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1. INTRODUCTION

The 0-epi maps were introduced by Furi, Martelli and Vignoli in [1]. These maps
were generalized by Gabor, Gorniewicz and Slosarski in [3]. More recently the general
notion of ®-epi maps for a general class of maps was presented by O’Regan in [6] (see
also [4]) and these result allow us to study coincidence points (i.e. F(x) N ®(x) # ()
of the maps F' and ®. In this paper using the theory in [6] we begin by presenting
some new Leray-Schauder alternatives for a very general class of maps. Next we
present a very general Furi-Pera type result (see [2, 5]) based on Leray-Schauder type

alternatives.

2. LERAY-SCHAUDER AND FURI-PERA RESULTS

We begin this section by recalling the following definitions and results from the

literature [6].

Let E be a Hausdorff topological space and U an open subset of £. We will
consider classes A and B of maps.
Definition 2.1. We say F € A(U,E)if F € A(U,E) and F : U — K(E) is an
upper semicontinuous map; here U denotes the closure of U in E and K (E) denotes
the family of nonempty compact subsets of F.
Definition 2.2. We say F € B(U,E) if F € B(U,E) and F : U — K(FE) is an

upper semicontinuous map.
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Now we fix a ® € B(U, E).

Definition 2.3. We say F € Agy(U,E) if F € A(U, E) with F(z) N ®(x) = 0 for
x € OU; here OU denotes the boundary of U in E.

Definition 2.4. We say F € By(U,E) if F € B(U, E) and F(x) C ®(x) for x € 0U.

Definition 2.5. A map F' € Ayy (U, E) is ®-epi if for every map G € By (U, E) there
exists x € U with F(z) N G(x) # 0.

Remark 2.6. Suppose F' € Ayy(U,E) is ®-epi. Then there exists x € U with
F(z)N®(z) # 0 (take G = ® in Definition 2.5).

In [6] we established the following Leray-Schauder alternative.

Theorem 2.7. Let E be a normal topological vector space and U an open subset of
E. Suppose F € Agy(U, E) is ®-epi and G € B(U,E) and assume the following
condition holds:

(2.1) {“(')G(-)‘I‘(l_ﬂ(-))@(-)EB(U,E) for any

continuous map p: U — [0, 1] with p(0U) = 0.

Then either

(A1). there exists v € U with F(x) N G(z) # 0,

or

(A2). there exists x € OU and A € (0,1) with F(x) N [AG(x) + (1 — \)®(z)] # 0,
holds.

Remark 2.8. We can remove the assumption that F is normal in the statement of

Theorem 2.7 provided we have that (so we need to put conditions on the maps)
D={zeU:F(z)N[tG(z)+ (1 —t)®(x)] # 0 for some t € [0,1]}

is relatively compact. The existence of the map u in [6] is then guaranteed since
topological vector spaces are completely regular (i.e. in the proof in [6] there exists a
map u: U — [0, 1] with u(0U) = 0 and pu(D) = 0).

A special case of Theorem 2.7 is the following applicable result of Leray-Schauder

type.

Theorem 2.9. Let E be a normal topological vector space and U an open convex
subset of E with 0 € U. Suppose G € B(U,E) and (2.1) holds. In addition assume
the following conditions hold:

(2.2) i € A(U, E) where i is the identity map

(2.3) oOU) C U
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(2.4) U is a retract of E i.e. there exists a retraction (continuous)r : E — U

(2.5) any map V € A(E, E) has a fized point

and
for any continuous map n : E — [0, 1] with n(E\U) =0
(2.6) and H € By(U, E) the map J € A(E, E)
where J(x) = n(x)H (r(z)).
Then either
(A1). there exists v € U with x € G(x)
or
(A2). there exists x € OU and X\ € (0,1) with x € A\G(x) + (1 — X\)P(x)
holds.

Proof. Let F(z) = i(x). Note F € Ay, (U, E) since if # € OU we have F(z)N®(x) = ()
(note for z € OU we have = ¢ ®(z) from (2.3)). The result follows from Theorem 2.7
if we show F is ®-epi. Let H € By(U, E) (i.e. H € B(U,E) with H(x) C ®(x) for
x € OU). We must show there exists © € U with x € H(z). Let

Q={z€eU:x e H(z) for some A € [0,1]}.

Now (2 is closed (since H is upper semicontinuous) and 2 C U since if there exists
x € OU and A € [0,1] with z € AH (z) then since H(y) C ®(y) for y € OU we have
x € A®(x) and so x € U (recall ®(0U) C U, U is convex and 0 € U), a contradiction.
Now Urysohn’s Lemma guarantees that there exists a continuous map 7 : £ — [0, 1]
with 7(2) = 1 and n(E\U) = 0. Define a map J by J(z) = n(x)H(r(x)). Now
(2.6) guarantees that J € A(E, E) and (2.5) guarantees that there exists x € F with
x € n(x)H(r(x)). If x € E\U then n(z) = 0, a contradiction since 0 € U. Thus
x €U and so x € n(z)H(x). As aresult x € Q so n(x) = 1. Thus x € H(x). O

Remark 2.10. We note from the proof above that we could replace U convex and
(2.3) with the condition

(2.7) z ¢ A\®(x) for x € OU and X € (0, 1].
Note in (2.7) we have in fact A € [0, 1] since x # 0 if 2 € U (recall 0 € U).

Remark 2.11. We can remove the assumption that F is normal in the statement of
Theorem 2.9 provided we have that (so we need to put conditions on the maps) D
(see Remark 2.8) and €2 (see the proof of Theorem 2.9) are relatively compact (note
the existence of the map 7 in Theorem 2.9 is then guaranteed since topological vector

spaces are completely regular).

In our next result £ will be a locally convex topological vector space. The more

general case when E is a topological vector space will be presented in Remark 2.15.
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Theorem 2.12. Let E be a normal locally convex Hausdorff topological vector space
and U an open convex subset of E with 0 € U. Suppose G € B(U, E) and (2.1), (2.2)
and (2.3) hold. Letr: E — U be given by

x

") s )
where p is the Minkowski functional on U (i.e. p(xr) = inf{a > 0: 2 € aU}). In

addition assume the following conditions hold:

forxz e E,

(2.8) for any map H € Be(U, E) we have rH € A(U,U)
and
(2.9) any map ¥ € A(U,U) has a fized point.

Then either

(A1). there exists v € U with x € G(x)

or

(A2). there exists x € OU and X € (0,1) with x € AG(x) + (1 — X\)®(z)
holds.

Proof. Let F(x) = i(z). Note F' € Aypy(U, E) and the result follows from Theorem
2.7 if we show F is ®-epi. Let H € B(U,E) (i.e. H € B(U, E) with H(z) C ®(z)
for x € OU). We must show there exists € U with x € H(z). Let ¥ = rH. Then
from (2.8) and (2.9) we see that ¥ € A(U,U) and there exists € U with z € rH(x).
Then z = r(y) where y € H(z); here v € U = U U 9U. If we show

(2.10) xeUandr(y) =y

then x =y so v € H(x) and we are finished. It remains to show (2.10). Let x € 0U.
Then u(x) =1 so

— u(x) = ulr - ) __
L= n) =nlrlv) = om0y

so u(y) > 1. Thus z = r(y) = Gy so with A = @ we have © € AH(x). Then since
H(w) C &(w) for w € U we have x € A®(z) and so € U (recall (0U) C U, U is
convex and 0 € U), a contradiction. Thus = € U. Then u(x) < 1 so

IS 11()
1> p(x) = p(r(y)) w1 (o)}
and as a result u(y) < 1. Thus r(y) =y, so (2.10) holds. O

Remark 2.13. We can remove the assumption that F is normal in the statement of
Theorem 2.12 provided we have that (so we need to put conditions on the maps) D

(see Remark 2.8) is relatively compact.

Remark 2.14. We note from the proof above that we could replace (2.3) with (2.7).
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Remark 2.15. Let F be a normal topological vector space and U an open subset of
E with 0 € U. Suppose G € B(U, E) and (2.1), (2.2) and (2.7) hold. Also assume

(2.11) there exists a retraction r : E — U with r(w) € U if w € E\U
and
(2.12) there is no z € QU with z = r(y) and y € ®(z).

Finally suppose (2.8) (with = in (2.11)) and (2.9) hold. Then the conclusion in
Theorem 2.12 holds. To see this let H € By(U, E) and exactly the same argument
as in Theorem 2.12 guarantees that there exists x € U with x € rH (). Then

(2.13) r=r(y) with y € H(z);
here z € U = U U QU. If we show
(2.14) reUandr(y)=y

then (2.13) implies x € H(x) and we are finished. It remains to show (2.14). If
x € OU then z = r(y) and y € H(z) C ®(x), so (2.12) yields a contradiction. Thus
x € U. As a result since r(y)(= z) € U we have from (2.11) that y € U and so
r(y) =y

We now present a very general abstract Furi-Pera type result based on Leray-
Schauder type results (see (2.17)) below).

Theorem 2.16. Let E be a metrizable topological vector space and () a closed subset
of E. Let F: Q — K(E), ®:Q — K(F) and assume the following hold:

(2.15) there exists a retraction v : E — @Q with r(z) € 0Q for z € E\Q
and
(2.16) Fr e B(E,E) and Fr has a fived point.

Forie {1,2,...} let Uy = {z € E : d(z,Q) < 1}; here d is the metric associated
with E. Suppose for each i € {1,2,...} we have Fr € B(U;, E), ®r € B(U;, E) and
assume the following conditions hold:
(2.17) either (A1). there exists x € U; with x € Fr(x) or (A2). there exists

' x € 0U; and A € (0,1) with x € A\Fr(z) + (1 — \)®r(z) hold

(2.18) {r € E:x e Fr(x)+ (1= \)®r(x) for some X € [0,1]}
' 15 relatively compact.

Finally suppose

if {(x5, A\ }52, is a sequence in 0Q x [0,1] converging
(2.19) to (z,A\) with x € AF(z) + (1 = \)®(x) and 0 < X < 1,
then {\;F(z;) + (1 = X\;)@(x;)} C Q for j sufficiently large.
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Then F' has a fized point in Q).

Proof. Let
Q={x € FE:xe€Fr(x)}.

Now © # 0 (from (2.16)) and € is closed since Fr is upper semicontinuous. Now
(2.18) guarantees that 2 is compact. We claim QN Q # (). To do this we argue by
contradiction. Suppose that QNQ = (). Then since €2 is compact and () is closed there
exists 6 > 0 with dist(£2,Q) > 0. Choose m € {1,2,...} with 1 < dm and let (as in
the statement of the theorem) U; = {z € E : d(x,Q) < 1} fori € {m,m+1,...}.

Fix i € {m,m+1,...}. Since dist(Q, Q) > & we see that QNT; = (). Now (2.17)
guarantees that there exists \; € (0,1) and y; € 9U; with y; € N Fr(y;)+(1—=X;)Pr(y;).
Since y; € OU; we have

(2.20) {NEr(y) + (L =X)Pr(yi)} £ Q fori € {m,m+1,...}.
Now let
D={x€ E:xe\Fr(z)+ (1 —\)®r(z) for some X € [0, 1]}.
Now D # ) (from (2.16)) is closed so compact from (2.18). This together with
d(y;, Q) = % and |A\;| <1forje {mm+1,...}

implies that we may assume without loss of generality that \; — A\* and y; — y* €
0Q. In addition since F'r and ®r are upper semicontinuous and y; € A\ Fr(y;) + (1 —
A;)®r(y;) we have

y e NFr(y") + (1= A)or(y”)
Le. y* € NF(y*) + (1 — X)®(y*) since r(y*) = y*. If \* =1 then y* € Fr(y*) which
contradicts BN @ = (. Thus 0 < A* < 1. Now (2.19) with z; = r(y;) (note y; € 0U;
so r(y;) € 0Q) and x = y* = r(y*) implies

{NFry;) + (1 —X)®r(y;)} C Q for j sufficiently large.

This contradicts (2.20). Thus QN Q # 0 so there exists € @ with € Fr(z) =
F(z). O

Remark 2.17. If F is a locally convex Hausdorff topological vector space and @) is
convex then Dugundji’s extension theorem guarantees that there exists a retraction
r: E — Q. If say 0 € int@ then we could take
x

") = T, a@)}
where £ is the Minkowski functional on @) and with this r» we have r(z) € 9Q for
z € E\Q i.e. (2.15) holds with this r. On the other hand if int@Q = () then 0Q = Q
so (2.15) holds.

forxz € F,
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Remark 2.18. Note U; for each i € {1,2,...} (in the statement of Theorem 2.16) is
an open subset of £. Also note if 0 € @) then 0 € U; for each 7 € {1,2,...}.

Remark 2.19. Let E be a metrizable locally convex topological vector space and let
(@ be convex also. We may choose d to be a translational invariant metric associated
with E (see [7 pg 29]) so we see that U; for each ¢ € {1,2,...} (in the statement of

Theorem 2.16) is convex.

Remark 2.20. Let E be a metrizable locally convex topological vector space and @)
a closed convex subset of E with 0 € Q). Let r : E'— @ be the retraction as in (2.15)
(guaranteed from Remark 2.17). Fori € {1,2,...} let U; = {z € E : d(z,Q) < 1};
here d is the translational invariant metric associated with £ (as in Remark 2.19).
Suppose for each i € {1,2,...} we have Fr € B(U;, E) and ®r € B(U;, E). Note
for each i € {1,2,...} from Dugundji’s extension theorem Uj; is a retract of E i.e.
there exists a retraction r; : E — U; (we could take 7;(z) =

the Minkowski functional on Uj).

m where i is

(i). For each i € {1,2,...} assume the following conditions hold:

(2.21) n(.)Fr(.)—l—(l—ni))(I)r(.)GB(E,E)forany
' continuous map 7 : U; — [0, 1] with n(0U;) =0

(2.22) i € A(U;, E) where i is the identity map

(2.23) x ¢ A\0r(z) for x € 9U; and A € (0, 1]

(2.24) any map W € A(E, F) has a fixed point

and

for any continuous map n: £ — [0, 1] with n(E\U;) =0
(2.25) and H € By, (U;, E) the map J € A(E, E)
where J(x) = n(x)H (r;(z)).
Now Theorem 2.9 (with G being Fr, ® being ®r and U being U;) guarantees that
(2.17) holds.
(ii). Foreachi € {1,2,...} assume (2.21), (2.22) and (2.23) hold and in addition

assume the following conditions hold:

(2.26) for any map H € By, (U;, E) we have r;H € A(U;, U;)
and
(2.27) any map ¥ € A(U;, U;) has a fixed point.

Now Theorem 2.12 (with G being Fr, ® being ®r and U being U;) guarantees that
(2.17) holds.
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