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1. INTRODUCTION

The 0-epi maps were introduced by Furi, Martelli and Vignoli in [1]. These maps

were generalized by Gabor, Gorniewicz and Slosarski in [3]. More recently the general

notion of Φ-epi maps for a general class of maps was presented by O’Regan in [6] (see

also [4]) and these result allow us to study coincidence points (i.e. F (x) ∩ Φ(x) 6= ∅)

of the maps F and Φ. In this paper using the theory in [6] we begin by presenting

some new Leray-Schauder alternatives for a very general class of maps. Next we

present a very general Furi-Pera type result (see [2, 5]) based on Leray-Schauder type

alternatives.

2. LERAY-SCHAUDER AND FURI-PERA RESULTS

We begin this section by recalling the following definitions and results from the

literature [6].

Let E be a Hausdorff topological space and U an open subset of E. We will

consider classes A and B of maps.

Definition 2.1. We say F ∈ A(U, E) if F ∈ A(U, E) and F : U → K(E) is an

upper semicontinuous map; here U denotes the closure of U in E and K(E) denotes

the family of nonempty compact subsets of E.

Definition 2.2. We say F ∈ B(U, E) if F ∈ B(U, E) and F : U → K(E) is an

upper semicontinuous map.
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Now we fix a Φ ∈ B(U, E).

Definition 2.3. We say F ∈ A∂U(U, E) if F ∈ A(U, E) with F (x) ∩ Φ(x) = ∅ for

x ∈ ∂U ; here ∂U denotes the boundary of U in E.

Definition 2.4. We say F ∈ BΦ(U, E) if F ∈ B(U, E) and F (x) ⊆ Φ(x) for x ∈ ∂U .

Definition 2.5. A map F ∈ A∂U (U, E) is Φ-epi if for every map G ∈ BΦ(U, E) there

exists x ∈ U with F (x) ∩ G(x) 6= ∅.

Remark 2.6. Suppose F ∈ A∂U(U, E) is Φ-epi. Then there exists x ∈ U with

F (x) ∩ Φ(x) 6= ∅ (take G = Φ in Definition 2.5).

In [6] we established the following Leray-Schauder alternative.

Theorem 2.7. Let E be a normal topological vector space and U an open subset of

E. Suppose F ∈ A∂U(U, E) is Φ-epi and G ∈ B(U, E) and assume the following

condition holds:

(2.1)

{

µ( . ) G( . ) + (1 − µ( . )) Φ( . ) ∈ B(U, E) for any

continuous map µ : U → [0, 1] with µ(∂U) = 0.

Then either

(A1). there exists x ∈ U with F (x) ∩ G(x) 6= ∅,

or

(A2). there exists x ∈ ∂U and λ ∈ (0, 1) with F (x) ∩ [λG(x) + (1 − λ)Φ(x)] 6= ∅,

holds.

Remark 2.8. We can remove the assumption that E is normal in the statement of

Theorem 2.7 provided we have that (so we need to put conditions on the maps)

D =
{

x ∈ U : F (x) ∩ [tG(x) + (1 − t)Φ(x)] 6= ∅ for some t ∈ [0, 1]
}

is relatively compact. The existence of the map µ in [6] is then guaranteed since

topological vector spaces are completely regular (i.e. in the proof in [6] there exists a

map µ : U → [0, 1] with µ(∂U) = 0 and µ(D) = 0).

A special case of Theorem 2.7 is the following applicable result of Leray-Schauder

type.

Theorem 2.9. Let E be a normal topological vector space and U an open convex

subset of E with 0 ∈ U . Suppose G ∈ B(U, E) and (2.1) holds. In addition assume

the following conditions hold:

(2.2) i ∈ A(U, E) where i is the identity map

(2.3) Φ(∂U) ⊆ U
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(2.4) U is a retract of E i.e. there exists a retraction (continuous) r : E → U

(2.5) any map Ψ ∈ A(E, E) has a fixed point

and

(2.6)











for any continuous map η : E → [0, 1] with η(E\U) = 0

and H ∈ BΦ(U, E) the map J ∈ A(E, E)

where J(x) = η(x)H(r(x)).

Then either

(A1). there exists x ∈ U with x ∈ G(x)

or

(A2). there exists x ∈ ∂U and λ ∈ (0, 1) with x ∈ λG(x) + (1 − λ)Φ(x)

holds.

Proof. Let F (x) = i(x). Note F ∈ A∂U(U, E) since if x ∈ ∂U we have F (x)∩Φ(x) = ∅

(note for x ∈ ∂U we have x /∈ Φ(x) from (2.3)). The result follows from Theorem 2.7

if we show F is Φ-epi. Let H ∈ BΦ(U, E) (i.e. H ∈ B(U, E) with H(x) ⊆ Φ(x) for

x ∈ ∂U). We must show there exists x ∈ U with x ∈ H(x). Let

Ω =
{

x ∈ U : x ∈ λH(x) for some λ ∈ [0, 1]
}

.

Now Ω is closed (since H is upper semicontinuous) and Ω ⊂ U since if there exists

x ∈ ∂U and λ ∈ [0, 1] with x ∈ λH(x) then since H(y) ⊆ Φ(y) for y ∈ ∂U we have

x ∈ λΦ(x) and so x ∈ U (recall Φ(∂U) ⊆ U , U is convex and 0 ∈ U), a contradiction.

Now Urysohn’s Lemma guarantees that there exists a continuous map η : E → [0, 1]

with η(Ω) = 1 and η(E\U) = 0. Define a map J by J(x) = η(x)H(r(x)). Now

(2.6) guarantees that J ∈ A(E, E) and (2.5) guarantees that there exists x ∈ E with

x ∈ η(x)H(r(x)). If x ∈ E\U then η(x) = 0, a contradiction since 0 ∈ U . Thus

x ∈ U and so x ∈ η(x)H(x). As a result x ∈ Ω so η(x) = 1. Thus x ∈ H(x).

Remark 2.10. We note from the proof above that we could replace U convex and

(2.3) with the condition

(2.7) x /∈ λΦ(x) for x ∈ ∂U and λ ∈ (0, 1].

Note in (2.7) we have in fact λ ∈ [0, 1] since x 6= 0 if x ∈ ∂U (recall 0 ∈ U).

Remark 2.11. We can remove the assumption that E is normal in the statement of

Theorem 2.9 provided we have that (so we need to put conditions on the maps) D

(see Remark 2.8) and Ω (see the proof of Theorem 2.9) are relatively compact (note

the existence of the map η in Theorem 2.9 is then guaranteed since topological vector

spaces are completely regular).

In our next result E will be a locally convex topological vector space. The more

general case when E is a topological vector space will be presented in Remark 2.15.
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Theorem 2.12. Let E be a normal locally convex Hausdorff topological vector space

and U an open convex subset of E with 0 ∈ U . Suppose G ∈ B(U, E) and (2.1), (2.2)

and (2.3) hold. Let r : E → U be given by

r(x) =
x

max{1, µ(x)}
for x ∈ E,

where µ is the Minkowski functional on U (i.e. µ(x) = inf{α > 0 : x ∈ αU}). In

addition assume the following conditions hold:

(2.8) for any map H ∈ BΦ(U, E) we have rH ∈ A(U, U)

and

(2.9) any map Ψ ∈ A(U, U) has a fixed point.

Then either

(A1). there exists x ∈ U with x ∈ G(x)

or

(A2). there exists x ∈ ∂U and λ ∈ (0, 1) with x ∈ λG(x) + (1 − λ)Φ(x)

holds.

Proof. Let F (x) = i(x). Note F ∈ A∂U(U, E) and the result follows from Theorem

2.7 if we show F is Φ-epi. Let H ∈ BΦ(U, E) (i.e. H ∈ B(U, E) with H(x) ⊆ Φ(x)

for x ∈ ∂U). We must show there exists x ∈ U with x ∈ H(x). Let Ψ = rH . Then

from (2.8) and (2.9) we see that Ψ ∈ A(U, U) and there exists x ∈ U with x ∈ rH(x).

Then x = r(y) where y ∈ H(x); here x ∈ U = U ∪ ∂U . If we show

(2.10) x ∈ U and r(y) = y

then x = y so x ∈ H(x) and we are finished. It remains to show (2.10). Let x ∈ ∂U .

Then µ(x) = 1 so

1 = µ(x) = µ(r(y)) =
µ(y)

max{1, µ(y)}
,

so µ(y) ≥ 1. Thus x = r(y) = y

µ(y)
so with λ = 1

µ(y)
we have x ∈ λH(x). Then since

H(w) ⊆ Φ(w) for w ∈ ∂U we have x ∈ λΦ(x) and so x ∈ U (recall Φ(∂U) ⊆ U , U is

convex and 0 ∈ U), a contradiction. Thus x ∈ U . Then µ(x) < 1 so

1 > µ(x) = µ(r(y)) =
µ(y)

max{1, µ(y)}
,

and as a result µ(y) < 1. Thus r(y) = y, so (2.10) holds.

Remark 2.13. We can remove the assumption that E is normal in the statement of

Theorem 2.12 provided we have that (so we need to put conditions on the maps) D

(see Remark 2.8) is relatively compact.

Remark 2.14. We note from the proof above that we could replace (2.3) with (2.7).
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Remark 2.15. Let E be a normal topological vector space and U an open subset of

E with 0 ∈ U . Suppose G ∈ B(U, E) and (2.1), (2.2) and (2.7) hold. Also assume

(2.11) there exists a retraction r : E → U with r(w) ∈ ∂U if w ∈ E\U

and

(2.12) there is no z ∈ ∂U with z = r(y) and y ∈ Φ(z).

Finally suppose (2.8) (with r in (2.11)) and (2.9) hold. Then the conclusion in

Theorem 2.12 holds. To see this let H ∈ BΦ(U, E) and exactly the same argument

as in Theorem 2.12 guarantees that there exists x ∈ U with x ∈ rH(x). Then

(2.13) x = r(y) with y ∈ H(x);

here x ∈ U = U ∪ ∂U . If we show

(2.14) x ∈ U and r(y) = y

then (2.13) implies x ∈ H(x) and we are finished. It remains to show (2.14). If

x ∈ ∂U then x = r(y) and y ∈ H(x) ⊆ Φ(x), so (2.12) yields a contradiction. Thus

x ∈ U . As a result since r(y)(= x) ∈ U we have from (2.11) that y ∈ U and so

r(y) = y.

We now present a very general abstract Furi-Pera type result based on Leray-

Schauder type results (see (2.17)) below).

Theorem 2.16. Let E be a metrizable topological vector space and Q a closed subset

of E. Let F : Q → K(E), Φ : Q → K(E) and assume the following hold:

(2.15) there exists a retraction r : E → Q with r(z) ∈ ∂Q for z ∈ E\Q

and

(2.16) Fr ∈ B(E, E) and Fr has a fixed point.

For i ∈ {1, 2, . . .} let Ui = {x ∈ E : d(x, Q) < 1
i
}; here d is the metric associated

with E. Suppose for each i ∈ {1, 2, . . .} we have Fr ∈ B(Ui, E), Φr ∈ B(Ui, E) and

assume the following conditions hold:

(2.17)

{

either (A1). there exists x ∈ Ui with x ∈ Fr(x) or (A2). there exists

x ∈ ∂Ui and λ ∈ (0, 1) with x ∈ λFr(x) + (1 − λ)Φr(x) hold

(2.18)

{

{x ∈ E : x ∈ λFr(x) + (1 − λ)Φr(x) for some λ ∈ [0, 1]}

is relatively compact.

Finally suppose

(2.19)











if {(xj , λj}
∞
j=1 is a sequence in ∂Q × [0, 1] converging

to (x, λ) with x ∈ λF (x) + (1 − λ)Φ(x) and 0 ≤ λ < 1,

then {λjF (xj) + (1 − λj)Φ(xj)} ⊆ Q for j sufficiently large.
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Then F has a fixed point in Q.

Proof. Let

Ω = {x ∈ E : x ∈ Fr(x)}.

Now Ω 6= ∅ (from (2.16)) and Ω is closed since Fr is upper semicontinuous. Now

(2.18) guarantees that Ω is compact. We claim Ω ∩ Q 6= ∅. To do this we argue by

contradiction. Suppose that Ω∩Q = ∅. Then since Ω is compact and Q is closed there

exists δ > 0 with dist(Ω, Q) > δ. Choose m ∈ {1, 2, . . .} with 1 < δm and let (as in

the statement of the theorem) Ui = {x ∈ E : d(x, Q) < 1
i
} for i ∈ {m, m + 1, . . .}.

Fix i ∈ {m, m+1, . . . }. Since dist(Ω, Q) > δ we see that Ω∩Ui = ∅. Now (2.17)

guarantees that there exists λi ∈ (0, 1) and yi ∈ ∂Ui with yi ∈ λiFr(yi)+(1−λi)Φr(yi).

Since yi ∈ ∂Ui we have

(2.20) {λiFr(yi) + (1 − λi)Φr(yi)} 6⊆ Q for i ∈ {m, m + 1, . . . }.

Now let

D = {x ∈ E : x ∈ λFr(x) + (1 − λ)Φr(x) for some λ ∈ [0, 1]}.

Now D 6= ∅ (from (2.16)) is closed so compact from (2.18). This together with

d(yj, Q) =
1

j
and |λj| ≤ 1 for j ∈ {m, m + 1, . . . }

implies that we may assume without loss of generality that λj → λ⋆ and yj → y⋆ ∈

∂Q. In addition since Fr and Φr are upper semicontinuous and yj ∈ λjFr(yj) + (1−

λj)Φr(yj) we have

y⋆ ∈ λ⋆Fr(y⋆) + (1 − λ⋆)Φr(y⋆)

i.e. y⋆ ∈ λ⋆F (y⋆) + (1 − λ⋆)Φ(y⋆) since r(y⋆) = y⋆. If λ⋆ = 1 then y⋆ ∈ Fr(y⋆) which

contradicts B ∩ Q = ∅. Thus 0 ≤ λ⋆ < 1. Now (2.19) with xj = r(yj) (note yj ∈ ∂Uj

so r(yj) ∈ ∂Q) and x = y⋆ = r(y⋆) implies

{λjFr(yj) + (1 − λj)Φr(yj)} ⊆ Q for j sufficiently large.

This contradicts (2.20). Thus Ω ∩ Q 6= ∅ so there exists x ∈ Q with x ∈ Fr(x) =

F (x).

Remark 2.17. If E is a locally convex Hausdorff topological vector space and Q is

convex then Dugundji’s extension theorem guarantees that there exists a retraction

r : E → Q. If say 0 ∈ intQ then we could take

r(x) =
x

max{1, µ(x)}
for x ∈ E,

where µ is the Minkowski functional on Q and with this r we have r(z) ∈ ∂Q for

z ∈ E\Q i.e. (2.15) holds with this r. On the other hand if intQ = ∅ then ∂Q = Q

so (2.15) holds.
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Remark 2.18. Note Ui for each i ∈ {1, 2, . . .} (in the statement of Theorem 2.16) is

an open subset of E. Also note if 0 ∈ Q then 0 ∈ Ui for each i ∈ {1, 2, . . .}.

Remark 2.19. Let E be a metrizable locally convex topological vector space and let

Q be convex also. We may choose d to be a translational invariant metric associated

with E (see [7 pg 29]) so we see that Ui for each i ∈ {1, 2, . . .} (in the statement of

Theorem 2.16) is convex.

Remark 2.20. Let E be a metrizable locally convex topological vector space and Q

a closed convex subset of E with 0 ∈ Q. Let r : E → Q be the retraction as in (2.15)

(guaranteed from Remark 2.17). For i ∈ {1, 2, . . .} let Ui = {x ∈ E : d(x, Q) < 1
i
};

here d is the translational invariant metric associated with E (as in Remark 2.19).

Suppose for each i ∈ {1, 2, . . .} we have Fr ∈ B(Ui, E) and Φr ∈ B(Ui, E). Note

for each i ∈ {1, 2, . . .} from Dugundji’s extension theorem Ui is a retract of E i.e.

there exists a retraction ri : E → Ui (we could take ri(x) = x
max{1,µi(x)}

where µi is

the Minkowski functional on Ui).

(i). For each i ∈ {1, 2, . . .} assume the following conditions hold:

(2.21)

{

η( . ) F r( . ) + (1 − η( . ))Φ r( . ) ∈ B(Ui, E) for any

continuous map η : Ui → [0, 1] with η(∂Ui) = 0

(2.22) i ∈ A(Ui, E) where i is the identity map

(2.23) x /∈ λΦr(x) for x ∈ ∂Ui and λ ∈ (0, 1]

(2.24) any map Ψ ∈ A(E, E) has a fixed point

and

(2.25)











for any continuous map η : E → [0, 1] with η(E\Ui) = 0

and H ∈ BΦr(Ui, E) the map J ∈ A(E, E)

where J(x) = η(x)H(ri(x)).

Now Theorem 2.9 (with G being Fr, Φ being Φr and U being Ui) guarantees that

(2.17) holds.

(ii). For each i ∈ {1, 2, . . .} assume (2.21), (2.22) and (2.23) hold and in addition

assume the following conditions hold:

(2.26) for any map H ∈ BΦr(Ui, E) we have riH ∈ A(Ui, Ui)

and

(2.27) any map Ψ ∈ A(Ui, Ui) has a fixed point.

Now Theorem 2.12 (with G being Fr, Φ being Φr and U being Ui) guarantees that

(2.17) holds.
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