(x) in the following heat

conduction equation




ut − ∆u = f(x), (x, t) ∈ Q = Ω × (0, T ],

u|∂Ω = 0, t ∈ (0, T ],

u|t=0 = φ(x), x ∈ Ω,

is studied, in which the additional conditions are given at two different terminal

observation time t = T1 and t = T2, respectively. The numerical results are obtained

by the boundary element method (BEM) and the method of fundamental solutions

(MFS), respectively.

In this following sections, we first show that the inverse problem P can be divided

into an inverse initial value problem and an inverse source problem. Although the so-

lutions to these two problems can be obtained iteratively, the numerical computations

involve solving a numerical differential problem for noisy input data, which is severely

ill-conditioned and unstable. To tackle this stability problem, we first transform the

original heat conduction equation into an operator equation of the first kind and pro-

pose a new algorithm to reconstruct the unknown initial temperature and heat source

simultaneously by adopting the Landweber-iteration method (see [12,21]). Unlike the

classical single-parameter identification problems, which is rather difficult to obtain

the exact formation of the conjugate operator, we successfully reconstruct the un-

known values from using the δ-function and the operator decomposition method in

solving the corresponding conjugate operator equation.

This paper is organized as follows. In Section 2, the uniqueness of the solution for

the inverse problem P is proven. In Section 3, the inverse problem P is transformed

into an operator equation of first kind and the specific form of the conjugate operator

is resolved. In Section 4, a new numerical algorithm based on the Landweber iteration

method is devised to simultaneously reconstruct the approximated solutions of the
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unknown initial temperature and heat source. Some benchmark numerical examples

are given in the last section to demonstrate the validity and effectiveness of the

proposed method.

2. Uniqueness

Assume that φ(x) is a given function which is consistent with the homogeneous

Neumann boundary condition and satisfies

(2.1) φ(x) ∈ C3,α(0, l)

and f(t) is a given function which satisfies

(2.2) f(t) ∈ C
α

2 (0, T ),

where α is a constant in (0, 1). From the well-known Schauder’s theory for para-

bolic equations (see [13, 22]), we know that there exists a unique solution, u(x, t) ∈
C3+α,1+ α

2 (Q̄), to the direct problem (1.1).

Therefore, we assume that the additional observation data ψ(x) and g(t) satisfy

the following conditions:

(2.3) ψ(x) ∈ C3,α(0, l)

and

(2.4) g(t) ∈ C1+ α

2 (0, T ).

Theorem 2.1. Assume that (φi, fi), i = 1, 2 are solutions of the inverse problem

P corresponding to the additional observation data (ψi, gi), i = 1, 2 which satisfy

(2.3)–(2.4). If

(2.5) (ψ1, g1) = (ψ2, g2),

then we have

(φ1, f1) = (φ2, f2), (x, t) ∈ Q̄.

Proof. It is clear that (φ1, f1) satisfies the following equation:

(2.6)






u1t − ∆u1 = f1(t), (x, t) ∈ Q,

u1x|x=0 = u1x|x=l = 0,

u1|t=0 = φ1(x),

and

(2.7) u1(x, T ) = ψ1(x), u1(x0, t) = g1(t).
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For (φ2, f2), we have

(2.8)





u1t − ∆u2 = f2(t), (x, t) ∈ Q,

u2x|x=0 = u2x|x=l = 0,

u2|t=0 = φ2(x),

and

(2.9) u2(x, T ) = ψ2(x), u2(x0, t) = g2(t).

Let

F (t) = f1(t) − f2(t), Φ(x) = φ1(x) − φ2(x), U(x, t) = u1(x, t) − u2(x, t).

From (2.6)–(2.9) and the condition (2.5), we have

(2.10)





Ut − ∆U = F (t), (x, t) ∈ Q,

Ux|x=0 = Ux|x=l = 0,

U |t=0 = Φ(x),

and

(2.11) U(x, T ) = 0, U(x0, t) = 0.

To obtain the uniqueness result, we need to illustrate that equations (2.10) and

(2.11) has only trivial solution as follow:

Differentiating U with x and denoting by V = Ux, then V satisfies the following

equation: 




Vt − ∆V = 0, (x, t) ∈ Q,

V |x=0 = V |x=l = 0,

V |t=0 = Φ
′

(x),

and

V (x, T ) = 0.

By the standard theory of backward problem for parabolic equations (see [17]), we

know that

Φ
′

(x) ≡ 0,

i.e.,

(2.12) Φ(x) = C,

where C is a constant. Since U(x0, 0) = Φ(x0) = 0, from (2.12) we have

φ1(x) − φ2(x) = Φ(x) ≡ 0.

Therefore, U(x, t) satisfies the following equation:




Ut − ∆U = F (t), (x, t) ∈ Q,

Ux|x=0 = Ux|x=l = 0,

U |t=0 = 0,
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and

U(x0, t) = 0.

By the standard theory of inverse source problem for parabolic equations (see [32]),

we have

F (t) = f1(t) − f2(t) = 0, t ∈ [0, T ].

This completes the proof of Theorem 2.1.

We remark here that the regularity conditions (2.1) and (2.2) are required to prove

the uniqueness of the solution. It is not necessary in the numerical computation.

3. Operator equation of the first kind

Denote the function space:

H1
ω(0, l) = {u | u ∈ H1(0, l), ux|x=0 = ux|x=l = 0},

where H1 is the normal Sobolev space (see [1]).

Assume that

f(t) ∈ L2(0, T ) and φ(x) ∈ L2(0, l).

From the standard parabolic theory (see [13,22]), there exists a unique weak solution

u(x, t) to the forward problem (1.1) with the following regularities:

u(x, t) ∈ L2
(
0, T ;H1

ω(0, l)
)⋂

L∞
(
0, T ;L2(0, l)

)
.

Let K be the Parameter-to-Data mapping:

K : L2(0, T ) × L2(0, l) → L2(0, T ) × L2(0, l)

K

(
f

φ

)
=

(
g

ψ

)
.(3.1)

Let G(x− ξ, t− τ) be the solution of the following equation:




Gt − ∆G = δ(x− ξ, t− τ), (x, t) ∈ Q,

Gx|x=0 = Gx|x=l = 0,

G|t=0 = 0.

It can be observed thatG(x−ξ, t−τ) is the Green’s function of the operator ∂t−∆ with

homogeneous Neumann boundary condition. By the well-known Green’s formulation,

the solution of (1.1) has the following form:

(3.2) u(x, t) =

∫ t

0

∫ l

0

G(x− ξ, t− τ)f(τ)dξdτ +

∫ l

0

G(x− ξ, t)φ(ξ)dξ.

From (3.2), the operator K can be rewritten as

(3.3) K =

(
P1 P2

Q1 Q2

)
.
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Here, P1 is defined as

(3.4) P1f = u1(x0, t) = g1(t),

where u1(x, t) satisfies the following equation:

(3.5)





u1t − ∆u1 = f(t), (x, t) ∈ Q,

u1x|x=0 = u1x|x=l = 0,

u1|t=0 = 0;

P2 is defined as

(3.6) P2φ = u2(x0, t) = g2(t),

where u2(x, t) satisfies the following equation:

(3.7)





u2t − ∆u2 = 0, (x, t) ∈ Q,

u2x|x=0 = u2x|x=l = 0,

u2|t=0 = φ(x);

Q1 is defined as

(3.8) Q1f = u1(x, T ) = ψ1(x);

and Q2 is defined as

(3.9) Q2φ = u2(x, T ) = ψ2(x).

Combining (3.1), (3.3)-(3.9), we have

P1f + P2φ = g1 + g2 = g,

and

Q1f +Q2φ = ψ1 + ψ2 = ψ.

From (3.1) the conjugate operator K∗ of K can be written as

(3.10) K∗ =

(
P ∗

1 Q∗

1

P ∗

2 Q∗

2

)
.

In the following we will derive the specific form of the operators P ∗

1 , P
∗

2 , Q
∗

1 and

Q∗

2. We first need the following several lemmas.

Lemma 3.1. For any given h1(t) ∈ L2(0, T ), let v1(x0, ·) = P ∗

1 h, where P ∗

1 is the

conjugate operator of P1. Then v1 satisfies the following backward parabolic equation:

(3.11)






−v1t − ∆v1 = h(t), (x, t) ∈ Q,

v1x|x=0 = v1x|x=l = 0,

v1|t=T = 0.

The proof can be found in [32].
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Lemma 3.2. For any given ξ1(x) ∈ L2(0, l), let v2(·, 0) = Q∗

2ξ1, where Q∗

2 is the

conjugate operator of Q2. Then v2 satisfies the following backward parabolic equation:

(3.12)





−v2t − ∆v2 = 0, (x, t) ∈ Q,

v2x|x=0 = v2x|x=l = 0,

v2|t=T = ξ1(x).

Proof. Let L be the differential operator:

Lu2 = u2t − ∆u2,

and L∗ denotes the adjoint operator of L:

L∗v2 = −v2t − ∆v2.

From (3.7) and (3.12) we have

0 =

∫ T

0

∫ l

0

(v2Lu2 − u2L
∗v2)dxdt

=

∫ T

0

∫ l

0

(v2u2t + u2v2t)dxdt+

∫ T

0

∫ l

0

(u2∆v2 − v2∆u2)dxdt

=

∫ l

0

u2v2

∣∣∣∣
t=T

t=0

dx+

∫ T

0

(u2v2x − v2u2x)

∣∣∣∣
x=l

x=0

dt

=

∫ l

0

u2(x, T )v2(x, T )dx−
∫ l

0

u2(x, 0)v2(x, 0)dx,

i.e.,

〈Q2φ, ξ1〉 = 〈φ, v2(x, 0)〉.
This completes the proof of Lemma 3.2.

Lemma 3.3. For any given ξ2(x) ∈ L2(0, l), let v3(·) = Q∗

1ξ2, where Q∗

1 is the

conjugate operator of Q1. Then we have

v3(t) =

∫ l

0

ṽ3(x, t)dx,

where ṽ3 satisfies the following parabolic equation:

(3.13)





−ṽ3t − ∆ṽ3 = 0, (x, t) ∈ Q,

ṽ3x|x=0 = ṽ3x|x=l = 0,

ṽ3|t=T = ξ2(x).

Proof. From (3.5) and (3.13) we have

∫ T

0

∫ l

0

(ṽ3Lu1 − u1L
∗ṽ3)dxdt =

∫ l

0

u1ṽ3

∣∣∣∣
t=T

t=0

dx

=

∫ l

0

u1(x, T )ṽ3(x, T )dx

= 〈Q1f, ξ2〉.(3.14)
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From (3.5) and the definition of v3, the left-hand-side of (3.14) can be rewritten

as
∫ T

0

∫ l

0

ṽ3f(t)dxdt =

∫ T

0

f(t)

(∫ l

0

ṽ3dx

)
dt

= 〈f, v3(·)〉
= 〈Q1f, ξ2〉.

This completes the proof of Lemma 3.3.

Lemma 3.4. For any given h2(t) ∈ L2(0, T ), let v4(·, 0) = P ∗

2 h2, where P ∗

2 is the

conjugate operator of P2. Then v4 satisfies the following backward parabolic equation:

(3.15)





−v4t − ∆v4 = h2(t)δ(x− x0), (x, t) ∈ Q,

v4x|x=0 = v4x|x=l = 0,

v4|t=T = 0,

where δ is the Delta-function concentrated at x = x0.

Proof. From (3.6), (3.7) and (3.15) we have
∫ T

0

∫ l

0

(v4Lu2 − u2L
∗v4)dxdt =

∫ l

0

u2v4

∣∣∣∣
t=T

t=0

dx

= −
∫ l

0

u2(x, 0)v4(x, 0)dx

= −〈φ(x), v4(x, 0)〉.(3.16)

Moreover, the left-hand-side of (3.16) can be rewritten as

−
∫ T

0

∫ l

0

u2(x, t)δ(x− x0)h2(t)dxdt = −
∫ T

0

u2(x0, t)h2(t)dt

= −〈P2φ, h2〉.(3.17)

The proof can be obtained from (3.16) and (3.17).

We then have the following theorem.

Theorem 3.5. The conjugate operator K∗ of K is given by (3.10), where the specific

forms of the operators P ∗

1 , P ∗

2 , Q∗

1 and Q∗

2 are given in Lemmas 3.1–3.4.

4. Convergence

In this section, we use the Landweber iteration method to deal with the operator

equation (3.1).

Since equation (3.1) can be rewritten in the following form:

(4.1)

(
f

φ

)
= (I − aK∗K)

(
f

φ

)
+ aK∗

(
g

ψ

)
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for some a > 0, we use the iteration method to compute the solution of (4.1), i.e.,
(
f0

φ0

)
=

(
finitial

φinitial

)
,

(
fm

φm

)
= (I − aK∗K)

(
fm−1

φm−1

)
+ aK∗

(
g

ψ

)
, m = 1, 2, 3, . . . .(4.2)

From the definition of K and (4.2) we have
(
fm

φm

)
=

(
fm−1

φm−1

)
− aK∗

(
K

(
fm−1

φm−1

)
−
(

g

ψ

))

=

(
fm−1

φm−1

)
− aK∗

(
um−1(x0, t) − g(t)

um−1(x, T ) − ψ(x)

)
,

where um−1 is the solution of (1.1) with

(
f

φ

)
=

(
fm−1

φm−1

)
.

The procedure of the iteration algorithm can be stated as follows:

(Step 1). Choose an initial value for the iteration

(
f

φ

)
=

(
f0

φ0

)
. For

simplicity, we can choose

(
f0(t)

φ0(x)

)
=

(
0

0

)
, t ∈ (0, T ), x ∈ (0, l).

(Step 2). Solve the initial-boundary value problem (1.1) to obtain the solution

u0(x, t), where

(
f

φ

)
=

(
f0

φ0

)
.

(Step 3). Let

−→
V0 =

(
v1(x0, t) + v3(x0, t)

v2(x, 0) + v4(x, 0)

)
,

where v1 is the solution of (3.11) with h1 = u0(x0, ·)−g(·), v2 is the solution of (3.12)

with ξ1 = u0(·, T ) − ψ(·), v3 =

∫ l

0

ṽ3(x, t)dx, and ṽ3 is the solution of (3.13) with

ξ2 = u0(·, T ) − ψ(·), and v4 is the solution of (3.15) with h2 = u0(x0, ·) − g(·).
(Step 4). Let (

f1(t)

φ1(x)

)
=

(
f0(t)

φ0(x)

)
− a

−→
V0,

and u1(x, t) be the solution of (1.1) with

(
f

φ

)
=

(
f1

φ1

)
.

(Step 5). Select two arbitrarily small positive constants ε1 and ε2 as error

bounds. Compute (
‖u1(x0, t) − g(t)‖
‖u1(x, T ) − ψ(x)‖

)
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and compare it with

(
ε1

ε2

)
.

If

‖u1(x0, t) − g(t)‖ < ε1, and ‖u1(x, T ) − ψ(x)‖ < ε2,

then stop the iteration and take

(
f

φ

)
=

(
f1

φ1

)
;

If

‖u1(x0, t) − g(t)‖ ≥ ε1, or ‖u1(x, T ) − ψ(x)‖ ≥ ε2,

then go back to (Step 3). Let

(
f1

φ1

)
be a new initial value and repeat the iteration

until the error bounds are reached.

Remark 4.1. In (Step 3) there is a δ-function in (3.15). It is well known that

the function δ(x − x0) has singularity at x = x0. To avoid this singularity, in the

numerical procedure, the delta function is approximated by the Gaussian function:

δ(x− x0) ≈
1

σ
√

2π
e−

(x−x0)2

2σ
2 , σ > 0,

where the parameter σ is taken to be relatively small.

By the standard theory of the Landweber iteration (see [12, 21]), we have the

following convergence results.

Theorem 4.1. Let g ∈ L2(0, T ), ψ ∈ H1(0, l) and u, f and φ be the unique solution

to the inverse problem P according to Theorem 2.1. Assume that a satisfies 0 <

a < 1/‖K‖2 and um, fm and φm be the mth approximation in the above iterative

procedure, we have

lim
m→∞

‖f − fm‖L2(0,T ) = 0 and lim
m→∞

‖φ− φm‖L2(0,l) = 0

for every initial function f0 ∈ L2(0, T ) and φ0 ∈ L2(0, l).

Since the proposed iterative procedure is a regularization method, it works with

inexact data. Assume that the exact solutions f and φ are attainable, i.e., there exist

functions f ∈ L2(0, T ) and φ ∈ L2(0, l) such that

u(x0, t; f, φ) = g(t), u(x, T ; f, φ) = ψ(x)

and an upper bound δ for the noise level

‖gδ − g‖ ≤ δ, ‖ψδ − ψ‖ ≤ δ

of the observation is known a-priori. Given the noise level δ, we can use the discrep-

ancy principle [12] to obtain a stopping criterion for the iterative algorithm.
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Theorem 4.2. Let r > 1 and ‖gδ‖, ‖ψδ‖ ≥ rδ and fm,δ and φm,δ be the mth approx-

imation defined in (4.1) with (g, ψ) replaced by (gδ, ψδ), for some 0 < a < 1/‖K‖2.

Then we have

lim
m→∞

‖um,δ(x0, ·) − gδ‖ = 0, lim
m→∞

‖um,δ(·, T ) − ψδ‖ = 0

for every δ > 0, which implies the following stopping rule: one can stop the iterative

procedure at the m(δ)th iteration, where m(δ) ∈ N is the smallest integer with

min
{
‖um,δ(x0, ·) − gδ‖, ‖um,δ(·, T ) − ψδ‖

}
≤ rδ.

Moreover, for m(δ) we have

δ2m(δ) → 0, as δ → 0.

The proof of Theorem 4.2 can be found in [12, 21].

5. Numerical examples

We construct in this section three numerical experiments to verify the stability

and effectiveness of the proposed algorithm. In all these experiments, the values of

the basic parameters are:

l = 0.5, T = 0.2, x0 = 0.25, a = 1.

In the numerical computations for the solutions of the direct problems, the stan-

dard finite difference method is applied, where the spatial step size ∆x and the time

step size ∆t are taken as:

∆x = ∆t = 0.01.

We use the symbols σφ and σf to denote the stopping parameters in the iteration

procedure, i.e.,

σφ = ‖u(x, T ; f, φ) − ψδ(x)‖L2(0,l),

σf = ‖u(x0, t; f, φ) − gδ(t)‖L2(0,T ),

and the symbols Eφ and Ef to denote the relative L2-norm error between the exact

solutions φ(x), f(t) and the numerical reconstructed solutions φ̃(x), f̃(t), i.e.,

Eφ = ‖φ̃(x) − φ(x)‖/‖φ(x)‖,

Ef = ‖f̃(t) − f(t)‖/‖f(t)‖.

For general heat source term f(x, t), it is not difficult to construct an analytic

solution u(x, t) of heat conduction equations which satisfies the given initial value φ(x)

and heat source f(x, t). In fact, one can specify an arbitrary function u(x, t) which

satisfies the homogeneous Neumann condition and substitute it into (1.1) to obtain

the exact initial temperature φ(x) and heat source f(x, t). However, in the inverse

problem P, there contains two independent unknown functions φ(x) and f(t) such
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that the time-dependent heat source function f is independent of the spatial variable

x in which the above analytic construction method does not work. Therefore, in the

following numerical computations, the observation data ψ(x) and g(t) are given by

ψ(x) = u(x, T ;φ, f), g(t) = u(x0, t;φ, f),

where u(x, t) is the numerical approximation to the solution of (1.1) with given input

data φ(x) and f(t).

Example 1. In the first numerical experiment, we consider

φ(x) =
1

10
sin2(2πx), x ∈ [0, l],

f(t) = 100, t ∈ (0, T ],

in which the heat source is a constant function and the initial temperature value is a

quadratic sine function.

The reconstructed solutions φ(x) and f(t) with exact input data are shown in

Fig. 1. The initial guess f0(t) is taken to be zero. Noticing that the exact solution

is 100, we can observe from Fig. 1 that although the initial guess is no good, the

iterative algorithm converges stably and efficiently to a satisfactory reconstructed

solution. The initial temperature value φ(x) is also well reconstructed as seen from

Fig. 1 that the curves of the numerical approximation and the exact solution coincide

almost everywhere except some small interval close to the boundary.
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δ=0.5%
δ=1%

Fig. 1. Reconstruction of the initial value with noisy data for Example 1.



596 L. YANG, Z-C. DENG, AND Y-C. HON

We also consider the case of noisy input data to test the stability of our algorithm.

The noisy data are generated in the following form

(5.1) ψδ(x) = ψ(x)[1 + δ × random(x)], gδ(t) = g(t)[1 + δ × random(t)]

with δ = 0.5% and δ = 1%. The reconstruction results are displayed in Fig. 1 and

Fig. 2 in which satisfactory approximation is obtained even under the case of noisy

data. We can see from Fig. 1 that the inverse backward problem is very sensitive to

the data errors whilst the inverse source problem is only mildly affected. For exact

observation data, the accuracy for the initial temperature value can achieve to 3.87%,

whilst for inexact case with noise level δ = 0.5%, the accuracy only decreases to

13.99%. The iteration number k, stopping parameter σ, and relative L2-norm error

E for various noisy level δ are given in Tab. 1.
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f(
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exact
δ=0
δ=0.5%
δ=1%

Fig. 2. Reconstruction of the heat source with noisy data for Example 1.

Table 1.The values of k, Eφ, Ef , σφ and σf with various noisy level δ for Example 1.

δ = 0 δ = 0.5% δ = 1%

k 500 400 300

Eφ 3.87 × 10−2 1.399 × 10−1 1.907 × 10−1

Ef 2 × 10−4 1.7 × 10−3 2.5 × 10−3

σφ 3.47 × 10−7 5.1 × 10−2 1.002 × 10−1

σf 1 × 10−4 1.81 × 10−2 3.66 × 10−2
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Remark 5.1. To facilitate an easy check on the numerical results, the random func-

tions in (5.1) are replaced by

ψδ(xj) = ψ(xj)[1 + δ × sin(xj)], gδ(tj) = g(tj)[1 + δ × sin(tj)].

Example 2. In the second numerical experiment, we take

φ(x) = 0.255, x ∈ [0, l],

f(t) =

{
10t, 0 ≤ t ≤ T

2
,

10(T − t), T
2
≤ t ≤ T.

In this example, the initial value is a constant function and the heat source is a

continuous but not differentiable function. It can be easily seen that there is a sharp

point at t = T
2

which, in general, is very difficult to be reconstructed.
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0.255
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x

φ(
x)

exact
δ=0
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δ=1%

Fig. 3. Reconstruction of the initial value with noisy data for Example 2.

The exact solution and the recovery one are given in Fig. 3 and Fig. 4. The

initial value is recovered more precise than the case given in Example 1. For the heat

source, the reconstruction result is also satisfactory. We can observe from Fig. 4 that,

after about 5000 iterations, the unknown heat source is recovered quite well except

near the neighborhood of the cusp x = 0.25. In this experiment, due to the rather

poor regularity, it is very difficult to exactly reconstruct the cuspidal property of the

unknown coefficients. The iteration process converges slowly near the sharp point.

To achieve a satisfactory result, we may need more iterations than that in Example 1.
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Table 2. The values of k, Eφ, Ef , σφ and σf with various noisy level δ for Example 2.

δ = 0 δ = 0.5% δ = 1%

k 5000 4000 3000

Eφ 5.3 × 10−3 8.5 × 10−3 9.0 × 10−3

Ef 3.88 × 10−2 5.38 × 10−2 6.46 × 10−2

σφ 3.54 × 10−9 3.502 × 10−4 7.154 × 10−4

σf 1.034 × 10−4 2.206 × 10−4 3.562 × 10−4

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

f(
t)

exact
δ=0
δ=0.5%
δ=1%

Fig. 4. Reconstruction of the heat source with noisy data for Example 2.

Likewise, the reconstructions of φ(x) and f(t) from the noisy data ψδ(x) and

gδ(t) are also performed, where the noise level δ is taken as 0.5% and 1%, respectively.

Some computation parameters k, Eφ, Ef , σφ and σf for exact input data and noisy

one respectively are given in Tab. 2.

Remark 5.2. In general, the main idea of regularization methods for inverse prob-

lems is to approximate the ill-posed solution by a sequence of regularized solutions

which are smooth functions. From the numerical point of view, it is rather difficult

to precisely reconstruct the discontinuous property of the unknown source function

(the heat source coefficient in current model is continuous but its first derivative is

discontinuous). This phenomenon is called over-smoothing in the theory of inverse

problems. In such case, some efficient regularization methods such as total variation

(TV) (see [12]) can be adopted.
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Example 3. In the third numerical experiment, we consider a more complicated

problem given by

φ(x) = 1 + 100[x(l − x)]2, x ∈ [0, l],

f(t) = 100t(T − t), t ∈ (0, T ].

Being different from previous examples, the initial value and the heat source are all

variable coefficients.
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Fig. 5. Reconstruction of the initial value at different iteration steps for Example 3.

The reconstruction results for different iteration (denoted by k) are shown in

Fig. 5 and Fig. 6. We can see that the shape of the unknown initial temperature value

and heat source are recovered very well after 5000 iterations. After 5000 iterations,

the iterative procedure converges slowly. The iteration number k, stopping parameter

σ, and relative L2-norm error E for various noisy level δ are given in Tab. 3. It

can be seen that as k = 5000, the stopping parameters are σφ = 7.34 × 10−12 and

σf = 2.188 × 10−4. We observe here that as k increase to 20000, the error only

decreases to 1.9115 × 10−13 and 5.58 × 10−5.

Table 3. The values of k, Eφ, Ef , σφ and σf for Example 3.

k = 5000 k = 10000 k = 20000

Eφ 1.31 × 10−2 1.33 × 10−2 1.36 × 10−2

Ef 1.025× 10−1 9.46 × 10−2 9.65 × 10−2

σφ 7.34 × 10−12 1.0384× 10−12 1.9115× 10−13

σf 2.188× 10−4 1.128× 10−4 5.58 × 10−5
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Remark 5.3. In this example, the noisy case is omitted mainly for the reason that

the input data has to be computed from solving the forward problem. In fact, we can

see from Tab. 3 that the relative L2-norm error of f(t) with k = 10000 is less than

that of k = 20000, which in general the reverse case should occur. This phenomenon

illustrates that the input data, which is obtained by the numerical solution of forward

problem, contain unavoidable computation error and for the noisy case, the stopping

criterion should be employed to terminate the iteration procedure.

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

f(
t)

exact
k=5000
k=10000
k=20000

Fig. 6. Reconstruction of heat source at different iteration steps for Example 3.

6. Concluding remarks

In this paper, we consider an inverse problem of simultaneously reconstructing the

initial temperature value φ and heat source f in the heat conduction equation (1.1)

using two additional conditions specified at a fixed internal point and the terminal

observation time. The uniqueness of the solution is proven and the inverse problem is

transformed into an operator equation of first kind so that a new iterative algorithm

on the basis of the Landweber iteration can be derived to stably obtain the numerical

solution. As shown in the several numerical examples, the proposed method is quite

effective for solving this kinds of inverse multi-parameter identification problems. As

mentioned in Sec. 2, the inverse problem considered in this paper can be treated as

two independent inverse coefficient problems, namely, an inverse source problem and

an inverse backward problem. Furthermore, the transformation applies to the case

of homogeneous Neumann condition. For other boundary condition cases, e.g., the
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Dirichlet boundary condition




ut − ∆u = f(t), (x, t) ∈ Q,

u|x=0 = u|x=l = 0,

u|t=0 = φ(x),

the method mentioned above may not work because the boundary condition after

differentiating with x is not known. Fortunately, with minor modification in (Step

3), our proposed method is still applicable for these cases. It should be mentioned

that with minor modification the conjugate gradient method (CGM) (see [14]) can

also be applied. Finally, it is worth noting that the approach given in this paper is

readily extendable to solve multi-dimensional inverse problems.
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