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1. INTRODUCTION

Functional evolution equations play a very important role in describing many

phenomena of physics, mechanics, biology, etc. For more details on this theory and

on its applications we refer to the monographs of Hale and Verduyn Lunel [18], Kol-

manovskii and Myshkis [21], and Wu [31], and the references therein. Recently, many

authors have studied the existence of various models of semilinear evolution equations

with finite and infinite delay in Fréchet space; for instance, we refer to the book by

Abbas and Benchohra [1] and to the papers by Baghli and Benchohra [4, 5, 6]. On

the other hand, different fields of engineering problems which are of current interest

in unbounded domains have also received the attention of researchers; see [2, 26, 27].

The nature of a dynamic system in engineering or natural sciences depends on the

accuracy of the information obtained concerning the parameters that describe that

system. If the knowledge about a dynamic system is precise, then a deterministic

dynamical system arises. Yet, in most cases, the available data for the description

and evaluation of parameters of a dynamic system are inaccurate, imprecise or con-

fusing. In other words, evaluation of parameters of a dynamical system is not without
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uncertainties. When knowledge about the parameters of a dynamic system are of a

statistical nature, that is, the information is probabilistic, the common approach in

mathematical modeling of such systems is the use of random differential equations

or stochastic differential equations. Random differential equations, as natural exten-

sions of deterministic ones, arise in many applications and have been investigated by

many mathematicians. We refer the reader to the monographs [7, 30], the papers

[10, 9, 11, 29] and the references therein. We also refer the reader to recent results in

[23, 24, 25]. There are real world phenomena with anomalous dynamics such as sig-

nals transmissions through strong magnetic fields, atmospheric diffusion of pollution,

network traffic, the effect of speculations on the profitability of stocks in financial

markets, and so on, where the classical models are not sufficiently good to describe

these features.

In this work we prove the existence of mild solutions of the following functional

differential equation with delay and random effects (random parameters) of the form:

(1.1) y′(t, w) = A(t)y(t, w) + f(t, yt(·, w), w), a.e. t ∈ J := [0,∞),

(1.2) y(t, w) = φ(t, w), t ∈ (−∞, 0], w ∈ Ω,

where (Ω,F, P ) is a complete probability space, f : J×B×Ω → E, φ ∈ B×Ω are given

random functions which represent random nonlinearity of the system, {A(t)}0≤t<+∞

is a family of linear closed (not necessarily bounded) operators from E into E that

generates an evolution system of operators {U(t, s)}(t,s)∈J×J for 0 ≤ s ≤ t < +∞, B

is the phase space to be specified later, and (E, | · |) is a real Banach space. For any

function y defined on (−∞,+∞)×Ω and any t ∈ J we denote by yt(·, w) the element

of B × Ω defined by yt(θ, w) = y(t + θ, w), θ ∈ (−∞, 0]. Here yt(·, w) represents the

history of the state from time −∞, up to the present time t. We assume that the

histories yt(·, w) belong to some abstract phases B, to be specified later.

To our knowledge, the literature on the global existence of random evolution

equations with delay is very limited, so the present paper can be considered as a

contribution to such a class of equations.

2. PRELIMINARIES

In this section we present briefly some notations, definitions, and theorems which

are used throughout this work.

In this paper, we will employ an axiomatic definition of the phase space B in-

troduced by Hale and Kato in [17] and follow the terminology used in [19]. Thus,

(B, ‖ · ‖B) will be a seminormed linear space of functions mapping (−∞, 0] into E,

and satisfying the following axioms :
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(A1) If y : (−∞, T ) → E, T > 0, is continuous on J and y0 ∈ B, then for every t ∈ J

the following conditions hold:

(i) yt ∈ B;

(ii) There exists a positive constant H such that |y(t)| ≤ H‖yt‖B;

(iii) There exist two functions L(·),M(·) : R+ → R+ independent of y with L

continuous and bounded, and M locally bounded such that:

‖yt‖B ≤ L(t) sup{ |y(s)| : 0 ≤ s ≤ t} +M(t)‖y0‖B.

(A2) For the function y in (A1), yt is a B−valued continuous function on J .

(A3) The space B is complete.

Denote

KT = sup{L(t) : t ∈ J},

and

MT = sup{M(t) : t ∈ J}.

Remark 2.1. 1. (ii) is equivalent to |φ(0)| ≤ H‖φ‖B for every φ ∈ B.

2. Since ‖ · ‖B is a seminorm, two elements φ, ψ ∈ B can satisfy ‖φ − ψ‖B = 0

without necessarily φ(θ) = ψ(θ) for all θ ≤ 0.

3. From the equivalence in part 1 of this remark, we can see that for all φ, ψ ∈ B

such that ‖φ− ψ‖B = 0 , we necessarily have that φ(0) = ψ(0).

By BUC we denote the space of bounded uniformly continuous functions defined

from (−∞, 0] into E. Finally, by BC := BC([0,+∞) we denote the Banach space of

bounded and continuous functions from [0,∞) into E, equipped with the standard

norm

‖y‖BC = sup
t∈[0,∞)

|y(t)|.

Definition 2.2. A map f : J × B × Ω → E is said to be Carathéodory if

(i) t→ f(t, y, w) is measurable for all y ∈ B and for all w ∈ Ω.

(ii) y → f(t, y, w) is continuous for almost each t ∈ J and for all w ∈ Ω.

(iii) w → f(t, y, w) is measurable for all y ∈ B, and almost each t ∈ J .

In what follows, we assume that {A(t), t ≥ 0} is a family of closed densely

defined linear unbounded operators on the Banach space E and with domain D(A(t))

independent of t.

Definition 2.3. A family of bounded linear operators

{U(t, s)}(t,s)∈∆ : U(t, s) : E → E, (t, s) ∈ ∆ := {(t, s) ∈ J × J : 0 ≤ s ≤ t < +∞}

is called an evolution system if the following properties are satisfied:

1. U(t, t) = I where I is the identity operator in E,
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2. U(t, s) U(s, τ) = U(t, τ) for 0 ≤ τ ≤ s ≤ t < +∞,

3. U(t, s) ∈ B(E) the space of bounded linear operators on E, where for every

(s, t) ∈ ∆ and for each y ∈ E, the mapping (t, s) → U(t, s) y is continuous.

More details on evolution systems and their properties could be found on the

books of Ahmed [3], Engel and Nagel [13] and Pazy [28].

Lemma 2.4 (Corduneanu [8]). Let C ⊂ BC(J,E) be a set satisfying the following

conditions:

(i): C is bounded in BC(J,E);

(ii): the functions belonging to C are equicontinuous on any compact interval of

J ;

(iii): the set C(t) := {y(t) : y ∈ C} is relatively compact on any compact interval

of J ;

(iv): the functions from C are equiconvergent, i.e., given ε > 0, there corresponds

T (ε) > 0 such that |y(t) − y(+∞)| < ε for any t ≥ T (ε) and y ∈ C.

Then C is relatively compact in BC(J,E).

Theorem 2.5 (Schauder fixed point [16]). Let B be a closed, convex and nonempty

subset of a Banach space E. Let N : B → B be a continuous mapping such that

N(B) is a relatively compact subset of E. Then N has at least one fixed point in B.

Let Y be a separable Banach space with the Borel σ-algebra BY . A mapping

y : Ω −→ Y is said to be a random variable with values in Y if for each B ∈

BY , y
−1(B) ∈ F. A mapping T : Ω × Y −→ Y is called a random operator if T (·, y)

is measurable for each y ∈ Y and is generally expressed as T (w, y) = T (w)y; we will

use these two expressions alternatively.

Let y be a mapping of J × Ω into X. y is said to be a stochastic process if for

each t ∈ J the function y(t, ·) is measurable.

Next, we will give a very useful random fixed point theorem with stochastic

domain.

Definition 2.6 ([12]). Let C be a mapping from Ω into 2Y . A mapping T : {(w, y) :

w ∈ Ω ∧ y ∈ C(w)} −→ Y is called a ‘random operator with stochastic domain C’ if

and only if C is measurable (i.e., for all closed A ⊆ Y, {w ∈ Ω : C(w) ∩ A 6= ∅} ∈ F)

and for all open D ⊆ Y and all y ∈ Y, {w ∈ Ω : y ∈ C(w) ∧ T (w, y) ∈ D} ∈ F.

The mapping T will be called ‘continuous’ if every T (w) is continuous. For a random

operator T , a mapping y : Ω −→ Y is called a ‘random (stochastic) fixed point of T ’

if and only if for p-almost all w ∈ Ω, y(w) ∈ C(w) and T (w)y(w) = y(w) and for all

open D ⊆ Y, {w ∈ Ω : y(w) ∈ D} ∈ F (‘y is measurable’).
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Remark 2.7. If C(w) ≡ Y , then the definition of random operator with stochastic

domain coincides with the definition of random operator.

Lemma 2.8 ([12]). Let C : Ω −→ 2Y be measurable with C(w) closed, convex and

solid (i.e., int C(w) 6= ∅) for all w ∈ Ω. We assume that there exists a measurable

function y0 : Ω −→ Y with y0 ∈ int C(w) for all w ∈ Ω. Let T be a continuous

random operator with stochastic domain C such that for every w ∈ Ω, {y ∈ C(w) :

T (w)y = y} 6= ∅. Then T has a stochastic fixed point.

3. EXISTENCE OF MILD SOLUTIONS

Now we give our main existence result for problem (1.1)–(1.2). Before stating

and proving this result, we give the definition of a mild random solution.

Definition 3.1. A stochastic process y : J × Ω → E is said to be a random mild

solution of problem (1.1)–(1.2) if y(t, w) = φ(t, w), t ∈ (−∞, 0] and the restriction of

y(·, w) to the interval [0,∞) is continuous and satisfies the following integral equation:

(3.1) y(t, w) = U(t, 0)φ(0, w) +

∫ t

0

U(t, s)f(s, ys(·, w), w)ds, t ∈ J.

We will need to introduce the following hypotheses which are be assumed here-

after

(H1) There exist a constant M ≥ 1 and α > 0 such that

‖U(t, s)‖B(E) ≤Me−α(t−s) for every (s, t) ∈ ∆.

(H2) The function f : R
+ × B × Ω → E is Carathéodory.

(H3) There exist functions ψ : J × Ω → R
+ and p : J × Ω → R

+ such that for each

w ∈ Ω, ψ(·, w) is a continuous nondecreasing function and p(·, w) is integrable

with:

|f(t, u, w)| ≤ p(t, w) ψ(‖u‖B, w) for a.e. t ∈ J and each u ∈ B.

(H4) For each w ∈ Ω, φ(·, w) is continuous and for each t, φ(t, ·) is measurable.

(H5) For each (t, s) ∈ ∆ we have

lim
t→+∞

∫ t

0

e−α(t−s)p(s, w)ds = 0.

Theorem 3.2. Suppose that hypotheses (H1)–(H5) are valid, then the problem (1.1)–

(1.2) has at least one mild random solution on (−∞,∞).

Proof. Let Y be the space defined by

Y = {y : R → E such that y|J ∈ BC(J,E) and y0 ∈ B},
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(where we denote by y|J the restriction of y to J), endowed with the uniform conver-

gence topology, and N : Ω × Y → Y be the random operator defined by

(3.2) (N(w)y)(t) = U(t, 0) φ(0, w) +

∫ t

0

U(t, s) f(s, ys, w) ds, t ∈ J.

Then we show that the mapping defined by (4) is a random operator. To do this,

we need to prove that for any y ∈ Y , N(·)(y) : Ω −→ Y is a random variable. First,

we prove that N(·)(y) : Ω −→ Y is measurable since the mapping f(t, y, ·), t ∈ J ,

y ∈ Y , is measurable by assumption (H2) and (H4).

Let R(w) be any measurable positive function and consider the set-valued map

D : Ω −→ 2Y defined by

D(w) = {y ∈ Y : ‖y‖ ≤ R(w)}.

D(w) is bounded, closed, convex and solid for all w ∈ Ω. Then D is measurable by

Lemma 17 (see [20]).

Next, let w ∈ Ω be fixed. Then for any y ∈ D(w), and by assumption (A1), we

get

‖ys‖B ≤ L(s)|y(s)|+M(s)‖y0‖B

≤ KT |y(s)|+MT‖φ‖B,

and by (H3), we have

|(N(w)y)(t)| ≤ ‖U(t, 0)‖B(E)|φ(0, w)|+

∫ t

0

‖U(t, s)‖B(E)|f(s, ys, w)|ds

≤ Me−αt‖φ‖B +M

∫ t

0

e−α(t−s)p(s, w) ψ (‖ys‖B, w) ds.

Then, we have

|(N(w)y)(t)| ≤M‖φ‖B +M‖p‖L1ψ(KTR(w) +MT‖φ‖B, w).

Set

C1 = M‖φ‖B, C2 = M‖p‖L1 , C3 = MT‖φ‖B, C4 = KT

and define the set-valued map

G(ω) = {r ≥ 0 : C1 + C2ψ(C3 + C4r, w) ≤ r}.

Under a suitable choice of the constantes C2 and C4 we can easily show that the

inequality

C1 + C2ψ(C3 + C4r, w) ≤ r,

has at least one solution, and hence the set-valued map G is nonempty valued. The

continuity of ψ implies that G has closed values. Notice that

G(ω) = D(w) ◦ h(r, w),
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where h is the function defined by

h(r, w) = C1 + C2ψ(C3 + C4r, w).

Since D and h are measurable, the set-valued map G is measurable. The celebrated

Kuratowski-Ryll-Nardzewski selection theorem ([15], Theorem 19.7) implies that the

set-valued map G has a measurable selection. Thus

‖(N(w)y)‖ ≤M‖φ‖B +Mψ(DT , w)‖p‖L1 ≤ R(w).

This implies that N is a random operator with stochastic domain D and F (w) :

D(w) −→ D(w) for each w ∈ Ω.

Step 1: N is continuous.

Let yn be a sequence such that yn −→ y in Y. Then

|(N(w)yn)(t) − (N(w)y)(t)| ≤

∫ t

0

‖U(t, s)‖B(E) |f(s, yn
s , w) − f(s, ys, w)| ds.

≤ M

∫ t

0

e−α(t−s) |f(s, yn
s , w) − f(s, ys, w)| ds.

Since f(s, ·, w) is continuous, we have by the Lebesgue dominated convergence theo-

rem

‖f(·, yn
· , w) − f(·, y·, w)‖L1 → 0 as n→ +∞.

Thus N is continuous.

Step 2: We shall prove that for every w ∈ Ω, {y ∈ D(w) : N(w)y = y} 6= ∅. For this,

we use Schauder’s theorem. First, we will show that N(D(w)) is relatively compact

using Corduneanu’s lemma.

(a) First, it is clear that the assumption (i) holds. Then we will demonstrate that

N(D(w)) is an equicontinuous set for each closed bounded interval [0, T ] in J .

Let τ1, τ2 ∈ [0, T ] with τ2 > τ1, D(w) be a bounded set as in Step 2, and

y ∈ D(w). Then

|(N(w)y)(τ2) − (N(w)y)(τ1)| ≤ ‖U(τ2, 0) − U(τ1, 0)‖B(E)‖φ‖B

+
∣

∣

∣

∫ τ1

0

[U(τ2, s) − U(τ1, s)]f(s, ys, w) ds
∣

∣

∣

+
∣

∣

∣

∫ τ2

τ1

U(τ2, s)f(s, ys, w) ds
∣

∣

∣

≤ ‖U(τ2, 0) − U(τ1, 0)‖B(E)‖φ‖B

+

∫ τ1

0

|U(τ2, s) − U(τ1, s)||f(s, ys, w)| ds

+

∫ τ2

τ1

|U(τ2, s)||f(s, ys, w)| ds

≤ ‖U(τ2, 0) − U(τ1, 0)‖B(E)‖φ‖B
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+ψ(DT , w)

∫ τ1

0

‖U(τ2, s)

−U(τ1, s)‖B(E)p(s, w)ds

+Mψ(DT , w)e−α(τ2−s)

∫ τ2

τ1

p(s, w)ds.

The right-hand of the above inequality tends to zero as τ2 − τ1 → 0, as N is

bounded and equicontinuous.

(b) Now we will prove that Z(t, w) = {(N(w)y)(t) : y ∈ D(w)} is precompact in

E. Let t ∈ [0, T ] be fixed and let ǫ be a real number satisfying 0 < ǫ < t. For

y ∈ D(w) we define

(Nǫ(w)y)(t) = U(t, 0)φ(0, w) + U(t, t− ǫ)

∫ t−ǫ

0

U(t− ǫ, s)f(s, ys, w) ds.

Since U(t, s) is a compact operator and the set Zǫ(t, w) = {(Nǫ(w)y)(t) : y ∈

D(w)} is the image of a bounded subset of E, then Zǫ(t, w) is precompact in E

for every ǫ, 0 < ǫ < t. Moreover

|(N(w)y)(t) − (Nǫ(w)y)(t)| ≤

∫ t

t−ǫ

‖U(t, s)‖B(E)|f(s, ys, w)|ds

≤Mψ(DT , w)e−α(t−s)

∫ t

t−ǫ

p(s, w)ds.

Therefore the set Z(t, w) = {(N(w)y)(t) : y ∈ D(w)} is precompact in E.

(c) Finally, it remains to show that N is equiconvergent.

Let y ∈ D(w). Then from (H1) and (H3), we have

|(N(w)y)(t)| ≤ Me−αt‖φ‖B +M

∫ t

0

e−α(t−s)p(s, w) ψ (DT , w) ds.

It follows immediately by (H5) that |(N(w)y)(t)| −→ 0 as t→ +∞. Then

lim
t→+∞

|(N(w)y)(t) − (N(w)y)(+∞)| = 0,

which implies that N is equiconvergent.

As a consequence of Steps 1–2 and (a), (b), (c), we can conclude that N(w) :

D(w) → D(w) is continuous and compact. From Schauder’s theorem, we deduce that

N(w) has a fixed point y(w) in D(w). Since
⋂

w∈ΩD(w) 6= ∅, the hypothesis that a

measurable selection of int D exists holds. By Lemma 2.8, the random operator N

has a stochastic fixed point y∗(w), which is a random mild solution of the random

problem (1.1)–(1.2).

4. AN EXAMPLE

Consider the following functional partial differential equation:

(4.1)
∂

∂t
z(t, x, w) = a(t, x)

∂2

∂x2
z(t, x, w) + C0(w)K(w)e−t

∫ 0

−∞

exp(z(t+ s, x, w))

1 + s2
ds,
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x ∈ [0, π], t ∈ [0,+∞),

(4.2) z(t, 0, w) = z(t, π, w) = 0, t ∈ [0,+∞), w ∈ Ω,

(4.3) z(s, x, w) = z0(s, x, w), s ∈ (−∞, 0], x ∈ [0, π], w ∈ Ω,

where a(t, ξ) is a continuous function which is uniformly Hölder continuous in t, K

and C0 are a real-valued random variable.

Let E = L2[0, π] and (Ω,F, P ) be a complete probability space, and define A(t)

by

A(t)v = a(t, ξ)v′′

with domain

D(A) = {v ∈ E, v, v′ are absolutely continuous , v′′ ∈ E, v(0) = v(π) = 0}.

Then A(t) generates an evolution system U(t, s) satisfying assumption (H1) (see [14,

22]).

Let B = BUC(R−;E) be the space of bounded uniformly continuous functions

endowed with the norm,

‖φ‖ = sup
s≤0

|φ(s)| for φ ∈ B.

If we put φ ∈ BCU(R−;E), x ∈ [0, π] and w ∈ Ω,

y(t, x, w) = z(t, x, w), t ∈ [0, T ],

φ(s, x, w) = z0(s, x, w), s ∈ (−∞, 0], x ∈ [0, π], w ∈ Ω.

Set

f(t, ϕ(x), w) =

∫ 0

−∞

e−tϕ(s, x, w)ds,

with

ϕ(s, x, w) = exp(z(t+ s, x, w)).

The function f(t, ϕ(x), w) is Carathéodory, and satisfies (H2) with

p(t, w) = K(w)
π

2
e−t and ψ(x, w) = |C0(w)|ex.

Then the problem (1.1)–(1.2) is an abstract formulation of the problem (4.1)–

(4.3), and conditions (H1)–(H5) are satisfied. Theorem 3.2 implies that the random

problem (4.1)–(4.3) has at least one random mild solution.
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