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ABSTRACT. In this paper, we introduce and discuss the concept of a Π-semigroup for invariant

under translations time scales and the concept of abstract weighted pseudo almost periodic functions

in Banach spaces. As an application, we obtain conditions for the existence of weighted pseudo

almost periodic solutions for a class of neutral functional differential equations on time scales.
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1. INTRODUCTION

The basic calculus on time scales (see [1, 2]) was introduced by Hilger in [3]

to unify continuous and discrete analysis, and to study dynamic equations on time

scales [4, 5, 6, 7, 8]. Almost periodic, asymptotically almost periodic, and pseudo-

almost periodic solutions for differential, and difference equations arise naturally in

biology, economics and physics [9, 10, 11, 12, 13]. The concept of almost periodic

functions on time scales in R
n was proposed and investigated in [15, 16]. In this

paper, we introduce weighted pseudo almost periodic functions and define a new

concept, namely, a Π-semigroup for invariant under translations time scales. This

concept provides a new method to investigate abstract differential equations on time

scales, and we provide sufficient conditions for the existence of weighted pseudo almost

periodic mild solutions for a class of neutral functional differential equations on time

scales.
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The organization of this paper is as follows. In Section 2, we introduce some

preliminary results needed in the later sections. In Section 3, we introduce a Π-

semigroup for invariant under translations time scales, and in Section 4, we introduce

the concept of abstract weighted pseudo almost periodic functions. Finally in Section

5, we study the existence of weighted pseudo almost periodic solutions for abstract

neutral functional differential equations on time scales.

2. PRELIMINARIES

Let T be a nonempty closed subset (time scale) of R. The forward and backward

jump operators σ, ̺ : T → T, and the graininess µ : T → R
+ are, respectively, defined

by

σ(t) = inf{s ∈ T : s > t}, ̺(t) = sup{s ∈ T : s < t}, µ(t) = σ(t) − t.

A point t ∈ T is called left-dense if t > inf T and ̺(t) = t, left-scattered if

̺(t) < t, right-dense if t < sup T and σ(t) = t, and right-scattered if σ(t) > t. If T

has a left-scattered maximum m, then T
k = T\{m}; otherwise T

k = T. If T has a

right-scattered minimum m, then Tk = T\{m}; otherwise Tk = T.

Throughout this paper, X = (X, ‖ . ‖) denotes a Banach space. We collect the

following basic concepts and results from Ref. [1].

Definition 2.1. Let D ⊂ T be an open set, f : D → X and t ∈ T
κ. If there exists

a B : T → X with the property that given any ε > 0, there exists a neighborhood U

of t (i.e., U = (t− δ, t+ δ) ∩D for some δ > 0) such that

‖[f(σ(t)) − f(s)] − [σ(t) − s]B‖ ≤ ε|σ(t) − s| for all s ∈ U ,

then we say that f is ∆-differentiable at t, and B is called the ∆-derivative of f at t.

In what follows, we shall denote the ∆-derivative of f at t by f∆(t).

Lemma 2.2. Assume that X is a Banach space, f : T → X and t ∈ T
κ. Then we

have the following

(i): If f is differentiable at t, then f is continuous at t.

(ii): If f is continuous at t and t is right-scattered, then f is differentiable at t

with

f∆(t) =
f(σ(t)) − f(t)

µ(t)
.

(iii): If t is right-dense, then f is differentiable at t if and only if the limit

lim
s→t

f(t) − f(s)

t− s

exists as a finite number. In this case

f∆(t) = lim
s→t

f(t) − f(s)

t− s
.
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(iv): If f is differentiable at t, then

f(σ(t)) = f(t) + µ(t)f∆(t).

Definition 2.3. A function f : T → X is called regulated provided its right-sided

limits exist (finite) at all right-dense points in T and its left-sided limits exist (finite)

at all left-dense points in T.

Definition 2.4. A function f : T → X is called rd-continuous provided it is con-

tinuous at right-dense points in T and its left-sided limits exist (finite) at left-dense

point in T.

Lemma 2.5. Assume that f : T → X.

(i): If f is continuous, then f is rd-continuous.

(ii): If f is rd-continuous, then f is regulated.

(iii): The jump operator σ is rd-continuous.

(iv): If f is regulated or rd-continuous, then so is fσ.

(v): Assume that f is continuous. If g : T → X is regulated or rd-continuous,

then f ◦ g also has the same property.

A function p : T → X is called regressive provided I+µ(t)p(t) is invertible for all

t ∈ T
k, where I is the identity operator. The set of all regressive and rd-continuous

functions p : T → R will be denoted by R = R(T) = R(T, X).

Remark 2.6. An n×n-matrix-valued function A on a time scale T is called regressive

provided

I + µ(t)A(t) is invertible for all t ∈ T,

and the class of all such regressive and rd-continuous functions is denoted by R =

R(T) = R(T,Rn×n).

Lemma 2.7. Let f be regulated. Then there exists a function F which is pre-

differentiable with region of differentiation D such that

F∆(t) = f(t) holds for all t ∈ D.

Definition 2.8. Assume that f : T → X is a regulated function. Any function F as

in Lemma 2.7 is called a pre-antiderivative of f . We define the indefinite integral of

a regulated function f by
∫

f(t)∆t = F (t) + C,

where C ∈ X is an arbitrary element independent of t and F is a pre-antiderivative

of f . We define the definite integral by
∫ s

r

f(t)∆t = F (s) − F (r) for all r, s ∈ T.
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A function F : T → X is called an antiderivative of f : T → X provided

F∆(t) = f(t) holds for all t ∈ T
κ.

Definition 2.9. Let t0 ∈ T and assume that A : X → X is regressive and Y : T → X.

The unique solution of the IVP

Y ∆(t) = AY (t), Y (t0) = Y0,

is called the operator exponential function at t0, and it is denoted by eA(·, t0)Y0.

3. Π-SEMIGROUP FOR INVARIANT UNDER TRANSLATIONS

TIME SCALES AND MOVING-OPERATORS

To introduce the concept of a Π-semigroup for invariant under translations time

scales, we need the following basic definitions.

Definition 3.1 ([15, 17]). A time scale T is called a invariant under translations time

scale (i.e., almost periodic time scale) if

Π :=
{

τ ∈ R : t± τ ∈ T, ∀t ∈ T
}

6= {0}.

In what follows, we denote by T
τ = {t+ τ : t ∈ T}. It follows that if τ ∈ Π is a

nonzero real number, then T = T
τ if and only if T is invariant under translations, i.e.,

T coincides exactly with T
τ if T is invariant under translations. In fact, Definition

3.1 has the following equivalent form:

Definition 3.2. A time scale T is called invariant under translations time scale if

Π := {τ ∈ R : T ∩ T
±τ = T} 6= {0}.

Theorem 3.3. If T is an invariant under translations time scale, then the graininess

function µ : T → R
+ is a periodic function.

Proof. Assume that T is invariant under translation, then by Definition 3.2, we have

T = T
τ .

If t is a right dense point in T, then t+τ is also a right dense point in T
τ , so t+τ is

a right dense point in T. Hence, µ(t+τ)−µ(t) = σ(t+τ)−σ(t)−τ = t+τ−t−τ = 0,

i.e., µ(t+ τ) = µ(t).

If t is a right scattered point in T, then t+ τ is also a right scattered point in T
τ ,

so t + τ is a right scattered point in T. Without loss of generality, we assume that

τ ∈ Π and τ > 0. It follows from σ(t) > t that σ(t) + τ > t+ τ , so we have

(3.1) σ(t) + τ ≥ σ(t+ τ) > t+ τ.

From (3.1), we find

(3.2) σ(t) − t = µ(t) ≥ σ(t+ τ) − (t+ τ) = µ(t+ τ) > 0.
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If in (3.2), µ(t) > µ(t+ τ), then clearly µ is decreasing at all right scattered points in

T, which leads to a contradiction because T is an invariant under translations time

scale. Hence, µ(t+ τ) = µ(t). Therefore, µ is periodic. This completes the proof.

Definition 3.4. The set Π in Definition 3.1 is called an invariant translations set for

T.

Theorem 3.5. Let T be an invariant under translations time scale and Π be an

invariant translations set. Then

(a): Π is a time scale.

(b): For all τ1, τ2 ∈ Π, we have τ1 + τ2 ∈ Π.

(c): For all τ1, τ2, τ3 ∈ Π, we have (τ1 + τ2) + τ3 = τ1 + (τ2 + τ3).

(d): There exists an element 0 ∈ Π, such that for all elements τ ∈ Π, the equation

0 + τ = τ + 0 = τ holds.

(e): For each τ ∈ Π, there exists an element −τ ∈ Π such that τ+(−τ) = 0, where

0 is the identity element.

(f): For all τ1, τ2 ∈ Π, we have τ1 + τ2 = τ2 + τ1.

Proof. All the parts follow from the definition, so we omit the details.

Remark 3.6. Because Π is a time scale, we denote its graininess function as µΠ :

Π → R
+, and its forward jump operator as σΠ(τ1) = inf{τ2 ∈ Π : τ2 > τ1}.

From Theorem 3.5, the following result follows immediately.

Theorem 3.7. The pair (Π,+) is an Abelian group.

From the proof of Proposition 4.4 in Ref. [18], the following lemma is also imme-

diate.

Lemma 3.8. For the time scale Π, Πκ has constant graininess, that is µΠ(τ) = h, τ ∈
Πκ, for some h ∈ R ∪ {∞}, h ≥ 0.

Remark 3.9. Since Π is an Abelian group, sup Π = +∞, inf Π = −∞.

For convenience, we let Π+ = [0,+∞) ∩ Π. Let X be a Banach space, and

Tτ : X → X be a transformation. Obviously, {Tτ : τ ∈ Π} is a set containing only

one parameter. We define the multiplication as

(3.3) Tτ1Tτ2 = Tτ1+τ2 .

It follows that

Tτ1

(

Tτ2Tτ3

)

=
(

Tτ1Tτ2

)

Tτ3 = Tτ1+τ2+τ3 ,

I = T0 is the identity, and T−τ is the inverse element of Tτ . From these definitions,

the following theorem is clear.
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Theorem 3.10. {Tτ : τ ∈ Π} is an operator group with respect to the multiplication

defined by (3.3). It is an Abelian group.

In view of Theorem 3.10, we are now in a position to introduce some basic con-

cepts which will be needed to define a Π-semigroup for an invariant under translations

time scales.

Definition 3.11. Let T be an invariant under translations time scales, and {Tτ} be

a family of bounded linear operators on Banach space X. If for all τ1, τ2 ∈ Π+ the

following holds:

(3.4) Tτ1+τ2 = Tτ1Tτ2 ,

then {Tτ : τ ∈ Π+} is called a one-parameter operator semigroup; if (3.4) holds for

all τ ∈ Π, we call {Tτ : τ ∈ Π} a one-parameter operator group.

Definition 3.12. Let T be an invariant under translations time scales, and {Tτ : τ ∈
Π+} be an operator group on a Banach space X, i.e.,

Tτ1Tτ2 = Tτ1+τ2 , τ1, τ2 ∈ Π+, T0 = I.

If for every τ0 ≥ 0 and any ε > 0, there is a neighborhood U of τ0 (i.e., U =

(τ0 − δ, τ0 + δ) ∩ Π+ for some δ > 0) such that

‖Tτx− Tτ0x‖ < ε for all τ ∈ U ,

then we call {Tτ : τ ∈ Π+} the strong-continuous operator semigroup or the Π-

semigroup.

Theorem 3.13. Let T be an invariant under translations time scale, and {Tτ : τ ∈
Π+} be an operator semigroup on the Banach space X, and for any x ∈ X and any

ε > 0 there exists a neighborhood U = (τ1 − δ, τ1 + δ) ∩Π+ for some δ > 0, such that

(3.5) ‖T|σΠ(τ1)−τ2|x− x‖ ≤ ε for all τ2 ∈ U,

then {Tτ : τ ∈ Π+} is a Π-semigroup.

Proof. For any L ∈ Π, L > 0, we claim that

(3.6) sup{‖Tτ‖ : τ ∈ [0, L]Π} < +∞.

For any x ∈ X, we can take, h ∈ Π, h > 0, c > 0 such that

sup{‖Tτx‖ : τ ∈ [0, h]Π} ≤ c.

Now for τ ∈ [0, L]Π, let τ = kh+ r, r ∈ Π, where k ≤ L
h
, 0 ≤ r < h. Then, it follows

that

‖Tτx‖ = ‖TkhTrx‖ ≤ ‖Tkh‖c.
Hence (3.6) holds. In what follows we let M := sup{‖Tτ‖ : τ ∈ [0, L]Π}.

For any ε > 0, there is δ, such that for τ2 ∈ (τ1 − δ, τ1 + δ)Π+ , we have
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(i): If τ2 > τ1, then σΠ(τ1) = τ1, and we have

‖Tτ2x− Tτ1x‖ ≤ ‖TσΠ(τ1)(Tτ2−σΠ(τ1) − I)x+ Tτ1(TσΠ(τ1)−τ1 − I)x‖ ≤ 2Mε.

In the above σΠ(τ1) = τ1. In fact, if σΠ(τ1) > τ1, then τ1 is a right scattered

point, which implies that τ2 = τ1, and this contradicts τ2 > τ1.

(ii): If τ2 ≤ τ1, then τ2 ≤ τ1 ≤ σΠ(τ1), which yields 0 ≤ σΠ(τ1) − τ1 ≤ σΠ(τ1) − τ2.

Hence, we find

‖Tτ2x− Tτ1x‖ ≤ ‖Tτ2(I − TσΠ(τ1)−τ2)x+ Tτ1(TσΠ(τ1)−τ1 − I)x‖ ≤ 2Mε.

Therefore, for τ2 ∈ (τ1 − δ, τ1 + δ)Π+ , the following holds:

‖Tτ2x− Tτ1x‖ ≤ 2Mε.

Hence, {Tτ : τ ∈ Π+} is a Π-semigroup and (3.5) holds. This completes the proof.

In the following, we introduce the definition of infinitesimal generator of a Π-

semigroup.

Definition 3.14. Let T be an invariant under translations time scale and {Tτ : τ ∈
Π+} be a Π-semigroup on a Banach space X. Let D denote a subset of X, which has

the property that for each x ∈ D there exists a y ∈ X such that for any ε > 0, there

is a neighborhood U = (τ1 − δ, τ1 + δ)Π+ for some δ > 0, which satisfy

(3.7) ‖(T|σΠ(τ1)−τ2| − I)x− y|σΠ(τ1) − τ2|‖ < ε|σΠ(τ1) − τ2|, τ2 ∈ U.

We define A : D → X satisfying Ax = y, where y is fixed by (3.7). In what follows

we call this A the infinitesimal generator of this Π-semigroup.

Remark 3.15. From (3.7), it follows that
∥

∥

∥

∥

T|σΠ(τ1)−τ2| − I

σΠ(τ1) − τ2
x−Ax

∥

∥

∥

∥

< ε.

By Lemma 3.8, µΠ(τ) ≡ h > 0 is a constant, thus A is independent of the variable τ .

(i): If T = R, then Π = R. Thus from (3.7), we have

lim
t→0

∥

∥

∥

∥

1

t
(Tt − I)x− y

∥

∥

∥

∥

= 0,

and hence

A = lim
t→0

1

t
(Tt − I).

(ii): If T = hZ, then Π = hZ. Thus from (3.7), we find
∥

∥

∥

∥

1

h
(Th − I) − y

∥

∥

∥

∥

= 0,

and hence

A =
1

h
(Th − I).
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Definition 3.16 ([20]). A linear operator T from one topological vector space X to

another one Y is said to be densely defined if the domain of T is a dense subset of X

and the range of T is contained within Y .

Theorem 3.17. Let T be an invariant under translations time scale, {Tτ : τ ∈ Π+}
be a Π-semigroup on Banach space X satisfying (3.5), and A be the infinitesimal

generator of the Π-semigroup. Then A is a closed densely defined operator and for

every x ∈ D(A), the following holds:

(3.8) (Tτx)
∆Π = A(Tτx) = TτAx,

that is

(3.9) (Tτx) − x =

∫ τ

0

ATsx∆Πs =

∫ τ

0

TsAx∆Πs,

where D(A) denotes the domain of the operator A and ∆Π is the differential operator

over the time scale Π.

Proof. First we show that A is a densely defined operator. Note that for any x ∈ X,

we have
∥

∥

∥

∥

∫ |σΠ(τ1)−τ2|

0

Tθx∆Πθ − |σΠ(τ1) − τ2|x
∥

∥

∥

∥

=

∥

∥

∥

∥

∫ |σΠ(τ1)−τ2|

0

(Tθx− x)∆Πθ

∥

∥

∥

∥

≤ |σΠ(τ1) − τ2| sup
0≤θ≤|σΠ(τ1)−τ2|

‖Tθx− x‖

< |σΠ(τ1) − τ2|ε.(3.10)

Let y =
∫ τ

0
Tθx∆Πθ, then

T|σΠ(τ1)−τ2|y − y =

∫ τ

0

(Tθ+|σΠ(τ1)−τ2| − Tθx)∆Πθ

=

∫ τ+|σΠ(τ1)−τ2|

|σΠ(τ1)−τ2|

Tθx∆Πθ −
∫ τ

0

Tθx∆Πθ

=

∫ τ+|σΠ(τ1)−τ2|

τ

Tθx∆Πθ −
∫ |σΠ(τ1)−τ2|

0

Tθx∆Πθ

=

∫ |σΠ(τ1)−τ2|

0

Tθ(Tτx)∆Πθ −
∫ |σΠ(τ1)−τ2|

0

Tθx∆Πθ.

Since (3.10) holds for any x ∈ X, then it follows that

‖(T|σΠ(τ1)−τ2|y − y) − |σΠ(τ1) − τ2|(Tτx− x)‖

=

∥

∥

∥

∥

∫ |σΠ(τ1)−τ2|

0

Tθ(Tτx− x)∆Πθ − |σΠ(τ1) − τ2|(Tτx− x)

∥

∥

∥

∥

≤ |σΠ(τ1) − τ2|ε.

Therefore, y ∈ D(A), so D(A) = X.
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Next, we will show that (3.8) and (3.9) hold. Since

(T|σΠ(τ1)−τ2| − I)Tτ1x

|σΠ(τ1) − τ2|
=
Tτ1(T|σΠ(τ1)−τ2| − I)x

|σΠ(τ1) − τ2|
= Ax,

we have

‖Tτ1(T|σΠ(τ1)−τ2| − I)x− |σΠ(τ1) − τ2|Tτ1Ax‖
≤ ‖Tτ1‖‖(T|σΠ(τ1)−τ2| − I)x− |σΠ(τ1) − τ2|Ax‖ ≤ ‖Tτ1‖ε|σΠ(τ1) − τ2|,(3.11)

and so, Tτx ∈ D(A). From (3.11), we also have

(3.12) ‖(T|σΠ(τ1)−τ2| − I)x− |σΠ(τ1) − τ2|Ax‖ ≤ ε|σΠ(τ1) − τ2|.

(i): If τ2 > τ1, then from (3.12) and Theorem 3.13 it follows that

‖(TσΠ(τ1) − Tτ2)x− (σΠ(τ1) − τ2)Tτ1Ax‖
≤ ‖TσΠ(τ1)(I − Tτ2−σΠ(τ1))x− (σΠ(τ1) − τ2)TσΠ(τ1)Ax

+ (σΠ(τ1) − τ2)TσΠ(τ1)Ax− (σΠ(τ1) − τ2)Tτ1Ax‖
≤ ‖TσΠ(τ1)‖‖(τ2 − σΠ(τ1))Ax− (I − Tτ2−σΠ(τ1))x‖

+ ‖Tτ1‖‖(I − TσΠ(τ1)−τ1)Ax‖(τ2 − σΠ(τ1))

≤Mε(τ2 − σΠ(τ1)),

where M := sup{‖Tτ‖ : τ ∈ [0, L]Π}, and L ∈ Π is any fixed positive constant.

In the above it is necessary that σΠ(τ1) = τ1, since if σΠ(τ1) > τ1, then τ1 is

right scattered point, which implies that τ2 = τ1, and this contradictions our

assumption that τ2 > τ1.

(ii): If τ2 ≤ τ1, then it follows from τ2 ≤ τ1 ≤ σΠ(τ1) that 0 ≤ τ1−τ2 ≤ σΠ(τ1)−τ2.
Hence, from (3.12) and Theorem 3.13, we obtain

‖(TσΠ(τ1) − Tτ2)x− (σΠ(τ1) − τ2)Tτ1Ax‖
≤ ‖Tτ2(TσΠ(τ1)−τ2 − I)x− (σΠ(τ1) − τ2)Tτ2Ax

+ (σΠ(τ1) − τ2)Tτ2Ax− (σΠ(τ1) − τ2)Tτ1Ax‖
≤ ‖Tτ2‖‖(TσΠ(τ1)−τ2 − I)x− (σΠ(τ1) − τ2)Ax)‖

+ ‖Tτ2‖‖(I − Tτ1−τ2)Ax‖(σΠ(τ1) − τ2)

≤ Mε(σΠ(τ1) − τ2),

where M := sup{‖Tτ‖ : τ ∈ [0, L]Π}, and L ∈ Π is any fixed positive constant.

Therefore, (Tτx)
∆Π = TτAx = ATτx. Since (3.9) is the integral form of (3.8), we

can conclude that (3.9) holds.
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Finally, we show that A is a closed operator. Let xn ∈ D(A), xn → x, Axn → y,

then by (3.12), we have

‖(T|σΠ(τ1)−τ2| − I)x− |σΠ(τ1) − τ2|y‖ = lim
n→∞

‖(T|σΠ(τ1)−τ2| − I)xn − |σΠ(τ1) − τ2|Axn‖
≤ ε|σΠ(τ1) − τ2|.

Hence, x ∈ D(A) and Ax = y, that is, A is a closed operator. This completes the

proof.

Theorem 3.18. Let T be an invariant under translations time scale and X be a

Banach space. Assume that {Tτ : τ ∈ Π+} is a Π-semigroup, A is the infinitesimal

generator of the Π-semigroup and D(A) = X, eA(τ1 + τ2, 0) = eA(τ1, 0)eA(τ2, 0) for

all τ1, τ2 ∈ Π+. Then,

Tτ = eA(τ, 0), τ ∈ Π+,

where D(A) denotes the domain of A.

Proof. From Theorem 3.17, we have
(

eA(τ, 0)x
)∆Π = AeA(τ, 0)x = eA(τ, 0)Ax.

Further, since eA(τ, 0) is ∆-differentiable on Π, from Definition 2.1, for any ε > 0,

there is δ, such that for τ2 ∈ (τ1 − δ, τ1 + δ)Π+, it follows that

(3.13) ‖(eA(σΠ(τ1), 0) − eA(τ2, 0))x− (σΠ(τ1) − τ2)AeA(τ1, 0)x‖ ≤ ε|σΠ(τ1) − τ2|,

and hence:

(i): If τ2 > τ1, then it follows from (3.13) that

‖eA(σΠ(τ1), 0)[I − eA(τ2 − σΠ(τ1), 0)x− (σΠ(τ1) − τ2)eA(τ1, σΠ(τ1))Ax]‖
≤ ‖eA(σΠ(τ1), 0)‖‖[I − eA(τ2 − σΠ(τ1), 0)x− (σΠ(τ1) − τ2)eA(τ1, σΠ(τ1))Ax]‖
≤Mε|σΠ(τ1) − τ2|.

In the above σΠ(τ1) = τ1. Indeed, if σΠ(τ1) > τ1, then τ1 is a right scattered

point, and then τ2 = τ1, which is a contradiction since τ2 > τ1.

(ii): If τ2 ≤ τ1, then it follows from τ2 ≤ τ1 ≤ σΠ(τ1), that 0 ≤ τ1−τ2 ≤ σΠ(τ1)−τ2.
Hence, from (3.13) we find

‖eA(τ2, 0)[(eA(σΠ(τ1) − τ2, 0) − I)x− (σΠ(τ1) − τ2)Ax

+ (σΠ(τ1) − τ2)(I − eA(τ1, τ2))Ax]‖
≤ ‖eA(τ2, 0)‖‖[(eA(σΠ(τ1) − τ2, 0) − I)x− (σΠ(τ1) − τ2)Ax]‖

+Mε|σΠ(τ1) − τ2|
≤ 2Mε|σΠ(τ1) − τ2|,

where M := sup{‖eA(τ, 0)‖ : τ :∈ [0, L]Π}, and L ∈ Π is any fixed positive

constant.
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From (i), (ii), we obtain

‖(eA(|σΠ(τ1) − τ2|, 0) − I)x− |σΠ(τ1) − τ2|Ax‖ ≤ 2Mε|σΠ(τ1) − τ2|.

Therefore, A is the infinitesimal generator of {Tτ : τ ∈ Π+}. This completes the

proof.

Remark 3.19. If (i) T = R, then Π = R, Tτ = eA(τ, 0) = eAτ . Clearly, it satisfies

Tτ1+τ2 = Tτ1Tτ2 . If (ii) T = Z, then Π = Z, Tτ = eA(τ, 0) = (I + A)τ , which also

satisfies Tτ1+τ2 = Tτ1Tτ2 .

Now we will introduce a new concept that will be needed later.

Definition 3.20. Let A be the infinitesimal generator of the Π-semigroup. We call

ẽA(t, t0), t0 ∈ T the exponential function generated by A on the time scale T. We also

let Tt = ẽA(t, t0) and call Tt the moving-operator on T.

Remark 3.21. In Figure 1 we give a relationship between T, Π, A, and Tt. Note

that if T = Π, then the Π-semigroup will strictly include the continuous (T = R) and

the discrete (T = Z) case of a C0-semigroup.

Figure 1. The generation relationship of T, Π-semigroup, A, Tt.

Let X be a Banach space, and consider the following system:

(3.14) x∆ = Ax(t), x(t0) = x0, t0 ∈ T,
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where A is the infinitesimal generator of a Π-semigroup satisfying all the conditions

in Theorem 3.18, and x : T → X.

Theorem 3.22. The fundamental solution of the system (3.14) can be expressed as

x(t) = Ttx0,

Proof. From Definition 3.20, Tt = ẽA(t, t0), and hence

x∆ = (Ttx0)
∆ = ATtx(t0) = Ax(t).

Therefore, Ttx0 is the fundamental solution of (3.14). This completes the proof.

From Theorem 3.22, the following result follows immediately.

Theorem 3.23. Let A be the infinitesimal generator of the Π-semigroup, and let Tt

be the moving-operator on T. Then

(Ttx)
∆ = A(Ttx) = TtAx,

that is

(Ttx) − x =

∫ t

t0

ATsx∆s =

∫ t

t0

TsAx∆s.

Remark 3.24. Note the Π-semigroups studied in this paper are more general than the

C0-semigroups introduced in [21]. If we let T = Π, we obtain that the Π-semigroups in

this paper turn into the C0-semigroups in [21]. If Π 6= T, for example, Π∩T = ∅ (see

Example 1.2 from Ref. [16]), the results in [21] cannot be applied to study abstract

dynamic equations on time scales.

4. ABSTRACT WEIGHTED PSEUDO ALMOST PERIODIC

FUNCTIONS

In this section, we shall assume that T is an invariant under translations time

scale. We introduce abstract weighted pseudo almost periodic functions on time

scales. For this, we need the following definitions.

Definition 4.1 ([16]). Let T be an invariant under translations time scale and let X

be a Banach space. A function f : T ×X → X is called an almost periodic function

in t ∈ T uniformly for x ∈ X if the ε-translation set of f

E{ε, f,D} = {τ ∈ Π : ‖f(t+ τ, x) − f(t, x)‖ < ε, for all (t, x) ∈ T ×D}

is a relatively dense set in Π for all ε > 0 and for each compact subset D of X; that

is, for any given ε > 0 and each compact subset D of X, there exists a constant

l(ε,D) > 0 such that each interval of length l(ε,D) contains a τ(ε,D) ∈ E{ε, f,D}
such that

‖f(t+ τ, x) − f(t, x)‖ < ε, for all t ∈ T ×D.
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Here, τ is called the ε-translation number of f and l(ε,D) is called the inclusion

length of E{ε, f,D}.

Now we state several results which can be proved by following the same lines as

in Ref. [14] and Refs. [15, 16]. We will use them in the applications later. Below X

is a Banach space

Theorem 4.2. Let f : T × X → X be almost periodic in t uniformly for x ∈ X.

Then it is uniformly continuous and bounded on T×D; here D is any compact subset

of X.

Corollary 4.1. Let f : T → X be almost periodic. Then it is uniformly continuous

and bounded on T.

Theorem 4.3. If F : R ×X → X is almost periodic in t uniformly for x ∈ X, then

F (t, x) is also continuous on T ×X and almost periodic in t uniformly for x ∈ X.

Corollary 4.2. If F : R → X is almost periodic, then F (t) is almost periodic on T.

Theorem 4.4. If fn : T ×X → X, n = 1, 2, . . . are almost periodic in t for x ∈ X,

and the sequence {fn(t, x)} uniformly converges to f(t, x) on T × D, then f(t, x) is

almost periodic in t uniformly for x ∈ X; here D is any compact subset of X.

Corollary 4.3. If fn : T → X, n = 1, 2, . . . are almost periodic on T, and the sequence

{fn(t)} uniformly converges to f(t) on T, then f(t) is almost periodic on T.

Theorem 4.5. Let f : T×X → X be almost periodic in t uniformly for x ∈ X, and

let

F (t, x) =

∫ t

0

f(s, x)∆s.

Then F : T × X → X is almost periodic in t uniformly for x ∈ X if and only if

F (t, x) is bounded on T ×D; here D is any compact subset of X.

Next, we will prove a theorem that will be needed later.

Theorem 4.6. If u(t) : T → X and ĝ(t) : T → Π are almost periodic, and E{ε, u}∩
E{ε, ĝ} 6= ∅, then u

(

t− ĝ(t)
)

is almost periodic.

Proof. Since u : T → X is almost periodic, for any ε > 0, there exists a τ such that

∥

∥u
(

t+ τ − ĝ(t)
)

− u
(

t− ĝ(t)
)
∥

∥ <
ε

2
.

Now from Theorem 4.2, we find

∥

∥u
(

t+ τ − ĝ(t+ τ)
)

− u
(

t+ τ − ĝ(t)
)
∥

∥ <
ε

2
.
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Hence, it follows that
∥

∥u
(

t+ τ − ĝ(t+ τ)
)

− u
(

t− ĝ(t)
)
∥

∥ =
∥

∥u
(

t+ τ − ĝ(t+ τ)
)

− u
(

t+ τ − ĝ(t)
)
∥

∥

+
∥

∥u
(

t+ τ − ĝ(t)
)

− u
(

t− ĝ(t)
)
∥

∥

≤ ε

2
+
ε

2
= ε.

This completes the proof.

Definition 4.7 ([22, 23]). Assume that X is a Banach space, f : T × X → X and

T ∈ Π. Then m(f) is called mean-value of f(t, x) if m(f) = lim
T→∞

1
T

∫ t0+T

t0
f(t, x)∆t ∈

X, where t0 ∈ T.

From Theorem 3.2 in Ref. [23], the following result follows immediately:

Theorem 4.8. Let X be a Banach space, and let f : T ×X → X be almost periodic

in t uniformly for x ∈ X. Then m(f) exists uniformly for x ∈ X.

Remark 4.9. If f(t, x) is almost periodic in t uniformly for x ∈ X, then ‖f(t, x)‖
is almost periodic in t uniformly for x ∈ X. This follows from the fact that for any

ε > 0, there is a τ ∈ E{ε, f,D} such that
∣

∣‖f(t+ τ, x)‖ − ‖f(t, x)‖
∣

∣ ≤ ‖f(t+ τ, x) − f(t, x)‖ < ε.

Hence, by Theorem 4.8, we have m(‖f‖) = lim
T→∞

1
T

∫ t0+T

t0
‖f(t, x)‖∆t exists uniformly

for x ∈ X, where t0 ∈ T.

Let X, Y be two Banach spaces endowed with the norms ‖ · ‖X and ‖ · ‖Y , re-

spectively. We denote by B(X, Y ) the Banach space of all bounded linear operators

from X to Y . This is denoted as B(X) when X = Y . Now BC(T, X) is the space of

bounded continuous function from T to X equipped with the supremum norm defined

by

‖u‖∞ = sup
t∈T

‖u(t)‖X .

Let U be the collection of all functions (weights) ρ : T → (0,+∞) which are

locally integrable over T and are such that ρ(t) > 0 for almost each t ∈ T. For each

r > 0 and ρ ∈ U , we set

m(r, ρ, t0) =

∫ t0+r

t0−r

ρ(t)∆t, where t0 ∈ T, r ∈ Π.

Let

U∞ =
{

ρ ∈ U : lim
r→∞

m(r, ρ) = ∞
}

; UB =

{

ρ ∈ U∞ : ρ is bounded and inf
t∈T

ρ(t) > 0

}

.

Before introducing the concept of weighted pseudo almost periodic functions, we

need to define the “weighted ergodic” spaces PAP0(T, X, ρ) and PAP0(T×X,X, ρ).



Π-SEMIGROUPS FOR TIME SCALES AND APPLICATIONS 15

Let ρ ∈ U∞. We define

PAP0(T, X, ρ) =

{

f ∈ BC(T, X) : lim
r→∞

1

m(r, ρ, t0)

∫ t0+r

t0−r

‖f(t)‖Xρ(t)∆t = 0,

where r ∈ Π, t0 ∈ T

}

and

PAP0(T ×X,X, ρ) =

{

f ∈ BC(T ×X,X) :

lim
r→∞

1

m(r, ρ, t0)

∫ t0+r

t0−r

‖f(t, x)‖Xρ(t)∆t = 0

uniformly for x ∈ X, where r ∈ Π, t0 ∈ T

}

.

Remark 4.10. If ρ(t) ≡ 1, t0 = 0 ∈ T, then PAP0(T, X, ρ) and PAP0(T ×X,X, ρ)

are reduced to ergodic spaces PAP0(T, X) and PAP0(T ×X,X) respectively, which

are defined as

PAP0(T, X) =

{

f ∈ BC(T, X) : lim
r→∞

1

2r

∫ r

−r

‖f(t)‖∆t = 0

}

and

PAP0(T ×X,X) =

{

f ∈ BC(T ×X,X) : lim
r→∞

1

2r

∫ r

−r

‖f(t, x)‖∆t = 0,

uniformly for x ∈ X

}

.

Definition 4.11. A function f : T → X is called pseudo almost periodic, if f = g+φ

where g ∈ AP (T, X) and φ ∈ PAP0(T, X).

We denote the set of all such functions by PAP (T, X).

Definition 4.12. A function f : T × X → X is called pseudo almost periodic, if

f = g + φ where g ∈ AP (T ×X,X) and φ ∈ PAP0(T ×X,X).

We denote the set of all such functions by PAP (T ×X,X).

Definition 4.13. Let ρ ∈ U∞. A function f ∈ BC(T, X) is called weighted pseudo

almost periodic, if f = g + φ where g ∈ AP (T, X) and φ ∈ PAP0(T, X, ρ).

We denote the set all such functions by WPAP (T ×X,X, ρ).

Definition 4.14. Let ρ ∈ U∞. A function f ∈ BC(T × X,X) is called weighted

pseudo almost periodic, if f = g + φ where g ∈ AP (T × X,X) and φ ∈ PAP0(T ×
X,X, ρ).



16 C. WANG, R. P. AGARWAL, AND D. O’REGAN

We denote the set all such functions by WPAP (T × X,X, ρ). Since the space

WPAP (T × X,X) is a particular case of the space WPAA(T × X,X) (i.e., the

weighted pseudo almost periodic functions on time scales are a particular case of

the weighted pseudo almost automorphic functions on time scales) and some of the

results in UB are also true for U∞, Theorems 4.15–4.18 can be deduced directly from

Ref. [24].

Theorem 4.15. Let ρ ∈ U∞ be fixed. Then the decomposition of a weighted pseudo

almost periodic function f = g + φ where g ∈ AP (T, X) and φ ∈ PAP0(T, X, ρ) is

unique.

Theorem 4.16. If ρ ∈ U∞, then (WPAP (T, X, ρ), ‖ · ‖∞) is a Banach space.

Theorem 4.17. If f ∈WPAP (T, X, ρ), then f(t) is bounded on T.

Theorem 4.18. If f ∈WPAP (T×X,X, ρ), then f(t, x) is bounded on T×D; here

D is any compact subset of X.

Following the definition of ∆-measurability in Ref. [25], we introduce the following

concept:

Definition 4.19. A closed subset C of T is said to be a weighted ergodic zero set in

T if
µ∆(C ∩ ([t0 − r, t0 + r] ∩ T))

m(r, ρ, t0)
→ 0 as r → ∞, where t0 ∈ T.

Using this concept the following Theorems 4.20–4.24 directly follow from Ref. [24].

Theorem 4.20. A function φ ∈ PAP0(T ×X,X, ρ) if and only if for ε > 0, the set

Cε = {t ∈ T : ‖φ(t, x)‖ ≥ ε} is a weighted ergodic zero subset in T.

Theorem 4.21. If ρ ∈ U∞, then the following hold:

(i): A function φ ∈ PAP0(T × D,X, ρ) if and only if ‖φ(t, x)‖2 ∈ PAP0(T ×
D,R, ρ); here D is any compact subset of X.

(ii): φ ∈ PAP0(T×X,X, ρ) if and only if the norm function ‖φ(·, x)‖ ∈ PAP0(T×
X,R, ρ).

Theorem 4.22. If f ∈WPAP (T×X,X, ρ) and g is its almost periodic component,

then

g(T ×D) ⊂ f(T ×D)

and

‖f‖∞ ≥ ‖g‖∞ ≥ inf
(t,x)∈T×D

‖g(t, x)‖X ≥ inf
(t,x)∈T×D

‖f(t, x)‖X ,

where f(T×D) denotes the value field of f on T×D, f(T ×D) denotes the closure

of f(T ×D) and is the same as g(T ×D); here D is an arbitrary compact subset of

X.
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Theorem 4.23. If f ∈WPAP (T ×X,X, ρ) satisfy the Lipschitz condition

‖f(t, x) − f(t, y)‖X ≤ Lf‖x− y‖X, for all x, y ∈ X, t ∈ T,

then φ0 ∈WPAP (T, X, ρ) implies f(·, φ0(·)) ∈WPAP (T, X, ρ).

Theorem 4.24. Assume that f, g ∈WPAP (T, X, ρ), then f±g, f ·g ∈WPAP (T, X, ρ).

In what follows, we will consider linear abstract differential equations on time

scales which are based on the Π-semigroup introduced in Section 3.

Suppose that X(t) is the fundamental solution of the linear system:

(4.1) x∆ = Ax,

where A is the infinitesimal generator of a Π-semigroup that satisfies all the conditions

in Theorem 3.18 and x : T → X.

Now following Ref. [22], we introduce the following definition:

Definition 4.25. Eq. (4.1) is said to admit exponential dichotomy if there is a pro-

jection P and positive numbers α > 0 and β ≥ 1 such that

(4.2) ‖X(t)PX−1(s)‖B(X) ≤ βe⊖α(t, s), t ≥ s,

(4.3) ‖X(t)(I − P )X−1(s)‖B(X) ≤ βe⊖α(s, t), s ≥ t.

Let F : T → X and consider the system

(4.4) x∆ = Ax+ F (t).

In view of Definition 4.1 and Theorem 4.19 in Ref. [15], we state the following theorem:

Theorem 4.26. Let A be the infinitesimal generator of a Π-semigroup and all the

conditions in Theorem 3.18 are satisfied, and F (t) is almost periodic. If (4.1) admits

an exponential dichotomy, then (4.4) has a unique almost periodic solution

x(t) =

∫ t

−∞

X(t)PX−1
(

σ(s)
)

F (s)∆s−
∫ +∞

t

X(t)(I − P )X−1
(

σ(s)
)

F (s)∆s,

where X(t) is the fundamental solution of (4.1).

From Theorem 4.26, the following corollary follows immediately.

Corollary 4.4. Suppose (4.1) admits exponential dichotomy, that is, there exist con-

stants α > 0, β ≥ 1 such that (4.2) and (4.3) hold. Then for each almost periodic

function F (t), both
∫ t

−∞
X(t)PX−1(σ(s))F (s)∆s and

∫∞

t
X(t)(I−P )X−1(σ(s))F (s)∆s

are almost periodic.
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5. APPLICATIONS TO NEUTRAL FUNCTIONAL DIFFERENTIAL

EQUATIONS ON TIME SCALES

Qualitative analysis such as periodicity, almost periodicity, and stability of func-

tional differential equations was studied by many researchers (see [26, 27, 28, 29, 30,

31] and the references cited therein). In [28], Islam and Raffoul examined the periodic

solutions of a nonlinear neutral equations of the form

(5.1)
dx(t)

dt
= A(t)x(t) +

d

dt
F
(

t, x(t− g(t))
)

+G
(

t, x(t), x(t− g(t))
)

,

where A(t) is a nonsingular n × n matrix with continuous real-valued functions as

its elements, and the functions F : R × R
n → R

n and G : R × R
n × R

n → R
n are

continuous in their respective arguments. In [30], Abbas and Bahuguna discussed the

almost periodic solutions of (5.1) when A(t) is almost periodic and F (t, u), G(t, u, v)

are almost periodic. They assumed that

(A1): The family {A(t), t ∈ R} of operators in X generates an exponential stable

evolution system {U(t, s), t ≥ s}.
(A2): {U(t, s), t ≥ s}, satisfies the condition that, for each ε > 0, there exists a

number lε > 0 such that each interval of length lε contains a number τ with the

property that

‖U(t+ τ, s+ τ) − U(t, s)‖B(X) < Me−
δ

2
(t−s)ε.

Motivated by these works in this section we provide sufficient conditions which

ensure the existence and uniqueness of weighted pseudo almost periodic solutions of

the following system of neutral differential equations:

(5.2) x∆(t) = Ax(t) + F∆
(

t, x(t− g(t))
)

+G
(

t, x(t), x(t− g(t))
)

, t ∈ T,

where T is an invariant under translations time scale and A is the infinitesimal genera-

tor of a Π-semigroup that satisfies all the conditions in Theorem 3.18, F : T×X → X

is almost periodic in t uniformly for x ∈ X, G : T×X×X → X is almost periodic in

t uniformly for (x, y) ∈ X ×X, g : T → Π. Using the properties of weighted pseudo

almost periodic functions in the previous sections and the exponential dichotomy of

a linear differential equations together with Krasnoselskii’s fixed point theorem, we

obtain conditions that guarantee the existence of weighted pseudo almost periodic

solutions of (5.2).

Lemma 5.1 ([20]). Let M be a closed convex nonempty subset of X. Suppose that B

and C map M into X such that

(i): x, y ∈ M implies Bx+ Cy ∈ M,

(ii): C is continuous and CM is contained in a compact set,

(iii): B is a contraction mapping.
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Then there exists z ∈ M with z = Bz + Cz.

With respect to (5.2), we shall assume the following conditions:

(H1): There exist positive numbers LF , LG such that for each xi, yi ∈ X, i = 1, 2,

and all t ∈ T,

(5.3) ‖F (t, x1) − F (t, x2)‖X ≤ LF‖x1 − x2‖X

and

(5.4) ‖G(t, x1, y1) −G(t, x2, y2)‖X ≤ LG(‖x1 − x2‖X + ‖y1 − y2‖X);

(H2): A is the infinitesimal generator of the Π-semigroup and all the conditions in

Theorem 3.18 are satisfied, and F ∈WPAP (T×X,X, ρ) and G ∈WPAP (T×
X ×X,X, ρ);

(H3): Eq. (4.1) admits exponential dichotomy, that is, there exists constants α >

0, β ≥ 1, such that (4.2) and (4.3) hold.

(H4): The weight ρ : T → (0,∞) is continuous and

lim sup
s→∞

[

ρ(s+ τ)

ρ(s)

]

<∞, lim sup
r→∞

[

m(r + τ, ρ, t0)

m(r, ρ, t0)

]

<∞

for every τ ∈ Π, t0 ∈ T.

Lemma 5.2. Under the condition (H4), the space PAP0(T, X, ρ) is translation in-

variant, that is, for each φ ∈ PAP0(T, X, ρ) and u ∈ Π, we have t → φ(t − u) ∈
PAP0(T, X, ρ).

Proof. Let φ ∈ PAP0(T, X, ρ). Then for each u ∈ Π, u > 0, we have

0 ≤ 1

m(r, ρ, t0)

∫ t0+r

t0−r

‖φ(t− u)‖Xρ(t)∆t

=
1

m(r, ρ, t0)

∫ t0+r−u

t0−r−u

‖φ(t)‖Xρ(t+ u)∆t

=
1

m(r, ρ, t0)

(
∫ t0+r+u

t0−r−u

‖φ(t)‖Xρ(t+ u)∆t

−
∫ t0+r+u

t0−r−u

‖φ(t)‖Xρ(t+ u)∆t

)

≤ 1

m(r, ρ, t0)

∫ t0+r+u

t0−r−u

‖φ(t)‖Xρ(t+ u)∆t
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and for each u ∈ Π, u < 0, we have

0 ≤ 1

m(r, ρ, t0)

∫ t0+r

t0−r

‖φ(t− u)‖Xρ(t)∆t

=
1

m(r, ρ, t0)

∫ t0+r−u

t0−r−u

‖φ(t)‖Xρ(t+ u)∆t

=
1

m(r, ρ, t0)

(
∫ t0+r−u

t0−r+u

‖φ(t)‖Xρ(t+ u)∆t

−
∫ t0−r−u

t0−r+u

‖φ(t)‖Xρ(t+ u)∆t

)

≤ 1

m(r, ρ, t0)

∫ t0+r−u

t0−r+u

‖φ(t)‖Xρ(t+ u)∆t.

Thus it follows that

0 ≤ 1

m(r, ρ, t0)

∫ t0+r

t0−r

‖φ(t− u)‖Xρ(t)∆t ≤
1

m(r, ρ, t0)

∫ t0+r+|u|

t0−r−|u|

‖φ(t)‖Xρ(t+ u)∆t.

Now from condition (H4) and the fact that φ ∈ PAP0(T, X, ρ), we find

lim
r→∞

1

m(r, ρ, t0)

∫ t0+r+|u|

t0−r−|u|

‖φ(t)‖Xρ(t+ u)∆t

≤ lim
r→∞

m(r + |u|, ρ, t0)
m(r, ρ, t0)

ρ(ξu + u)

ρ(ξu)

1

m(r + |u|, ρ, t0)

∫ t0+r+|u|

t0−r−|u|

‖φ(t)‖Xρ(t)∆t = 0,

where ξu ∈ (t0 − r − |u|, t0 + r + |u|)T.

Hence, we have

lim
r→∞

1

m(r, ρ, t0)

∫ t0+r

t0−r

‖φ(t− u)‖Xρ(t)∆t = 0,

that is, t → φ(t− u) ∈ PAP0(T, X, ρ). Therefore, the space PAP0(T, X, ρ) is trans-

lation invariant. This completes the proof.

To prove our results, we define a mapping Φ as follows

(Φu)(t) = F
(

t, u(t− g(t))
)

+

∫ t

−∞

X(t)PX−1
(

σ(s)
)

G
(

s, u(s), u(s− g(s))
)

∆s

−
∫ ∞

t

X(t)(I − P )X−1
(

σ(s)
)

G
(

s, u(s), u(s− g(s))
)

∆s,

where X(t) is the fundamental solution of (4.1).

Lemma 5.3. The operator Φu is weighted pseudo almost periodic if u is weighted

pseudo almost periodic.

Proof. Let u(t) be weighted pseudo almost periodic. Now from (H1), (H4), Theo-

rem 4.23 and Lemma 5.2, it is clear that F
(

t, u(t− g(t))
)

and G
(

t, u(t), u(t− g(t))
)

are also weighted pseudo almost periodic.
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Now we will show that H1(t) =
∫ t

−∞
X(t)PX−1

(

σ(s)
)

G
(

s, u(s), u(s − g(s))
)

∆s

is weighted pseudo almost periodic. Let

G
(

t, u(t), u(t− g(t))
)

= G1(t) + φ(t),

where G1 ∈ AP (T, X) and φ ∈ PAP0(T, X, ρ). Then

H1(t) =

∫ t

−∞

X(t)PX−1
(

σ(s)
)

G1(s)∆s+

∫ t

−∞

X(t)PX−1
(

σ(s)
)

φ(s)∆s.

SinceG1(t) is almost periodic, it follows from Corollary 4.4 that
∫ t

−∞
X(t)PX−1(σ(s))×

G1(s)∆s is almost periodic.

Let h(t) =
∫ t

−∞
X(t)PX−1(σ(s))φ(s)∆s. In order to show H1 ∈WPAP (T, X, ρ),

we only need to show that h ∈ PAP0(T, X, ρ), that is

lim
r→∞

1

m(r, ρ, t0)

∫ t0+r

t0−r

‖h(t)‖Xρ(t)∆t = 0.

It follows from (H3) and e⊖α(t, σ(s)) ≤ 1 for t ≥ s that

1

m(r, ρ, t0)

∫ t0+r

t0−r

‖h(t)‖Xρ(t)∆t

≤ 1

m(r, ρ, t0)

∫ t0+r

t0−r

ρ(t)∆t

∫ t

−∞

βe⊖α(t, σ(s))‖φ(s)‖X∆s

≤ β

m(r, ρ, t0)

∫ t0+r

t0−r

ρ(t)∆t

∫ t

−∞

‖φ(s)‖X∆s

=
β

m(r, ρ, t0)

∫ ∞

0

∆u

∫ t0+r

t0−r

ρ(t)‖φ(t− u)‖X∆t.

Now from (H4) and Lemma 5.2, PAP0(T, X, ρ) translation invariant, we find that

t→ φ(t− u) ∈ PAP0(T, X, ρ) for each u ∈ Π. Thus we have

lim
r→∞

1

m(r, ρ, t0)

∫ t0+r

t0−r

ρ(t)‖φ(t− u)‖X∆t = 0,

for each u ∈ Π. This implies that

lim
r→∞

1

m(r, ρ, t0)

∫ t0+r

t0−r

‖h(t)‖Xρ(t)∆t = 0,

that is, h ∈ PAP0(T, X, ρ), and hence H1 ∈WPAP (T, X, ρ).

Finally, let

H2(t) =

∫ ∞

t

X(t)(I − P )X−1
(

σ(s)
)

G
(

s, u(s), u(s− g(s))
)

∆s.

In a similar way we see that H2 ∈WPAP (T, X, ρ). Thus from Theorem 4.24, we find

that Φu ∈WPAP (T, X, ρ) for u ∈WPAP (T, X, ρ). This completes the proof.
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Next we will apply Krasnoselskii’s fixed point theorem. Let

(Φu)(t) = (Bu)(t) + (Cu)(t)

where B,C : WPAP (T, X, ρ) →WPAP (T, X, ρ) are given by

(5.5) (Bu)(t) = F
(

t, u(t− g(t))
)

and

(Cu)(t) =

∫ t

−∞

X(t)PX−1
(

σ(s)
)

G
(

s, u(s), u(s− g(s))
)

∆s

−
∫ ∞

t

X(t)(I − P )X−1
(

σ(s)
)

G
(

s, u(s), u(s− g(s))
)

∆s.(5.6)

Lemma 5.4. The operator B is contraction provided LF < 1.

Proof. From (5.3), we have

∥

∥B
(

φ(t)
)

−B
(

ψ(t)
)
∥

∥

X
=

∥

∥F
(

t, φ(t− g(t))
)

− F
(

t, ψ(t− g(t))
)
∥

∥

X

≤ LF

∥

∥φ
(

t− g(t)
)

− ψ
(

t− g(t)
)
∥

∥

X
≤ LF‖φ− ψ‖∞.

Since LF < 1, B is contraction. This completes the proof.

Lemma 5.5. The operator C is continuous and the image CD is contained in a

compact set, where D = {u ∈WPAP (T, X, ρ) : ‖u‖∞ ≤ k}, and k is a fixed constant.

Proof. Clearly, we have

‖(Cu)(t)‖X ≤
∫ t

−∞

∥

∥X(t)PX−1
(

σ(s)
)
∥

∥

B(X)

∥

∥G
(

s, u(s), u(s− g(s))
)
∥

∥

X
∆s

+

∫ ∞

t

∥

∥X(t)(I − P )X−1
(

σ(s)
)
∥

∥

B(X)

∥

∥G
(

s, u(s), u(s− g(s))
)
∥

∥

X
∆s.

Thus, we obtain

‖(Cu)(·)‖∞ ≤
∥

∥G
(

·, u(·), u(· − g(·))
)
∥

∥

∞

(
∫ t

−∞

∥

∥X(t)PX−1
(

σ(s)
)
∥

∥

B(X)
∆s

+

∫ ∞

t

∥

∥X(t)(I − P )X−1
(

σ(s)
)
∥

∥

B(X)
∆s

)

≤
∥

∥G
(

·, u(·), u(· − g(·))
)
∥

∥

∞

(
∫ t

−∞

βe⊖α

(

t, σ(s)
)

∆s

+

∫ ∞

t

βe⊖α

(

σ(s), t
)

∆s

)

= β

(

1

α
− 1

⊖α

)

∥

∥G
(

·, u(·), u(· − g(·))
)
∥

∥

∞
.(5.7)
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To see that C is continuous, we let u, v ∈ AP (T, X). Given ε > 0, take δ =
ε

2LGβ( 1
α
− 1

⊖α
)
. Then we have

‖(Cu)(t) − (Cv)(t)‖X

≤
∫ t

−∞

∥

∥X(t)PX−1
(

σ(s)
)
∥

∥

B(X)

∥

∥G
(

s, u(s), u(s− g(s))
)

−G
(

s, v(s), v(s− g(s))
)
∥

∥

X
∆s

+

∫ ∞

t

∥

∥X(t)(I − P )X−1
(

σ(s)
)
∥

∥

B(X)

∥

∥G
(

s, u(s), u(s− g(s))
)

−G
(

s, v(s), v(s− g(s))
)
∥

∥

X
∆s

≤
∫ t

−∞

βe⊖α

(

t, σ(s)
)(

LG‖u(s) − v(s)‖X

+ LG

∥

∥u
(

s− g(s)
)

− v
(

s− g(s)
)
∥

∥

X

)

∆s

+

∫ ∞

t

βe⊖α

(

σ(s), t
)(

LG‖u(s) − v(s)‖X

+ LG

∥

∥u
(

s− g(s)
)

− v
(

s− g(s)
)
∥

∥

X

)

∆s

≤ 2LG‖u− v‖∞
(
∫ t

−∞

βe⊖α

(

t, σ(s)
)

∆s+

∫ ∞

t

βe⊖α

(

σ(s), t
)

∆s

)

= 2LGβ

(

1

α
− 1

⊖α

)

‖u− v‖∞ < ε,

whenever ‖u−v‖∞ < δ. This proves that C is continuous. For D = {u ∈WPAP (T, X) :

‖u‖∞ ≤ k}, to show that the image CD is contained in a compact set, let {un} be a

sequence in D. In view of (5.4), we have
∥

∥G
(

t, u(t), v(t)
)∥

∥

X
≤

∥

∥G
(

t, u(t), v(t)
)

−G(t, 0, 0)
∥

∥

X
+ ‖G(t, 0, 0)‖X

≤ LG(‖u(t)‖X + ‖v(t)‖X) + a ≤ LG(‖u‖∞ + ‖v‖∞) + a

≤ LG(2k + a),(5.8)

where a = ‖G(t, 0, 0)‖X. From (5.7) and (5.8), we find

(5.9) ‖Cun‖∞ ≤ LG(2k + a)β

(

1

α
− 1

⊖α

)

:= L.

Next, we calculate (Cun)
∆(t) and show that it is uniformly bounded. Clearly,

(Cun)∆(t) = A(Cun)(t) +G
(

t, un(t), un(t− g(t))
)

.

Since A is a bounded operator, there exists a positive constant K such that ‖A‖ ≤ K.

This, when combined with (5.8) and (5.9) implies

‖(Cun)
∆‖∞ ≤ KL+ LG(2k + a).

Thus the sequence {(Cun)(t)} is uniformly bounded and equi-continuous. Hence, by

the Ascoli-Arzelà Theorem, CD is compact. The completes the proof.



24 C. WANG, R. P. AGARWAL, AND D. O’REGAN

Theorem 5.6. Suppose that (H1)–(H4) hold, b = ‖F (t, 0)‖∞ and a = ‖G(t, 0, 0)‖∞.

If there exists a constant k, such that

(5.10) LFk + b+ β

(

1

α
− 1

⊖α

)

LG(2k + a) ≤ k,

where α, β are constants given in (4.2) and (4.3), then (5.2) has a weighted pseudo

almost periodic solution in M = {u ∈WPAP (T, X, ρ) : ‖u‖ ≤ k}.

Proof. Note that condition (5.10) implies that LF < 1. Thus in view of Lemma 5.4

the mapping B defined by (5.5) is contraction. The mapping C defined by (5.6) is

continuous by Lemma 5.5 and CM is contained in a compact set. Now, for u, v ∈ M,

we have

‖(Bu)(t) + (Cv)(t)‖X

≤
∥

∥F
(

t, u(t− g(t))
)

− F (t, 0)
∥

∥

X
+ ‖F (t, 0)‖X

+

∫ t

−∞

∥

∥X(t)PX−1
(

σ(s)
)∥

∥

B(X)

∥

∥G
(

s, v(s), v(s− g(s))
)∥

∥

X
∆s

+

∫ ∞

t

∥

∥X(t)(I − P )X−1
(

σ(s)
)
∥

∥

B(X)

∥

∥G
(

s, v(s), v(s− g(s))
)
∥

∥

X
∆s

≤ LF‖u‖∞ + b+ β

(

1

α
− 1

⊖α

)

LG(2k + a) ≤ k.

Thus Bu + Cv ∈ M. Therefore all the conditions of Krasnoselskii’s theorem are

satisfied, and as a consequence there exists a fixed point z ∈ M such that z = Bz+Cz,

i.e., (5.2) has a weighted pseudo almost periodic solution in M. This completes the

proof.

Theorem 5.7. Suppose that (H1)–(H4) hold. Further, suppose that

(5.11) LF + 2LGβ

(

1

α
− 1

⊖α

)

< 1.

Then (5.2) has a unique weighted pseudo almost periodic solution.

Proof. It follows from Lemma 5.3 that Φu maps WPAP (T, X, ρ) to WPAP (T, X, ρ).

Thus for u, v ∈WPAP (T, X, ρ), we have

‖Φu(t) − Φv(t)‖X ≤ LF‖u− v‖∞ +

∫ t

−∞

∥

∥X(t)PX−1
(

σ(s)
)
∥

∥

B(X)
2LG‖u− v‖∞∆s

−
∫ ∞

t

∥

∥X(t)(I − P )X−1
(

σ(s)
)
∥

∥

B(X)
2LG‖u− v‖∞∆s

≤
[

LF + 2LGβ

(

1

α
− 1

⊖α

)]

‖u− v‖∞.

Since LF +2LGβ( 1
α
− 1

⊖α
) < 1, Φ is a contractive mapping. Therefore, Φ has a unique

fixed point u∗ ∈ WPAP (T, X, ρ). We conclude that u∗(t) is the unique weighted

pseudo almost periodic solution of (5.2). This completes the proof.
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An example. Let ρ(t) = 1 + t2 + tσ(t) + σ2(t), and let T be an invariant under

translations time scale. For this ρ(t), we have

m(r, ρ) =

∫ r

−r

[

1 + t2 + tσ(t) + σ2(t)
]

∆t

=

∫ r

−r

[

1 + t2 · 1 + (t+ σ(t))σ(t)
]

∆t

=

∫ r

−r

[

1 + t2 · 1 + (t2)∆σ(t)
]

∆t =

∫ r

−r

[

1 + (t3)∆
]

∆t = 2(r + r3).

Thus condition (H4) holds. Now consider the following perturbed differential equa-

tions for small ε1 and ε2 on T :

(5.12) x∆ = Ax+ F∆
(

t, x(t− g(t))
)

+G
(

t, x(t), x(t− g(t))
)

, t ∈ T
+,

where

x =

(

x1

x2

)

, A =

(

−5 0

0 −5

)

, and µ(t) 6= 1

5
,

F
(

t, x(t− g(t))
)

=

(

0

ε1(sin t+ sin
√

2t+ e⊖3(t, 0))x2
1(t− g(t))

)

and

G
(

t, x(t), x(t− g(t))
)

=

(

0

ε2(cos t+ cos
√

2t+ e⊖3(t, 0)) − ε2x
2
1(t)x2(t)

)

.

It is clear that sin t+sin
√

2t and cos t+cos
√

2t are almost periodic, and by Theorem

1.120 in Ref. [1][L’Hôpital’s Rule], we find that lim
t→+∞

ρ(t)
e3(t,0)

= 0. Thus, e⊖3(t, 0)ρ(t) is

bounded, and hence we have

lim
r→∞

1

m(r, ρ)

∫ r

−r

e⊖3(t, 0)ρ(t)∆t = lim
r→∞

1

2(r + r3)

∫ r

−r

e−3(t, 0)ρ(t)∆t = 0.

Thus F ∈ WPAP (T × R
2,R2, ρ) and G ∈ (T × R

2 × R
2,R2, ρ).

Obviously, I + µ(t)A is invertible for all T, so A ∈ R. We claim that x∆ = Ax

admits an exponential dichotomy. In fact, the eigenvalues of the coefficient matrix A

are λ1 = λ2 = −5, and thus in Theorem 5.35 (Putzer Algorithm) in Ref. [1], the P

matrices are given by

P0 = I =

(

1 0

0 1

)

and P1 = (A− λ1I)P0 = A+ 5I =

(

0 0

0 0

)

.

We choose

r∆
1 = −5r1, r1(t0) = 1 and r∆

2 = r1 − 5r2, r2(t0) = 0.

Solving the first IVP for r1 we get r1 = e−5(t, t0). Solving the second IVP, i.e.,

r∆
2 = −5r2 + e−5(t, t0), r2(t0) = 0,
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we obtain

r2 = e−5(t, t0)

∫ t

t0

∆s

1 − 5µ(s)
.

Now using Theorem 5.35 (Putzer Algorithm) in Ref. [1], we get

eA(t, t0) = r1(t)P0 + r2(t)P1 = e−5(t, t0)

(

1 0

0 1

)

.

Thus,

‖X(t)PX−1(s)‖ =

∥

∥

∥

∥

e−5(t, t0)

(

1 0

0 1

)

e⊖−5(s, t0)

(

1 0

0 1

)

∥

∥

∥

∥

≤
√

2e⊖ 5

2

(t, s).

Thus we can take β =
√

2, α = 5
2

so that x∆ = Ax admits an exponential dichotomy.

Define M = {u ∈ WPAP (T,R2, ρ) : ‖u‖ ≤ k}, where k is a fixed constant. For

x(t) = (x1(t), x2(t)), y(t) = (y1(t), y2(t)) ∈ M, we have
∥

∥F
(

t, x1(t− g(t))
)

− F
(

t, x2(t− g(t))
)
∥

∥ ≤ 6ε1k‖x1 − x2‖,
∥

∥G
(

t, x1(t), y1(t− g(t))
)

−G
(

t, x2(t), y2(t− g(t))
)
∥

∥ ≤ ε2k
2‖x1 − x2‖.

Thus if we take LF = 6ε1k, LG = ε2k
2, β =

√
2, α =

5

2
then (5.10) holds. Therefore,

with these choices the conditions of Theorem 5.6 are satisfied. In conclusion, (5.12)

has a weighted pseudo almost periodic solution in M.

Moreover, for each positive number k, if ε1, ε2 are small enough such that

LF + 2LGβ

(

1

α
− 1

⊖α

)

= 6ε1k + 2ε2k
2
√

2
4 + 5µ(t)

5
< 1,

then (5.12) has a unique weighted pseudo almost periodic solution in M.
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