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1. INTRODUCTION

Boundary value problems with nonlocal boundary conditions arise in a variety of
different areas of applied mathematics and physics. For example, heat conduction,
chemical engineering, underground water flow, thermo-elasticity and plasma physics
can be reduced to nonlocal problems. They include two, three and multi-point bound-
ary value problems as special cases and also they have attracted the attention of many
authors [3, 6-10, 15] such as Gallardo [5], Karakostas and Tsamatos [12] and the ref-

erences therein.

While Nieto and Rodriguez-Lopez [14] considered the first order problem

y () +ryt) = (1), te[0,1],

n

My(t) = vu(t),
=1
Anderson [1] studied the following problem (if T = R)
y'(t) +r(t)y(t) = Af(ty(t), tel01],

y(0) = y(1) + Z%y(tj),

where the nonlinear term f (¢, y(t)) is allowed to take on negative values.

Zhao [16] investigated the problem (if T = R)
y(t) +r(t)y(t) = Af(t,y(t), tel01],
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where g denotes a nonlinear term.

In 2013, Anderson [2] interested in the first order boundary value problem given
by

m

y'(t) —r(ty(t) = Z filt,y(@)), <01,

My (0) = y(1)+ > A7, y(7)), 7 €10,1],

j=1
where nonlinear continuous functions f; and A; are all nonnegative.

In [9], using Krasnosel’ski"1’s fixed point theorem, Goodrich studied the existence

of a positive solution to the first-order problem given by (if T = R)

Y1)+ pO)(t) = At y(0), ¢ € (ab),
y(a) = y(b) + / Fs,y(s))ds,

T1

where 71,7y € [a, bl with 71 < 7o, p and F' are nonnegative functions and the nonlin-

earity f can be negative for some values of ¢ and y.

In recent paper [4], Cetin and Topal concerned with the existence and iteration

of positive solutions for the nonlinear nonlocal first order multipoint problem

(1.1) y'(t) +p(t)y(t) = AZ filt,y(t)), te€][0,1],
(1.2) y(0) =y(1) + Zgj(tj,y(tj)), t; €0,1],
with A = 1.

Motivated by the above works, in this paper, we will interested in the exis-
tence of at least one, two and three positive solutions to the semipositone first-
order nonlinear boundary value problem (1.1)—(1.2), where the continuous function
fi :0,1] x [0, 00) — R is semipositone, i.e., f;(¢,y) needn’t be positive for all ¢ € [0, 1]
and all y > 0, p : [0,1] — [0,00) is continuous and does not vanish identically and

the nonlinear functions g, : [0, 1] x [0,00) — [0, 00) satisfy

0 <vj(t,y)y < g;(t,y) <v(t,y)y, te€0,1]

for some positive continuous (possibly nonlinear) functions v;, v; : [0,1] x [0,00) —
[0, 00).
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2. PRELIMINARIES
In this section we collect some preliminary results that will be used in main

results which give the existence of positive solutions of the main problem (1.1)—(1.2).

We initially construct the Green function for the linear first order boundary value

problem
(2.1) y'() +pt)yt) =1, te0,1],
(2.2) y(0) =y(1).

The techniques here are standard when establishing the Green function given in [4].
Lemma 2.1. The unique solution w(t) of the problem (2.1)—(2.2)

w(t) = /01 G(t, s)ds,

where

~exp(— [ p6)de) [ 1, s <t
23t )_1—exp<—f01p<f>d5>{exp(—f5p<£>d£>, s>t

_ T4exp( [} p(£)dE)
< ¥ .
satisfies w(t) < 1—exp(— [ p(€)de)

Proof. Set

w(t) = /0 1 G(t, s)ds

_ /t exp(— f p d8+ / exp(— £)d€) exp(— fo
0

1 —exp(— 1 — exp(— fo
¢ 1 exp([. p(€)d¢) exp(— fo
= /ol—exp d8+/ 1—exp fo
1
ex d.
T ( VRCE)
L+ exp(fy p(€)dS)

1= exp(— Jy p(&)de)
Lemma 2.2 ([4]). The Green function G(t,s) which is given by (2.3) satisfies

exp (— /Olp(ﬁ)df) G(s,s) < G(t,s) < exp ( §)ds ) G(s

Lemma 2.3. The function y(t) is a solution of the pmblem (1 1)—(1.2) if and only if

- Z1/0 G(t,s)fi(s,y(s))ds + el Z

1 —exp(—

where G(t,s) is defined by (2.3)
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In the proof of Theorem 2.2 in [2], the similar result has been given. Therefore,
we don’t restate the proof here. Also the solution of the problem (1.1)—(1.2) is given
in [4] for A = 1.

The following theorems play an important role to prove our main results.

Theorem 2.4 ([11]). Let E = (E,|| - ||) be a Banach space, and let P C E be a cone
in B. Assume Q,$Qs are bounded open subsets of E with 0 € Q1,Q1 C Qs, and let
S PN (Q\Q) — P be a continuous and completely continuous operator such that,

either

(a) ||Su|| < ||ul|, v € PNoQy, and ||Su|| > ||ul|, w € PN 0Qs, or
(b) ||Su|| = ||u|l, w € PNOQy, and ||Sul| < [Jul|, u € PN INs.

Then S has a fized point in PN (Q\Qy).

Theorem 2.5 ([13]). Let P be a cone in Banach space E. Let v,  and 7 be three

increasing, nonnegative and continuous functionals on P, satisfying for some ¢ > 0

and M > 0 such that v(z) < f(z) < a(z) and ||z|| < M~y(x), for all x € P(v,c)
Suppose there exists a completely continuous operator T : P(y,¢) — P and 0 < a <
b < ¢ such that

(i) v(Tx) < ¢, for all x € OP(v,c);
(ii) B(Tx) > b, for all x € OP(5,b);
(iii) P(a,a) # 0 and a(Tx) < a for all x € OP(a, a).

Then T has at least three positive solutions x1,xo,x3 € P(7,c) satisfying

0< Oé(.ﬁ(fl) <a< Oé(LUQ), 6(252) <b< 6(2[‘3), ’}/(1’3) <c.

3. MAIN RESULTS

In this section, we will give the existence results of positive solutions for the
problem (1.1)—(1.2).

Let E denote the Banach space C[0,1] with the norm |y| = maxcpq|y(t)|-
Define the cone P C F by

P={yeE:ylt)=1lyl, telo,1]}

_ lexp(=— fy p(§)dE) (_ 1 ) .
where v = Trexp folop o P Jy p(&)d€ ) and we can easily see that 0 <y < 1.

The main results of this paper are following;:

Theorem 3.1. Assume that the following conditions are satisfied:

(Cy) There exists a constant M > 0 such that fi(t,y) > —M for all (t,y) € [0,1] x
[0, 00),

(Cy) limy_ oo fi(;’y) = o0 fort € 0,1].
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Then there ezists a positive number \* such that the problem (1.1)—(1.2) has at least
one positive solution for 0 < A < \*.

Proof. Let z(t) = AMw(t), where w(t) is the unique solution of the boundary value
problem (2.1)—(2.2).

We shall show that the following boundary value problem

(3.1) W () + pu(t) =AY Filt,uw(t), te o1,
(3.2) u(0) = u(1) + Zgj(tj,ux(tj)), t; €0,1],

has at least one positive solution where we'll take F;(t,u,(t)) := fi(t,u,) + M and
uz(t) := max{u(t) — x(t),0}.
We define the operator T : P — E with

Tu(t) ::)\/ (t,s ZF (s, uz(s ds+ xp(= Zgg (25, ual

— exp(— f oD

It is well known that the existence of positive solutions to the problem (3.1)—(3.2) is

equivalent to the existence of fixed points of the operator T in our cone P.

First, it is obvious that 1" is completely continuous by a standard application of
the Arzela-Ascoli Theorem.

Also, for any u € P, we get

Tu(t) = A /0 G(t,s)ZFi(s,ux(s))der)\ /t Glt,5) > Fils, ua())ds

exp(— f(f =
1 — exp(— fo d§ -

i (t, ua(t;))

> 2 /0 exp ( /0 p(§)d§) G(s,s)ZFi(s,um(s))ds
! - exp( §d§) &
o G(s,sgms,uz(s))m1_exp fo ) 2ot
Z n

Aexp (— / 1p<£>d£) / exp ( / 1p(£)d£) 5.9 D ol

n

x| 1p(€)d§) [ o ([ i) 6655 > Ffs e

exp(— fol o
1 —exp(— fo df -

gj(ty, us(t;))
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- (- 1p<5>ds) {A [ e ([ erte) s iz:;ms,ux(s))ds

+ Zgg (), ua(t; }

1 —exp(— fo

> exp (— / p<s>d§) el Jo 2O i,

1+ exp(f, p(&)de)

So, we get T'(P) C P.

For each r > 0, set 3; = maxy)cp0,1]x[0,] V;(t, ). Let define M; = max{ f;(t,y) +
M : (t,y) € [0,1] x [0,7]} and choose

* . r(1—exp(- fo §)dg)) —r Z] 1 Bi Ry?
A* = min .
Zz’:l M, oM

Let . ={u € E : ||u|| < r}. Then for any u € PN 9Q, we have 0 < u,(t) < u(t) <

|u|| = r and

1Tl

IA

A /0 exp( /0 p(&)d&)G(s,s)ZFi(s,ux(s))ds
+ f Zgj (£, ua

1 —exp(—

IA

L || D272, 55
A M,ds ]
/o 1 — exp(— fo €)de) ; o exp(— [ p(€)d€)

{A;Mi+||uxl|§:ﬁj}
{A*;M +r2@}<r—||ull

Therefore, we get ||Tu|| < ||ul, for u € P N 0L,

IN

1 — exp(— f, p(€)d€)

IA

1 — exp(— [y p(€)de)

We set o = M e po.1x (22, R) VS (t,y) for R > r. Let K; be positive real numbers
such that

)\ n m
1 Y )_1{52Ki+zaj}zl.
i=1 j=1

exp( [, p(£)d¢

In view of (C5), there exists a constant N > 0 such that for all z > N and t € [0, 1],
Fi(t,z) = fi(t,2) + M > K;z.

Now set R = r + % and Qr = {u € E : |lu]| < R}. We shall prove that
|Tu|| > ||u|| for v € PN OQg.
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Let u € PN OQg, then 0 < u,(t) < u(t) < ||ul| = R. From Lemma 2.1 and the
fact that v € P, we get

AM NM NM R R
u(t) = 2(t) > u(t) = = 2 ofjul - = 2R -5 > 4R -1 =12 50

and also u(t) — (t) > 2 > N. Thus, we have
Fi(t up(t)) = Fit, (u = 2)(8)) = Ki(u(t) = =(t)) = Ki% > 0.

So we obtain

rul = A [ e ( / 1p(€)d§> C(s.s) iF,-(s,ux(s))ds

eXP Zgj ]> :c

1 — exp(— fo
e </;p<£>ds> T
o f01f0 o igj@j,um(tj))
[k z L
ixfxp L fo iv*(tj,uxw»ux(m
. e:x:p(—fop1 {A§iKi+R]§%}

1-— eXp(— fo p(f)df) i=1

1 )\ n m
> RLESKi+S ajp > R=|ul.
exp(JL p(E)de) — 1 {2; ;a} l

Therefore we get ||[Tu|| > |ju|| for v € P N 0Qg. Consequently, it follows from
Theorem 2.1, T" has a fixed point u € P such that r < |Ju|| < R.

Moreover, u(t) > v|lul| > yr > 2MMy~!. Hence for t € [0,1], y(t) = u(t) —x(t) >

ML _ % = % > 0 and it can be easily seen that y is a solution of the problem

(17.1)7(1.2). 0

Theorem 3.2. Assume that the condition (Cy) and the following condition are sat-
isfied:

(C3) limy oo fi(;’y) =00 and lim,_,g % = oo fort € 0,1].

Then there ezists a positive number \* such that the problem (1.1)—(1.2) has at least
two positive solutions for O < A < \*.
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Proof. By the similar proof of Theorem 1, we can easily obtain that || Tu|| < |lu|| for

r1(1—exp(= [y p( 1200 B ey

u e PNoQ,, for each r; >0 and \* > min :Lle ) 2M

} with
ﬁ; = MaX(t,y)el0,1]x[0,r1] v;(t, y).

Y

If lim, g = 00, there exists a positive number o < 71 such that f;(¢,y) > ny

for 0 <y < ry, where n; > 0 is chosen such that

exp fo { Zm+2a}

with o} = ming 015222 vj(t,y). Then F;(t,u,) > nu, for u, € Q,,, t € [0,1].

So, we get |[Tuf| > — 2 {g S Y, a;} > 1y = ||u|| foru € PNOYY,.

Thus T has a fixed point u; in Q,, \ Q,, for 0 < A < X\* and it can be easily seen
that y1(¢) := uy(t) — x(t) is a positive solution of the problem (1.1)—(1.2) such that
ro <yl <1

If lim, fi(;’y) = 00, there exists an H > 0 such that f;(t,y) > Gy for y > H,
where (; > 0 is chosen such that

{ ZQ+ZQ**} > 1

with OK;* = min(t,y)e[o,l]x[%’rs} U;(t, y) Then E(t, Ux> > Quw for z > H.
Let r3 = max{2r, %} If uw € 09,,, then mingep 1y u(t) > v||lul| > H and r3 =
ul| > ux(t) > (u—2x)(t) > Z2. Hence Fi(t,uy) > G(u — x)(t) > 52, similarly in

Theorem 3.1. Since

rul = A [ e ( / 1p<s>ds) (s, 9) iﬂ(s,ux(S))dS

exp(— -
fo Z 95t ta

1 —exp(—

A 1 1 "1
= 1 —exp(— folp(@dg) /0 P <_/0 p(f)d&) ; C,-iw’gds
exp(— fl (&)d m
0 > Z v |

1 —exp(— fo df =
1
G+ a**} > ry = |ul],
exp( [y p(€)dE) - { Z Z
we get || Tu|| > ||u|| for w € PN OQ,,.

Then it follows from Theorem 2.1, T has a fixed point u, € P in Q,,\Q,, for
A < A" and it can be easily seen that ys(t) := us(t) — z(t) is a positive solution of the
problem (1.1)—(1.2) such that r < |lyz|| < r3.

exp fo
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Consequently, (1.1)—(1.2) has two positive solutions for 0 < A < A* such that
ry < Iyl < v < gl < 7.

O

Now, we will give the existence of at least three positive solutions of the problem
(1.1)—(1.2).

For notational convenience, we denote k and K by

1 m -1
k= \n (exp f() dg - 1 Z ***) ’
Jy p(

exp(—

1 m !
K :=Mn (1 — exp <—/0 p(ﬁ)dﬁ) — %Zﬂ;*) ;

where o™ = min(t,y)e[o,l]xhb,%} v3(t,y) and 37" = MAX (¢)e(0,1]x[0,] vi(t,y) for 0 < b <
c.

Let the increasing, nonnegative and continuous functionals ¢, ¢ and v be defined
respectively on the cone P by,

P(y) = mnax y(t) = y(to), ¢(y) = trer[lér}]y(t) =y(t1) and (y) := tgfgg}y(t) = y(t1).

We see that, for each y € P, ¥(y) = ¢(y) < ¢(y). In addition, for each y € P,

we know that ||y| < y(tl . That is ||ly|| < v) for all y € P.

Theorem 3.3. Suppose that there exist constants 0 < a < y(1 — )b < b < ¢ such
that

(Cy) filty) < —M, fort€0,1], y €[0,2],
(C5> fl(t7y> > % - M} fOTt € [07 1] [ bv %]?
(Co) filt,y) < % — M, fort €0,1], y € [0,d]

Then the problem (1.1)—(1.2) has at least three positive solutions y1,ys,ys and there
exist 0 < d < a such that

d<d(y1) <a<d(y2) + AM|lwll,  @(y2) <b<(ys), ¥(ys) <c

for0 <A< L.

Proof. Firstly, we consider the modified problem (1.6)—(1.7). It is well known that the
existence of positive solutions to the boundary value problem (1.6)—(1.7) is equivalent

to the existence of fixed points of the operator

u(t) ::A/O G(1,8) D Fils, uss))ds + - P~ fof Zgj o s

— exp(

where G(t, s) is given by (2.5).
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To make use of property (i) of Theorem 2.2, we choose u € OP(,c). Then

YP(u) == mingejo 1) u(t) = u(ty) = c. If we are recalling that ||ul| < @

0 < ug(t) <ult) < ull < £ forallt € 0,1].

< %, we have
From (Cy), we get

V(Tu) = (Tu)(ty) = )\/0 G(t, s) F-(s Uz (s))ds

[l 2252, 55

1 — exp(— f, p(€)d€)

' ol 7, 82
i M)ds ]1 J
»A;”+> i — [Fp(&)de)

1 —exp

1 "¢ €
A — — M+ M —
f;p<»s>d£>{ Z:(K i Hv;ﬁj}

1 —exp(—

1 c ¢
— A—n + — i
1 —exp(— fol p(&)dE) { K " v ;ﬁ] }
c o1& ol G
- RG0G { P } |

1 —exp(—

IN

>
o\

=

@

"

o
VR
o\

=

o

IS
N——
V)

VA
!
V)
<
8

IA

IN

K
-1
where K = An <1 — exp (— folp(g’)d§> — %Z;nzl @-) . Then condition (i) of Theo-
rem 2.2 holds.
Secondly, we show that (i7) of Theorem 2.2 is fulfilled. For this, we select u €
OP(p,b). Then ¢(u) = mingepqju(t) = y(t1) = b. This means u(t) > b for all
t€0,1]. Since u € P and A < £ < w, we have

[ull = u(t) = ua(t) = (u—2)(t) = b—AMw(t) = b— AM||w]|

> b—WZb—M%Z
g My
Note that ||u| < )§

. So we have vb < u,(t) < 2 for all t € [0, 1]. Therefore

b b
v v

S(Tw) = (Tu)(t) = /0 G(tl,s)ZFi(s,ux(s))ds

+ e Zgj(tj, Uus(t5))

1 — exp(— fo

)\/0 exp< d§) fl—i-M)ds

v
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eXp fl m
+ o f Z a7 |ug |

1 — exp(— fo d§ s

> Aexp (— /0 1p<£>d£) RS fo Z fi+ M)

1 — exp(— Y

N exp(— |, 01 i

1 — exp(— fo
eXp fO ( ) n b m KoKk
> — 4+ b o
1— exp( { . k’ Y Z J

eXp f(] < ) kKK
= —n—+b) o
1 —exp(— { K Z
eXP -2 fO An Fkok
b -+ Z aj™ b =b,

1 —exp(— fo sy

_ sp([LpOd)-1  m ) o

where k = An S ToE > il O . Then condition (ii) of Theorem 2.2
exp(— 0

holds.

a

Finally, we verify that (i4i) of Theorem 2.2 is also satisfied. We note that u(t) = §
for t € [0,1] is a member of P(¢, a) since ¢(u) = § < a. Therefore P(¢,a) # @. Now
let u € P(¢,a). Then ¢(u) = maxsepou(t) = u(ty) = a. This means 0 < uy(t) <
u(t) < a, for all t € [0,1].

Then by condition (C) of this theorem and since

max  v;(t,y) < max wv;(t,y) = B},

(ty)e01]x[0,a 7 (ty)€[0,1]x[0, }

we have

n

o(Tu) = (Tu)(te) = A / Glto,s) S Fi(s, us(s))ds

i=1

exp ft m
+ 0 Z 95 (5, ta

1 —exp(— fo J:1

Co Juell S 55
< A / exp ( / p(f)dg) G(as)ZFASv“w(S))dS+ 1= exp(— [ pl€)de)
< i+ M)d

1~ exp(— / Z f, 1— exp(— fol (£)dS)

IA

A — - M M o
1—exp<—folp<£>d£>{ DK " Zﬂ }

i=1

1 a | a~s
_ A—n+ — i
1 —exp(— [ p(€)de) { K" 7;@ }
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1 —exp(— [, p(€)de) | K g

-1
where K = An (1 — exp (— folp(g)d§> - %27:15;*> . Hence condition (#ii) of
Theorem 2.2 is satisfied.

Consequently it follows from Theorem 2.2 that T has at least three fixed points
which are positive solutions u;, us and uz belonging to P (v, ¢) of (1.6)—(1.7) such that

0 < ¢(ur) <a<g(ua), @lus) <b<ep(us), P(uz)<c,
and so there exists d > 0 such that d < maxycp 1 ui(t) = ¢(uq).

Similarly in Theorem 3.1 and Theorem 3.2, we can easily show that y;(t) :=
w;(t) — x(t), (i = 1,2, 3) are the solutions of the problem (1.1)—(1.2).

Firstly, we shall show that y;(t) are positive. Since the solutions of the problem
(1.6)—(1.7) satisfy the inequalities d < ¢(u1) < a < ¢(u2), p(uz) < b < @(u3),
¥ (ug) < ¢ and the definitions of the functionals ¢, ¢ and 1, we obtain ||u;|| > d for
i=1,2,3. Thus

yi(t) ZQMO—MOZM@—XMMOZW@—AM%

> u(t) = AM—— > (1 — —) ui(t) > 0,
(Al d
since 0 < A < L. Also, y;(t) (i = 1,2,3) satisfy the problem (1.1)—(1.2) similarly in
Theorem 3.1 and Theorem 3.2.

So, it follows that vy, y» and y3 are positive solutions of the problem (1.1)—(1.2).

In addition, we get
d < ¢(y1) < ¢(ur) < a < Puz) < Guz) + AM|wl],

©(y2) < plug) <b < p(ys) < ¢(usz), and P(uz) <c.
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