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ABSTRACT. The authors consider the nonlinear functional Volterra integro-differential equation

with multiple delays

x′(t) = −a(t)x(t) +

n
∑

i=1

∫

t

t−τi

bi(t, s)fi(x(s))ds.

They give sufficient conditions so that solutions are bounded, belong to L1, or belong to L2. They

also prove the stability and global asymptotic stability of the zero solution. Their technique of proof

involves defining appropriate Lyapunov functionals.
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1. Introduction

In 2009, Becker [4] considered the scalar linear Volterra integro-differential equa-

tion

x′(t) = −a(t)x(t) +

∫ t

0

b(t, s)x(s)ds

for t ≥ 0, where a and b are real-valued functions that are continuous on their

respective domains. He discussed the asymptotic behavior of solutions of this equation

by using Lyapunov functionals.

In this paper, we consider the scalar nonlinear functional Volterra integro-differ-

ential equation with multiple delays

(1.1) x′(t) = −a(t)x(t) +
n

∑

i=1

∫ t

t−τi

bi(t, s)fi (x(s)) ds,

where a, f and bi are real-valued and continuous functions on their respective domains.

We will investigate various questions about the behavior of solutions of (1.1) including

their boundedness, integrability, and the stability and global asymptotic stability

Received January 13, 2016 1056-2176 $15.00 c©Dynamic Publishers, Inc.



40 J. R. GRAEF, C. TUNÇ, AND S. ŞEVGIN

of the zero solution. Our results differ from those currently in the literature (see,

[3–12,14, 16–20] and the references therein).

We let L1[0,∞) denote the set of all real-valued functions g for which
∫ ∞

0
|g(s)|ds

< ∞ and L2[0,∞) denote the set of all real-valued functions h that are square inte-

grable on [0,∞), i.e.,
∫ ∞

0
|h(s)|2ds <∞.

2. Main Results

First, we establish sufficient conditions for all solutions of Eq. (1.1) to be bounded

and belong to L2[0,∞). Then, under additional conditions, we show that the solutions

tend to zero as t→ ∞ as well. Our covering assumptions on the functions in equation

(1.1) are as follows. Let Ω := {(t, s) : 0 ≤ s ≤ t <∞} and let τ = max1≤i≤n τi.

Assume that:

(H1) The functions a : [0,∞) → [0,∞), fi : R → R, and bi : Ω → R are continuous

for each i = 1, 2, . . . , n;

(H2) there exists a constant α > 0 such that |fi(x)| ≤ α|x| for all x ∈ R and i =

1, 2, . . . , n.

Our first result shows that solutions of equation (1.1) are bounded and the zero

solution is stable.

Theorem 2.1. Assume conditions (H1)–(H2) hold. If

(2.1) a(s) −
n

∑

i=1

∫ t

s−τi

α|bi(t, u)|du ≥ 0

for all t ≥ t0 − τ ≥ 0 and

(2.2) a(t) −
n

∑

i=1

∫ t

0

α|bi(t, s)|ds ≥ 0

for all t ≥ 0, then all solutions of equation (1.1) are bounded and the zero solution of

(1.1) is stable.

Proof. For any t0 ≥ 0 and initial function ϕ ∈ C[t0−τ, t0], let x(t) = x(t, t0, ϕ) denote

the solution of Eq. (1.1) on [t0 − τ,∞) such that x(t) = ϕ(t) on [t0 − τ, t0]. Define

the functional

V : [0,∞) × C[0,∞) → [0,∞)

by

(2.3) V (t, ψ(·)) = ψ2(t) +

∫ t

0

{

a(s) −
n

∑

i=1

∫ t

s−τi

α|bi(t, u)|du
}

ψ2(s)ds.

From (2.1), it is clear that

(2.4) V (t, ψ(·)) ≥ ψ2(t) for all t ≥ t0 − τ.
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Differentiating (2.3), we obtain

V ′(t) =
d

dt
V (t, x(t)) = 2x(t)x′(t) + a(t)x2(t) −

n
∑

i=1

∫ t

t−τi

α|bi(t, u)|du x2(t)

−
∫ t

0

n
∑

i=1

α|bi(t, s)|x2(s)ds

= 2x(t)

[

−a(t)x(t) +
n

∑

i=1

∫ t

t−τi

bi(t, s)fi(x(s))ds

]

+ a(t)x2(t)

−
n

∑

i=1

∫ t

t−τi

α|bi(t, u)|du x2(t) −
n

∑

i=1

∫ t

0

α|bi(t, s)|x2(s)ds

= −a(t)x2(t) + 2x(t)
n

∑

i=1

∫ t

t−τi

bi(t, s)fi (x(s)) ds

−
n

∑

i=1

∫ t

t−τi

α|bi(t, u)|du x2(t) −
n

∑

i=1

∫ t

0

α|bi(t, s)|x2(s)ds

≤ −a(t)x2(t) + 2|x(t)|
n

∑

i=1

∫ t

t−τi

α|bi(t, s)||x(s)|ds

−
n

∑

i=1

∫ t

t−τi

α|bi(t, u)|du x2(t) −
n

∑

i=1

∫ t

0

α|bi(t, s)|x2(s)ds

≤ −a(t)x2(t) +
n

∑

i=1

∫ t

0

α|bi(t, s)|(x2(t) + x2(s)) ds

−
n

∑

i=1

∫ t

t−τi

α|bi(t, u)|du x2(t) −
n

∑

i=1

∫ t

0

α|bi(t, s)|x2(s)ds

= −a(t)x2(t) +

n
∑

i=1

∫ t

0

α|bi(t, s)|ds x2(t)

+

n
∑

i=1

∫ t

0

α|bi(t, s)|x2(s)ds

−
n

∑

i=1

∫ t

t−τi

α|bi(t, u)|du x2(t) −
n

∑

i=1

∫ t

0

α|bi(t, s)|x2(s)ds

= −a(t)x2(t) +

n
∑

i=1

∫ t

0

α|bi(t, s)|ds x2(t)

−
n

∑

i=1

∫ t

t−τi

α|bi(t, u)|du x2(t)

= −
{

a(t) −
n

∑

i=1

∫ t

0

α|bi(t, s)|ds+
n

∑

i=1

∫ t

t−τi

α|bi(t, u)|du
}

x2(t).
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Hence,

(2.5) V ′(t) ≤ −
{

a(t) −
n

∑

i=1

∫ t

0

α|bi(t, s)|ds+
n

∑

i=1

∫ t

t−τi

α|bi(t, u)|du
}

x2(t)

for all t ≥ 0. From condition (2.2), we see that

V ′(t) ≤ 0 for t ≥ t0.

This, together with (2.4), shows that all solutions of (1.1) are bounded, and in fact,

(2.6) x2(t) ≤ V (t) ≤ V (t0)

for all t ≥ t0. From the above estimate and the fact that

V (t0) = ϕ2(t0) +

∫ t0

0

{

a(s) −
n

∑

i=1

∫ t0

s−τi

α|bi(t, u)|du
}

ϕ2(s)ds ≤ |ϕ|2t0B0,

where

B0 = 1 +

∫ t0

0

{

a(s) −
n

∑

i=1

∫ t0

s−τi

α|bi(t, u)|du
}

ds,

we obtain

(2.7) |x(t)| ≤ |ϕ|t0
√

B0

for all t ≥ t0 ≥ s− τ . It immediately follows that the zero solution of (1.1) is stable,

i.e., for any ε > 0, choose δ = ε/
√
B0 and so for ϕ ∈ C[t0 − τ, t0] with |ϕ|t0 < δ, we

have

(2.8) |x(t)| ≤ δ
√

B0 = ε.

In our next theorem, we show that solutions are square integrable, i.e., they

belong to the class L2.

Theorem 2.2. If in addition to conditions (H1)–(H2) and (2.1)–(2.2), there exist

t1 ≥ t0 and a constant k > 0 such that either

(2.9) a(t) −
n

∑

i=1

∫ t

0

α|bi(t, u)|du ≥ k for t ≥ t1,

or

(2.10) a(s) −
n

∑

i=1

∫ t

s−τi

α|bi(t, u)|du ≥ k for t ≥ s− τ ≥ t0,

then every solution of Eq. (1.1) belongs to L2[0,∞).
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Proof. From Theorem 2.1, any solution x(t) of (1.1) is bounded and satisfies (2.5)

and (2.6). If (2.9) holds, then from (2.5) we have

V ′(t) ≤ −kx2(t)

for t ≥ t1. Integrating, we obtain

k

∫ t

t1

x2(s)ds ≤ V (t1) − V (t) ≤ V (t1)

so x ∈ L2[0,∞).

If (2.10) holds, then from the definition of V , we have

(2.11) x2(t) + k

∫ t

t1

x2(s)ds ≤ V (t) ≤ V (t1),

so again x ∈ L2[0,∞). This proves the theorem.

In order to show that the zero solution is globally asymptotically stable, we will

have to require an additional condition.

Theorem 2.3. Let conditions (H1)–(H2), (2.1)–(2.2), and either (2.9) or (2.10) hold.

If there is a constant K > 0 such that

(2.12) a(t) +
n

∑

i=1

∫ t

t−τi

α|bi(t, s)|ds ≤ K

for all t ≥ t1, then the zero solution of (1.1) is globally asymptotically stable.

Proof. By Theorem 2.2, we have that every solution belongs to L2[0,∞). From (1.1)

and (2.7), we have

|x′(t)| ≤ a(t)|ϕ|t0
√

B0 +

n
∑

i=1

∫ t

t−τi

α|bi(t, s)|ds|ϕ|t0
√

B0(2.13)

≤ |ϕ|t0
√

B0K,(2.14)

so x′(t) is bounded. This together with the fact that x ∈ L2[0,∞) implies that

x(t) → 0 as t → ∞. Thus, the zero solution of (1.1) is globally asymptotically

stable.

As simple examples such as x(t) = 1

t+1
show, a function belonging to L2 may not

belong to L1. We next develop conditions under which solutions of (1.1) do in fact

belong to the class L1[0,∞).

Theorem 2.4. If (2.1) holds, then all solutions of (1.1) are bounded and the zero

solution of (1.1) is stable. If, in addition, there are constants k1 > 0 and 0 ≤ β < 1

such that

(2.15) a(t) ≥ k1
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and

(2.16) βa(s) −
n

∑

i=1

∫ t

s−τi

α|bi(t, u)|du ≥ 0,

then all solutions of (1.1) belong to L1[0,∞). Moreover, if (2.12) also holds, then

x ∈ L2[0,∞) and the zero solution of (1.1) is globally asymptotically stable.

Proof. Define the functional

V1 : [0,∞) × C[0,∞) → [0,∞)

by

(2.17) V1(t, ψ(·)) = |ψ(t)| +
∫ t

0

{

a(s) −
n

∑

i=1

∫ t

s−τi

α|bi(t, u)|du
}

|ψ(s)|ds.

As described in [15, p. 26] and pointed out by Becker [4], for a continuously differen-

tiable function h(t), |h(t)| has a right derivative Dr given by

Dr|h(t)| =







h′(t) sgnh(t), if h(t) 6= 0

|h′(t)|, if h(t) = 0.

We then have

DrV1(t) = DrV1(t, x(t)) = −a(t)|x(t)| +
n

∑

i=1

∫ t

t−τi

bi(t, s)fi(x(s))ds

+ a(t)|x(t)| −
n

∑

i=1

∫ t

t−τi

α|bi(t, u)|du |x(t)|

−
n

∑

i=1

∫ t

0

α|bi(t, s)|x(s)|ds

≤
n

∑

i=1

∫ t

t−τi

α|bi(t, s)||x(s)|ds−
n

∑

i=1

∫ t

t−τi

α|bi(t, u)|du |x(t)|

−
n

∑

i=1

∫ t

0

α|bi(t, s)||x(s)|ds

≤ −
n

∑

i=1

∫ t

t−τi

α|bi(t, s)|ds |x(t)|

≤ 0.

Now V1(t) ≥ |x(t)| by (2.1), so the boundedness of solutions and the stability of the

zero solution follow as in Theorem 2.1.

Next we modify the functional in (2.17), i.e., consider

(2.18) Vβ(t, ψ(·)) = |ψ(t)| +
∫ t

0

{

βa(s) −
n

∑

i=1

∫ t

s−τi

α|bi(t, u)|du
}

|ψ(s)|ds.
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Then,

DrV
′
β(t) = −a(t)|x(t)| +

n
∑

i=1

∫ t

t−τi

bi(t, s)fi(x(s))ds

+ βa(t)|x(t)| −
n

∑

i=1

∫ t

t−τi

α|bi(t, u)|du |x(t)| −
n

∑

i=1

∫ t

0

α|bi(t, s)|x(s)|ds

≤ −(1 − β)a(t)|x(t)| −
n

∑

i=1

∫ t

t−τi

α|bi(t, u)|du |x(t)|

≤ −(1 − β)k1|x(t)|
≤ 0

by (2.15). Integrating, we obtain

(1 − β)k

∫ t

t0

|x(s)|ds ≤ Vβ(t0) − Vβ(t)

so x ∈ L1[t0,∞).

Now if (2.12) also holds, as in the proof of Theorem 2.3 we can easily show

that |x′(t)| is bounded. This, together with the fact that x ∈ L1[0,∞) implies x ∈
L2[0,∞), guarantees that x(t) → 0 as t → ∞, and so the zero solution of (1.1) is

globally asymptotically stable.
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