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ABSTRACT. The aim of the paper is the analysis of existence and properties of solutions to

stochastic integral inclusions driven by two-parameter martingales. In our investigations we apply

set-valued stochastic integral equations and we establish their connections with stochastic integral

inclusions. Finally, we show how some particular two-parameter stochastic models are related to

stochastic inclusions.

Keywords and phrases. Random Field, Two-parameter martingale, Set-valued Stochastic Integral

Equation, Stochastic Inclusion

2000 AMS Subject Classification. 60H20, 60G60, 26E25, 60G44, 40D25, 60H05.

1. Introduction

There have been many recent papers involving both the theory and applications

of stochastic differential inclusions and stochastic set-valued integral equations in

one-parameter case. Such studies have been mainly inspired by the theory of sto-

chastic controlled dynamic systems and appear as their generalizations (see [1]–[4],

[6], [15], [19]–[24], [27], [30]–[38], [41]–[45], [48], [52] and references therein). Namely,

similarly as in the case of deterministic differential inclusions, stochastic inclusions

appear as generalizations of a family of stochastic equations which depend on control

parameters.

On the other hand as far as we know there are only few papers dealing with sto-

chastic integral inclusions driven by random fields (see [25], [26], [47]). Such inclusions
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have been considered only with respect to two-parameter Wiener process. Therefore,

in this paper we investigate stochastic integral inclusions driven by more general in-

tegrators i.e. two-parameter continuous increasing processes and two-parameter con-

tinuous martingales. We also consider their connections with set-valued stochastic

integral equations. Two-parameter set-valued stochastic integral equations driven by

martingales and their applications were recently studied in [39] and [40]. Both two-

parameter stochastic integral inclusions and set-valued integral equations reduce in

a single-valued case to some hyperbolic stochastic partial differential equations. In

particular, they include so called stochastic Goursat problem (see e.g. [5] and [14]).

Additionally, such stochastic inclusions and set-valued stochastic integral equations

can be treated as a generalizations of stochastic differential equations in the plane

which have a wide range of financial applications (see e.g. [10], [16], [17]). In our

study we apply similar methods that were used in a single-valued case for stochastic

equations in [28], [29] and in a multivalued case in [26].

The paper is organized as follows. In Section 2 we recall some basic notions

and facts from the theory of stochastic and set-valued analysis needed in the se-

quel. Throughout Section 3 we analyze existence and main topological properties

of solutions to stochastic integral inclusions. Next, in Section 4 we establish main

interrelation between solutions to stochastic integral inclusions and set-valued sto-

chastic integral equations driven by two-parameter martingales. Finally we present

some concluding remarks on our results.

2. Preliminaries

Let I × J = [0, S] × [0, T ] denote the parameter set together with the partial

ordering (s, t) � (s′, t′) ⇔ s ¬ s′, t ¬ t′. Suppose that (Ω,F, {Fs,t}(s,t)∈I×J , P ) is a

complete filtered probability space, where {Fs,t}(s,t)∈[0,S]×[0,T ] is a family of sub-σ-fields

of F satisfying the usual axioms (see [8] for details).

By Lp,d we will denote the space Lp
(
Ω,F, P ;Rd

)
, where p, d ­ 1. In particular,

for d = 1 we will write Lp := Lp,1. Let us denote L2,ds,t := L2(Ω,Fs,t, P ;R
d) for

(s, t) ∈ I × J .

A stochastic process x : I×J×Ω→ R
d is said to be {Fs,t}-adapted, if xs,t : Ω→

R
d is an Fs,t-measurable random vector for every fixed (s, t) ∈ I×J . The process x is

called right-continuous, if for every (s, t) ∈ [0, S)× [0, T ) one has lim
(s′,t′)→(s,t)

(s,t)�(s′,t′)

xs′,t′ = xs,t

a.s. Moreover, x is said to be continuous, if lim
(s′,t′)→(s,t)

xs′,t′ = xs,t a.s. for every (s, t) ∈

[0, S)× [0, T ) (cf. [8], [11]).

Definition 2.1 ([8]). A process M : I × J × Ω→ R is L2-martingale if

(i) M is {Fs,t}(s,t)∈I×J -adapted,
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(ii) E |Ms,t|
2
<∞ for all (s, t) ∈ I × J ,

(iii) E {Ms′,t′ |Fs,t} =Ms,t a.s. for all (s, t), (s
′, t′) ∈ I × J , where (s, t) � (s′, t′).

We say that the process x : I×J×Ω→ R
d vanishes on the axes, if x0,t = xs,0 = 0

for all s ∈ I, t ∈ J . It is denoted as ∂x = 0. By ∆s
′,t′

s,t (x) we denote the increment of

x over the rectangle (s, s′]× (t, t′] i.e.

∆s
′,t′

s,t (x) = xs′,t′ − xs′,t − xs,t′ + xs,t.

Definition 2.2 ([8]). A process A : I × J × Ω→ R is increasing if

(i) A is right-continuous and {Fs,t}(s,t)∈I×J -adapted,

(ii) ∂A = 0,

(iii) ∆s
′,t′

s,t (A) ­ 0 for each rectangle (s, s
′]× (t, t′] ⊂ I × J P -a.e.

Denote by P the σ-field of {Fs,t}(s,t)∈I×J -predictable elements in I×J ×Ω. More

precisely, P is a σ-field generated by the family

R = {(s, s′]× (t, t′]× F : F ∈ Fs,t, (s, t) � (s
′, t′), (s, t), (s′, t′) ∈ I × J}

∪ {{0} × (t, t′]× F : F ∈ F0,t, t ¬ t
′, t, t′ ∈ I}

∪ {(s, s′]× {0} × F : F ∈ Fs,0, s ¬ s
′, s, s′ ∈ J}

∪ {{0} × {0} × F : F ∈ F0,0} .

Then P ⊂ B ⊗ F, where B := B(I × J) is the Borel σ-field of subsets of I × J .

A stochastic process x : I × J × Ω → R
d is said to be predictable, if x is P-

measurable.

Let (X, ‖·‖
X
) be a separable Banach space. Denote by Kc(X) the family of all

nonempty closed and convex subsets of X. By Kbc(X) we shall denote those elements

in Kc(X), which are also bounded. The Hausdorff metric HX in Kc(X) is defined by

HX(B,C) = max
{
HX(B,C), HX(C,B)

}
,

where HX(B,C) = sup
b∈B

distX(b, C) = sup
b∈B

inf
c∈C
‖b− c‖

X
(see e.g. [13] for details).

For B,C,D,E ∈ Kbc(X) it holds (see [13])

(2.1) HX (B + C,D + E) ¬ HX (B,D) +HX (C,E)

and

(2.2) HX (B +D,C +D) = HX (B,C) ,

where B + C := {b+ c : b ∈ B, c ∈ C} denotes the Minkowski sum of B and C.

Moreover, by B⊖C we denote the Hukuhara difference (if it exists) of B,C ∈ Kbc(X),

i.e. the set D ∈ Kbc(X) such that B = C +D. By co (C) we denote the convex hull of

the set C ⊂ X, i.e. an intersection of all convex subsets of X containing C. Similarly,

co (C) denotes the closed convex hull of the set C.
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The space (Kc(X), HX) is complete and
(
Kbc(X), HX

)
is its a closed subspace.

Let (U,U , µ) be a measure space. A set-valued mapping (multifunction) F : U →

Kbc(X) is said to be U-measurable (or measurable), if it satisfies

{u ∈ U : F (u) ∩ C 6= ∅} ∈ U for every closed set C ⊂ X.

A measurable multifunction F : U → Kbc(X) is said to be L
p-integrally bounded

(p ­ 1), if there exists h ∈ Lp(U,U , µ;R+) such that ||F ||X ¬ h µ-a.e., where

||A||
X
= HX(A, {0}) = sup

a∈A

‖a‖
X
for A ∈ Kbc(X).

Then F is Lp-integrally bounded if and only if ||F ||
X
∈ Lp(U,U , µ;R+) (see [12]).

In order to consider a stochastic integral inclusion driven by a two-parameter

increasing process A and a two-parameter L2-martingale M we recall the main prop-

erties of set-valued functional stochastic integrals. Similarly as in [39] for the process

A one can define a measure νA on the measurable space (I × J × Ω,P) as follows

(2.3) νA (C) := E

{∫

I×J
IC (ω, s, t)AS,T (ω) dAs,t(ω)

}
for C ∈ P,

where dAs,t(ω) is a random measure on the measurable space (I × J,B) generated by

the trajectory of A.

Hence νA (I × J × Ω) = EA2S,T and νA is finite if and only if EA
2
S,T <∞. We will

assume this property throughout the paper. Let

L
2,d
P (νA) := L

2(I × J × Ω,P, νA;R
d).

The set-valued mapping F : I×J×Ω→ Kbc(R
d) is called a two-parameter predictable

set-valued process, if it is P-measurable in the sense of the set-valued analysis. It is

called L2,dP (νA)-integrally bounded, if

||F ||
Rd
∈ L2(I × J × Ω,P, νA;R+).

For such a mapping F , by Kuratowski and Ryll-Nardzewski Measurable Selection

Theorem (cf. [18]), the set of its predictable and square integrable selections

S2P(F, νA) := {f ∈ L
2,d
P (νA) : f ∈ F νA-a.e.}

is nonempty.

Definition 2.3 ([39]). By the two-parameter set-valued functional stochastic integral

of F , driven by a two-parameter increasing process A, we mean the set

∫

[s,s′]×[t,t′]
Fu,vdAu,v :=

{∫

[s,s′]×[t,t′]
fu,vdAu,v : f ∈ S

2
P(F, νA)

}

for every (s, t) , (s′, t′) ∈ I × J , where (s, t) � (s′, t′).
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Due to the Cauchy-Schwarz inequality we obtain

(2.4) E‖
∫

[s,s′]×[t,t′]
fu,vdAu,v‖

2
Rd
¬
∫

[s,s′]×[t,t′]×Ω
‖f‖2

Rd
dνA

for every (s, t), (s′, t′) ∈ I × J such that (s, t) � (s′, t′) and every f ∈ S2P(F, νA).

Theorem 2.4 ([39]). Let F : I × J × Ω → Kbc(R
d) be a predictable and L2,dP (νA)-

integrally bounded set-valued stochastic process. Then

(i) S2P(F, νA) is a nonempty, closed, bounded, convex, P-decomposable and weakly

compact subset of L2,dP (νA),

(ii)
∫
[s,s′]×[t,t′] Fu,vdAu,v is a nonempty, closed, bounded, convex and weakly compact

subsets of L2,ds′,t′ for every (s, t), (s
′, t′) ∈ I × J and (s, t) � (s′, t′).

Theorem 2.5 ([39]). Let F,G : I × J × Ω → Kbc(R
d) be predictable and L2,dP (νA)-

integrally bounded set-valued stochastic processes. Then

H2L2,d

(∫

[s,s′]×[t,t′]
Fu,vdAu,v,

∫

[s,s′]×[t,t′]
Gu,vdAu,v

)

¬
∫

[s,s′]×[t,t′]×Ω
H2

Rd
(F,G)dνA

for every (s, t) , (s′, t′) ∈ I × J , where (s, t) � (s′, t′).

Theorem 2.6 ([39]). Suppose that A is a continuous increasing process on I×J . Let

F : I × J × Ω → Kbc(R
d) be a predictable and L2,dP (νA)-integrally bounded set-valued

stochastic process. Then the correspondence

I × J ∋ (s, t) 7→
∫

[0,s]×[0,t]
Fu,vdAu,v ∈ K

b
c(L
2,d)

is a continuous set-valued mapping with respect to the metric HL2,d.

Below we also recall the notion of set-valued functional stochastic integral with

respect to a two-parameter L2-martingale M with ∂M = 0. Similarly as in [39] we

will consider Doléan’s measure on a σ-field P defined as follows

(2.5) µM (C) = E

{∫

I×J
IC (u, v, ·)d 〈M〉u,v (·)

}
for C ∈ P,

where 〈M〉 denotes a quadratic variation process of M (see [8]). Let

L
2,d
P (µM) := L

2(I × J × Ω,P, µM ;R
d).

Then for every g ∈ L2,dP (µM) one can define the stochastic integral with respect to M

(see [8] for details). This integral has the following isometry property.

Theorem 2.7 (Theorem 2.2 [8]). Let g ∈ L2,dP (µM). Then

E‖
∫

[s,s′]×[t,t′]
gu,vdMu,v‖

2
Rd
= E

{∫

[s,s′]×[t,t′]
‖gu,v‖

2
Rd
d 〈M〉u,v

}

(2.6)

=
∫

[s,s′]×[t,t′]×Ω
‖g‖2

Rd
dµM

for every (s, t), (s′, t′) ∈ I × J such that (s, t) � (s′, t′).
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The integral process
(∫
[0,s]×[0,t] gu,vdMu,v

)

(s,t)∈I×J
is a right-continuous d-dimensional

L2-martingale (cf. [8]). Consequently by (2.6) and Doob’s martingale inequality we

obtain

(2.7) E

(

sup
(s,t)∈I×J

‖
∫

[0,s]×[0,t]
gu,vdMu,v‖

2
Rd

)

¬ 16
∫

I×J×Ω
‖g‖2

Rd
dµM .

For G : I × J × Ω → Kbc(R
d) being a predictable and L2,dP (µM)-integrally bounded

set-valued stochastic process, let

S2P(G, µM) := {g ∈ L
2,d
P (µM) : g ∈ G µM -a.e.}.

Similarly as earlier, since G : I × J × Ω→ Kbc(R
d) is L2,dP (µM)-integrally bounded, it

follows that S2P(G, µM) 6= ∅.

Definition 2.8 ([39]). By the two-parameter set-valued functional stochastic integral

of G, driven by a two-parameter martingale M , we mean the set

∫

[s,s′]×[t,t′]
Gu,vdMu,v :=

{∫

[s,s′]×[t,t′]
gu,vdMu,v : g ∈ S

2
P(G, µM)

}

for every (s, t) , (s′, t′) ∈ I × J , where (s, t) � (s′, t′).

Theorem 2.9 ([39]). Let G : I × J × Ω → Kbc(R
d) be a predictable and L2,dP (µM)-

integrally bounded set-valued stochastic process. Then

(i) S2P(G, µM) is a nonempty, closed, bounded, convex, P-decomposable and weakly

compact subset of L2,dP (µM),

(ii)
∫
[s,s′]×[t,t′]Gu,vdMu,v is a nonempty, closed, bounded, convex and weakly compact

subsets of L2,ds′,t′ for every (s, t), (s
′, t′) ∈ I × J , where (s, t) � (s′, t′).

Theorem 2.10 ([39]). Let F,G : I × J × Ω → Kbc(R
d) be predictable and L2,dP (µM)-

integrally bounded set-valued stochastic processes. Then

H2L2,d

(∫

[s,s′]×[t,t′]
Fu,vdMu,v,

∫

[s,s′]×[t,t′]
Gu,vdMu,v

)

¬
∫

[s,s′]×[t,t′]×Ω
H2

Rd
(F,G)dµM

for every (s, t) , (s′, t′) ∈ I × J and (s, t) � (s′, t′).

Theorem 2.11 ([39]). Suppose that M is a continuous L2-martingale on I × J . Let

G : I × J × Ω → Kbc(R
d) be a predictable and L2,dP (µM)-integrally bounded set-valued

stochastic process. Then the correspondence

I × J ∋ (s, t) 7→
∫

[0,s]×[0,t]
Gu,vdMu,v ∈ K

b
c(L
2,d)

is a continuous set-valued mapping with respect to the metric HL2,d.
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3. Stochastic inclusions and their properties

In this part we consider stochastic integral inclusions driven by two-parameter

integrators. We establish the existence and main properties of solutions to such inclu-

sions. In our study we apply multivalued counterpart of methods used for stochastic

equations studied in [29].

Assume that (Ω,F, {Fs,t}(s,t)∈I×J , P ) is a complete filtered probability space. Let

S2 (I × J) denote the space of all continuous {Fs,t}-adapted two-parameter stochastic

processes on I × J which satisfy the condition

‖x‖2S2 =

{

E

{

sup
(s′,t′)�(s,t)

‖x (s′, t′)‖
2
Rd

}}1
2

<∞ for (s, t) ∈ I × J.

Then (S2 (I × J) , ‖·‖2S2) is a Banach space.

Before we formulate the main result of this section we recall the following version

of Carathéodory/Lipschitz Selection Theorem needed in the sequel. Let (Σ,M, λ) be

a measure space and let X be a linear normed space. We assume that for a set-valued

mapping F̃ : Σ × X → Kbc
(
R
d
)
and M-measurable functions L,K : Σ → R+ the

following conditions are satisfied:

(i) F̃ (·, x) is M-measurable for every x ∈ X,

(ii) H2
Rd
(F̃ (σ, x) , F̃ (σ, y)) ¬ Lσ ‖x− y‖

2
X
for every x, y ∈ X and σ ∈ Σ,

(iii) H2
Rd
(F̃ (σ, x) , {θ}) ¬ Kσ(1+‖x‖

2
X
) for every x ∈ X and σ ∈ Σ, where the symbol

θ denotes the zero element in R
d.

Similarly as in [26] one can prove the following result.

Proposition 3.1 (Proposition 2 [26]). Let F̃ : Σ × X → Kbc
(
R
d
)
be a set-valued

mapping satisfying conditions (i)–(iii). Then there exists a function f̃ : Σ× X→ R
d

such that

(a) f̃ (σ, x) ∈ F̃ (σ, x) for all (σ, x) ∈ Σ×X,

(b) f̃ (·, x) is M-measurable for each x ∈ X,

(c) ‖f̃ (σ, x)− f̃ (σ, y) ‖2
Rd
¬ d2Lσ ‖x− y‖

2
X
for all σ ∈ Σ and x, y ∈ X,

(d) ‖f̃ (σ, x) ‖2
Rd
¬ Kσ(1 + ‖x‖

2
X
) for every σ ∈ Σ and x ∈ X.

Now we will focus our attention on stochastic integral inclusions. For this reason

let set-valued mappings F,G : I × J × Ω × R
d → Kbc(R

d) be given. By a stochastic

integral inclusion we mean the relation

(3.1)




∆s
′,t′

s,t (x) ∈
∫
[s,s′]×[t,t′] F (u, v, x (u, v)) dAu,v +

∫
[s,s′]×[t,t′]G (u, v, x (u, v)) dMu,v

x(0, t) = ξ(0, t)

x(s, 0) = ξ(s, 0)
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for every (s, t) , (s′, t′) ∈ I × J , where (s, t) � (s′, t′) and ξ : I × J × Ω→ R
d being a

given {Fs,t}(s,t)∈I×J -adapted and continuous stochastic process.

A stochastic process x ∈ S2(I × J) is a strong solution to stochastic inclusion

(3.1) if there exist f ∈ S2P(F ◦ x, νA) and g ∈ S
2
P(G ◦ x, µM) such that

x (s, t) + ξ (0, 0)− ξ (s, 0)− ξ (0, t)

=
∫

[0,s]×[0,t]
f (u, v)dAu,v +

∫

[0,s]×[0,t]
g (u, v)dMu,v for (s, t) ∈ I × J,

where F◦x andG◦x are set-valued processes such that (F◦x)(s, t, ω) = F (s, t, ω, x(s, t, ω))

and (G ◦ x)(s, t, ω) = G(s, t, ω, x(s, t, ω)).

Remark 3.2. Note that for a such solution x we have equivalently

∆s
′,t′

s,t (x) =
∫

[s,s′]×[t,t′]
f (u, v) dAu,v +

∫

[s,s′]×[t,t′]
g (u, v) dMu,v

with x(s, 0) = ξ (s, 0), x(0, t) = ξ (0, t) for every (0, 0) � (s, t) � (s′, t′) � (S, T ).

Remark 3.3. In a particular case with F = {a}, G = {b} where a, b : I×J×Ω×R
d →

R
d, inclusion (3.1) reduces to stochastic equation

x (s, t) + ξ (0, 0)− ξ (s, 0)− ξ (0, t)

=
∫

[0,s]×[0,t]
a (u, v, x(u, v))dAu,v +

∫

[0,s]×[0,t]
b (u, v, x(u, v))dMu,v

for (s, t) ∈ I × J, studied in [29]. It also reduces to stochastic equations considered in

[49], [50] and [51]. Moreover, taking As,t = st and Ms,t =Ws,t (with a two-parameter

Wiener process W ) it reduces further to the stochastic form of the Goursat problem

x (s, t) = ξ (s, 0) + ξ (0, t)− ξ (0, 0)

+
∫

[0,s]×[0,t]
a (u, v, x(u, v))dudv +

∫

[0,s]×[0,t]
b (u, v, x(u, v))dWu,v

for (s, t) ∈ I × J, considered among others in [5] and [53], which can be formally

recast as the stochastic partial differential equation

∂2x

∂s∂t
= a (s, t, x(s, t)) + b (s, t, x(s, t))

∂2W

∂s∂t
.

By SI(F,G, ξ) we will denote the set of all solutions to inclusion (3.1). We assume

that the multifunctions F and G satisfy the following conditions

(i1) F (·, ·, ·, x) and G(·, ·, ·, x) are predictable for every x ∈ R
d,

(i2) there exist a non-negative predictable process L = (Ls,t)(s,t)∈I×J and an increas-

ing function B on I × J such that for every ω ∈ Ω and

Ĝ (s, t, ω) ≡
∫

[0,s]×[0,t]
[1 + Lu,v (ω)] (dAu,v (ω) + d 〈M〉u,v (ω))

the random measure generated by Ĝ (·, ·, ω) is dominated by the measure gen-

erated by B, i.e. dĜ (·, ·, ω) ¬ dB (·, ·),
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(i3) for every x, y ∈ R
d and (s, t, ω) ∈ I × J × Ω, it holds

H2
Rd
(F (s, t, ω, x), F (s, t, ω, y)) +H2

Rd
(G(s, t, ω, x), G(s, t, ω, y))

¬ Ls,t(ω) ‖x− y‖
2
Rd
,

where L is the same process as in (i2),

(i4) for every x ∈ R
d and (s, t, ω) ∈ I × J × Ω we have

H2
Rd
(F (s, t, ω, x), {0}) +H2

Rd
(G(s, t, ω, x), {0}) ¬ d2Ls,t(ω)(1 + ‖x‖

2
Rd
),

with L as above.

Additionally, we assume that the process ξ satisfies the condition

(3.2) E

{

sup
(s,t)∈I×J

||ξ(0, t) + ξ(s, 0)− ξ(0, 0)||2
Rd

}

<∞.

Theorem 3.4. Let ξ be {Fs,t}(s,t)∈I×J -adapted and continuous stochastic process sat-

isfying inequality (3.2). Assume that F,G : I × J × R
d → Kbc(R

d) satisfy condi-

tions (i1)–(i4). Then SI(F,G, ξ) is nonempty, bounded and closed subset of the space

S2(I × J).

Proof. Taking Σ = I × J ×Ω, M = P and X = R
d by Proposition 3.1 with processes

Lσ = Ls,t(ω) and Kσ = d2Ls,t(ω) there exist selections a(u, v, ω, x) ∈ F (u, v, ω, x),

b(u, v, ω, x) ∈ G(u, v, ω, x) such that the functions a(·, ·, ·, x) and b(·, ·, ·, x) are pre-

dictable. Moreover the functions a(u, v, ω, ·) and b(u, v, ω, ·) are such that for every

(s, t, ω) ∈ I × J × Ω and x, y ∈ R
d it holds:

‖a (s, t, ω, x)− a (s, t, ω, y)‖2
Rd
¬ d2Ls,t (ω) ‖x− y‖

2
Rd
,

‖b (s, t, ω, x)− b (s, t, ω, y)‖2
Rd
¬ d2Ls,t (ω) ‖x− y‖

2
Rd

and

‖a (s, t, ω, x)‖2
Rd
¬ d2Ls,t (ω) (1 + ‖x‖

2
Rd
),

‖b (s, t, ω, x)‖2
Rd
¬ d2Ls,t (ω) (1 + ‖x‖

2
Rd
).

Let us consider the equation

x(s, t)− ξ(0, t)− ξ(s, 0) + ξ(0, 0)

=
∫

[0,s]×[0,t]
a(u, v, x(u, v))dAu,v +

∫

[0,s]×[0,t]
b(u, v, x(u, v)) dMu,v.(3.3)

Then similarly as in the proof of Theorem 3.1 in [29] one can show that there exists

a process x̂ which is an unique strong solution to equation (3.3). Then x̂ satisfies

∆s
′,t′

s,t (x) =
∫

[s,s′]×[t,t′]
a (u, v, x̂(u, v)) dAu,v +

∫

[s,s′]×[t,t′]
b (u, v, x̂(u, v)) dMu,v

with x̂(s, 0) = ξ (s, 0), x̂(0, t) = ξ (0, t) for every (0, 0) � (s, t) � (s′, t′) � (S, T ).

Hence x̂ is also a solution to stochastic inclusion (3.1). Thus the set SI(F,G, ξ) is

nonempty.
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In order to prove the boundedness of SI(F,G, ξ), let x ∈ SI(F,G, ξ). Then there

exist f ∈ S2P(F ◦ x, νA) and g ∈ S
2
P(G ◦ x, µM) such that

x(s, t)− ξ(0, t)− ξ(s, 0) + ξ(0, 0) =
∫

[0,s]×[0,t]
f(u, v)dAu,v +

∫

[0,s]×[0,t]
g(u, v)dMu,v

for every (s, t) ∈ I × J. Thus we get

E

{

sup
(u,v)∈[0,s]×[0,t]

‖x(u, v)‖2
Rd

}

¬ 3E{ sup
(u,v)∈[0,s]×[0,t]

‖ξ(0, v) + ξ(u, 0)− ξ(0, 0)‖2
Rd
}

(3.4)

+ 3E

{

sup
(u,v)∈[0,s]×[0,t]

‖
∫

[0,u]×[0,v]
f(τ, η)dAτ,η‖

2
Rd

}

+ 3E

{

sup
(u,v)∈[0,s]×[0,t]

‖
∫

[0,u]×[0,v]
g(τ, η)dMτ,η‖

2
Rd

}

.

By the Cauchy inequality applied to the second term on the right hand side of in-

equality (3.4) we have

E

{

sup
(u,v)∈[0,s]×[0,t]

‖
∫

[0,u]×[0,v]
f(τ, η)dAτ,η‖

2
Rd

}

¬ E

{

sup
(u,v)∈[0,s]×[0,t]

Au,v

∫

[0,u]×[0,v]
‖f(τ, η)‖2

Rd
dAτ,η

}

¬ E

{

As,t

∫

[0,s]×[0,t]
‖F (u, v, ω, x(u, v))‖2

Rd
dAu,v

}

¬ d2E

{

As,t

∫

[0,s]×[0,t]
Ls,t(ω)(1 + ‖x(u, v)‖

2
Rd
)dAu,v

}

¬ d2E






[∫

[0,s]×[0,t]
(1 + Lu,v(ω))(dAu,v + d 〈M〉u,v)

]2

+
∫

[0,s]×[0,t]
(1 + Lu,v(ω))(dAu,v + d 〈M〉u,v)

×
∫

[0,s]×[0,t]
sup

(τ,η)∈[0,u]×[0,v]
‖x(τ, η)‖2

Rd
(1 + Lu,v(ω))(dAu,v + d 〈M〉u,v)






= d2B2s,t + d
2Bs,t

∫

[0,s]×[0,t]
E{ sup
(τ,η)∈[0,u]×[0,v]

‖x(τ, η)‖2
Rd
}dBu,v.

Next, by Doob’s inequality and assumption (i4) we get the following inequalities for

the third part of (3.4)

E

{

sup
(u,v)∈[0,s]×[0,t]

‖
∫

[0,u]×[0,v]
g(τ, η)dMτ,η‖

2
Rd

}

¬ 16 sup
(u,v)∈[0,s]×[0,t]

E

{∫

[0,u]×[0,v]
‖g(τ, η)‖2

Rd
d 〈M〉τ,η

}

¬ 16d2E

{∫

[0,s]×[0,t]
(1 + Lu,v(ω))(1 + ‖x(u, v)‖

2
Rd
)d 〈M〉u,v

}
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¬ 16d2E

{∫

[0,s]×[0,t]
(1 + Lu,v(ω))(1 + ‖x(u, v)‖

2
Rd
)(d 〈M〉u,v + dAu,v)

}

¬ 16d2



E

{∫

[0,s]×[0,t]
(1 + Lu,v(ω))(d 〈M〉u,v + dAu,v)

}

+ E

{∫

[0,s]×[0,t]
sup

(τ,η)∈[0,u]×[0,v]
||x(τ, η)||2

Rd
(1 + Lu,v(ω))(d 〈M〉u,v + dAu,v)

}



¬ 16d2Bs,t + 16d
2
∫

[0,s]×[0,t]
E{ sup
(τ,η)∈[0,u]×[0,v]

‖x(τ, η)‖2
Rd
}dBu,v.

Combining the above inequalities with (3.4) we obtain

E

{

sup
(u,v)∈[0,s]×[0,t]

||x(u, v)||2
Rd

}

¬ 3E

{

sup
(u,v)∈[0,s]×[0,t]

‖ξ(0, v) + ξ(u, 0)− ξ(0, 0)‖2
Rd

}

+ 3d2B2s,t + 48d
2Bs,t

+ 3d2(Bs,t + 16)
∫

[0,s]×[0,t]
E

{

sup
(τ,η)∈[0,u]×[0,v]

‖x(τ, η)‖2
Rd

}

dBu,v.

Let us note that the above inequality can be written as

a(s, t) ¬ b(s, t) + c(s, t)
∫

[0,s]×[0,t]
a(u, v)dBu,v,

where

a(s, t) := E

{

sup
(τ,η)∈[0,s]×[0,t]

‖x(τ, η)‖2
Rd

}

,

b(s, t) := 3E

{

sup
(u,v)∈[0,s]×[0,t]

‖ξ(0, v) + ξ(u, 0)− ξ(0, 0)‖2
Rd

}

+ 3d2B2s,t + 48d
2Bs,t

and

c(s, t) := 3d2(16 +Bs,t).

Hence by Gronwall’s inequality (Theorem 2.3 in [29]) we get

a(s, t) ¬ b(s, t) exp {3c(s, t)Bs,t} ,

what proves the boundedness of SI(F,G, ξ).

Now we will show that SI(F,G, ξ) is a closed subset of S2(I × J). Let (xn) ⊂

SI(F,G, ξ) be such that xn → x̂ in S2(I × J). Then, there exist sequences (fn) ⊂

S2P(F ◦ x
n, νA) and (g

n) ⊂ S2P(G ◦ x
n, µM) such that

xn(s, t)− ξ(0, t)− ξ(s, 0) + ξ(0, 0)(3.5)

=
∫

[0,s]×[0,t]
fn(u, v)dAu,v +

∫

[0,s]×[0,t]
gn(u, v)dMu,v

for n = 1, 2, . . . and (s, t) ∈ I × J . Since xn → x̂ in S2(I × J), it holds

E‖xn(s, t)− x̂(s, t)‖2
Rd
→ 0, as n→∞
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for every (s, t) ∈ I × J . In view of (3.5) we have

x̂(s, t)− ξ(0, t)− ξ(s, 0) + ξ(0, 0)(3.6)

= lim
n→∞

{∫

[0,s]×[0,t]
fn(u, v)dAu,v +

∫

[0,s]×[0,t]
gn(u, v)dMu,v

}

in L2,d-norm for (s, t) ∈ I × J . On the other hand, by condition (i4) and (2.3) we

obtain
∫

I×J×Ω
‖fn‖2

Rd
dνA ¬

∫

I×J×Ω
‖F (s, t, xn(s, t))‖2

Rd
dνA

¬ d2
∫

I×J×Ω
Ls,t(1 + ‖x

n(s, t)‖2
Rd
)dνA

¬ d2E
{∫

I×J
(1 + Ls,t)(1 + ‖x

n(s, t)‖2
Rd
)AS,TdAs,t

}

¬ d2E
{∫

I×J
(1 + Ls,t)(1 + ‖x

n(s, t)‖2
Rd
)(AS,T + 〈M〉S,T )(dAs,t + d 〈M〉s,t)

}

¬ d2E

{[∫

I×J
(1 + Ls,t)(dAs,t + d 〈M〉s,t)

]2}

+ d2E

{

sup
(s,t)∈I×J

‖xn(s, t)‖2
Rd
[
∫

I×J
(1 + Ls,t)(dAs,t + d 〈M〉s,t)]

2

}

¬ d2B2S,T + d
2B2S,TE

{

sup
(s,t)∈I×J

‖xn(s, t)‖2
Rd

}

<∞.

By the boundedness of SI(F,G, ξ) we get

sup
n­1

∫

I×J×Ω
‖fn‖2

Rd
dνA <∞.

In a similar way one can show that

sup
n­1

∫

I×J×Ω
‖gn‖2

Rd
dµM <∞.

Indeed, by Theorem 2.7 and (i4) we have

∫

I×J×Ω
‖gn‖2

Rd
dµM = E

{∫

I×J
‖gn(s, t)‖2

Rd
d 〈M〉s,t

}

¬ E

{∫

I×J
‖G(s, t, xn(s, t))‖2

Rd
d 〈M〉s,t

}

¬ d2E
{∫

I×J
(1 + Ls,t)(1 + ‖x

n(s, t)‖2
Rd
)(dAs,t + d 〈M〉s,t)

}

¬ d2E
{∫

I×J
(1 + Ls,t)(dAs,t + d 〈M〉s,t)

}

+ d2E

{

sup
(s,t)∈I×J

‖xn(s, t)‖2
Rd

∫

I×J
(1 + Ls,t)(dAs,t + d 〈M〉s,t)

}

¬ d2BS,T + d
2BS,TE{ sup

(s,t)∈I×J
‖xn(s, t)‖2

Rd
} <∞.
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Hence

sup
n­1

∫

I×J×Ω
‖gn‖2

Rd
dµM <∞.

Then the sequences (fn) and (gn) are bounded in L2,dP (νA) and L
2,d
P (µM), respectively.

Thus there exist subsequences (fnk) ⊂ (fn) and (gnk) ⊂ (gn) such that fnk ⇀ f in

L
2,d
P (νA) and g

nk ⇀ g in L2,dP (µM) for some f ∈ L
2,d
P (νA) and g ∈ L

2,d
P (µM), where ”⇀”

denotes a weak convergence. Moreover fnk ∈ S2P(F ◦ x
nk , νA), g

nk ∈ S2P(G ◦ x
nk , µM),

and

xnk(s, t)− ξ(0, t)− ξ(s, 0) + ξ(0, 0)

=
∫

[0,s]×[0,t]
fnk(u, v)dAu,v +

∫

[0,s]×[0,t]
gnk(u, v)dMu,v for every k ­ 1.

By (2.4) and (2.7) the linear operators Is,t : L
2,d
P (νA)→ L2,d and Js,t : L

2,d
P (µM)→ L2,d

such that

Is,t (f) :=
∫

[0,s]×[0,t]
f (u, v)dAu,v and Js,t (g) :=

∫

[0,s]×[0,t]
g (u, v) dMu,v

are norm-to-norm continuous. Hence by Theorem 3.4.12 in [9] they are also continu-

ous with respect to weak topologies in L2,dP (νA) and L
2,d, and in L2,dP (µM) and L

2,d,

respectively. Hence

Is,t (f
nk) =

∫

[0,s]×[0,t]
fnk (u, v)dAu,v ⇀ Is,t (f) =

∫

[0,s]×[0,t]
f (u, v) dAu,v

and

Js,t (g
nk) =

∫

[0,s]×[0,t]
gnk (u, v) dMu,v ⇀ Js,t (g) =

∫

[0,s]×[0,t]
g (u, v)dMu,v,

as k →∞. By (3.6) we have
∫

[0,s]×[0,t]
fnk(u, v)dAu,v +

∫

[0,s]×[0,t]
gnk(u, v)dMu,v ⇀ x̂(s, t)− ξ(0, t)− ξ(s, 0) + ξ(0, 0)

in L2,d. Thus

x̂(s, t)− ξ(0, t)− ξ(s, 0) + ξ(0, 0) =
∫

[0,s]×[0,t]
f(u, v)dAu,v +

∫

[0,s]×[0,t]
g(u, v)dMu,v.

In order to finish the proof it suffices to show that f ∈ S2P(F ◦ x̂, νA) and g ∈ S
2
P(G ◦

x̂, µM). For this purpose, let P
1
C(·) and P

2
D(·) denote metric projections from L

2,d
P (νA)

on C ⊂ L
2,d
P (νA) and from L

2,d
P (µM) on D ⊂ L

2,d
P (µM), respectively. Let f̂

nk :=

P 1C(f
nk), where C = S2P(F ◦ x̂, νA) and ĝ

nk := P 2D(g
nk), where D = S2P(G ◦ x̂, µM).

Then by Theorem 2.2 in [12] we have

‖fnk − f̂nk‖2
L
2,d

P
(νA)
= dist2

L
2,d

P
(νA)
(fnk , S2P(F ◦ x̂, νA))

= inf
f∈S2

P
(F◦x̂,νA)

∫

I×J×Ω
‖fnk − f‖2

Rd
dνA

=
∫

I×J×Ω
dist2

Rd
(fnk, F ◦ x̂)dνA
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¬
∫

I×J×Ω
H2

Rd
(F ◦ xnk , F ◦ x̂)dνA ¬

∫

I×J×Ω
Ls,t ‖x

nk − x̂‖2
Rd
dνA

¬ E

{∫

I×J
(1 + Ls,t) ‖x

nk(s, t)− x̂(s, t)‖2
Rd
AS,TdAs,t

}

= E

{

AS,T

∫

I×J
sup

(s,t)∈I×J
‖xnk(s, t)− x̂(s, t)‖2

Rd
(1 + Ls,t)(dAs,t + d 〈M〉s,t)

}

¬ E

{[∫

I×J
(1 + Ls,t)(dAs,t + d 〈M〉s,t)

]2
sup

(s,t)∈I×J
‖xnk(s, t)− x̂(s, t)‖2

Rd

}

¬ B2S,TE

{

sup
(s,t)∈I×J

‖xnk(s, t)− x̂(s, t)‖2
Rd

}

.

Since xnk → x̂ in S2(I × J) it follows that

‖fnk − f̂nk‖2
L
2,d

P
(νA)
→ 0, as k →∞.

Hence fnk − f̂nk ⇀ 0 in L2,dP (νA). Since we have observed earlier that f
nk ⇀ f in

L
2,d
P (νA) it follows that f̂

nk ⇀ f in L2,dP (νA). Since f̂
nk ∈ S2P(F◦x̂, νA) and S

2
P(F◦x̂, νA)

is weakly compact (by Theorem 2.4) we obtain that f ∈ S2P(F ◦ x̂, νA). In a similar

way one can show that

‖gnk − ĝnk‖2
L
2,d

P
(µM )
→ 0, as k →∞

and consequently gnk− ĝnk ⇀ 0 in L2P(µM), as k →∞. Therefore ĝ
nk ⇀ g in L2,dP (µM)

because gnk ⇀ g in L2,dP (µM). Since ĝ
nk ∈ S2P(G ◦ x̂, µM) we claim by Theorem 2.9

that g ∈ S2P(G ◦ x̂, µM). Hence the limit process x̂ satisfies the equation

x̂(s, t)− ξ(0, t)− ξ(s, 0) + ξ(0, 0) =
∫

[0,s]×[0,t]
f(u, v)dAu,v +

∫

[0,s]×[0,t]
g(u, v)dMu,v,

where f ∈ S2P(F ◦ x̂, νA), g ∈ S
2
P(G ◦ x̂, µM). Thus x̂ ∈ SI(F,G, ξ).

Theorem 3.5. Let F,G : I×J×Ω×R
d → Kbc(R

d) and F (n), G(n) : I×J×Ω×R
d →

Kbc(R
d) for n ­ 1 be set-valued functions satisfying (i1)–(i4). Assume that

F (1)(s, t, ω, x) ⊃ F (2)(s, t, ω, x) ⊃ · · · ⊃ F (s, t, ω, x)(3.7)

F (s, t, ω, x) =
⋂

n­1

F (n)(s, t, ω, x)

G(1)(s, t, ω, x) ⊃ G(2)(s, t, ω, x) ⊃ · · · ⊃ G(s, t, ω, x)(3.8)

G(s, t, ω, x) =
⋂

n­1

G(n)(s, t, ω, x)

for every (s, t, ω, x) ∈ I × J × Ω× R
d. Then

SI(F,G, ξ) =
⋂

n­1

SI(F (n), G(n), ξ).
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Proof. By virtue of Theorem 3.4 the sets SI(F,G, ξ) and SI(F (n), G(n), ξ) for n ­ 1

are nonempty, bounded and closed subsets of S2(I × J). Moreover by (3.7) and (3.8)

SI(F (1), G(1), ξ) ⊃ SI(F (2), G(2), ξ) ⊃ · · · ⊃ SI(F,G, ξ).

Then
⋂
n­1

SI(F (n), G(n), ξ) ⊃ SI(F,G, ξ). Let x ∈
⋂
n­1

SI(F (n), G(n), ξ). Then x ∈

S2(I × J) and there exist f (n) ∈ S2P(F
(n) ◦ x, νA) and g

(n) ∈ S2P(G
(n) ◦ x, µM) such

that

x(s, t)− ξ(0, t)− ξ(s, 0) + ξ(0, 0) =
∫

[0,s]×[0,t]
f (n)(u, v)dAu,v +

∫

[0,s]×[0,t]
g(n)(u, v)dMu,v

for every n ­ 1 and (s, t) ∈ I × J. By Theorem 2.4 and Theorem 2.9 the sets

S2P(F
(n) ◦ x, νA) and S

2
P(G

(n) ◦ x, µM) for n ­ 1 are weakly compact in L
2,d
P (νA)

and L2,dP (µM), respectively. Moreover by (3.7) and (3.8) the sets S
2
P(F

(n) ◦ x, νA) and

S2P(G
(n) ◦ x, µM) are decreasing with respect to n in the sense of inclusion. Thus, it

holds S2P(F ◦ x, νA) =
⋂
n­1

S2P(F
(n) ◦ x, νA) and S

2
P(G ◦ x, µM) =

⋂
n­1

S2P(G
(n) ◦ x, µM).

Hence we can select subsequences (f (nk)) of (f (n)) and (g(nk)) of (g(n)) and processes

f ∈ L2,dP (νA) and g ∈ L
2,d
P (µM) such that f

(nk) ⇀ f and g(nk) ⇀ g in L2,dP (νA) and

L
2,d
P (µM), respectively. Thus f ∈ S

2
P(F ◦x, νA) and g ∈ S

2
P(G◦x, µM). Using a similar

argumentation as in the proof of the closedness of SI(F,G, ξ) in Theorem 3.4 one can

show that

x(s, t)− ξ(0, t)− ξ(s, 0) + ξ(0, 0)

=
∫

[0,s]×[0,t]
f (nk)(u, v)dAu,v +

∫

[0,s]×[0,t]
g(nk)(u, v)dMu,v

⇀

∫

[0,s]×[0,t]
f(u, v)dAu,v +

∫

[0,s]×[0,t]
g(u, v)dMu,v

in L2,d for every (s, t) ∈ I × J . Thus x ∈ SI(F,G, ξ).

Remark 3.6. Let us consider an investment with a horizon of time from 0 to T .

Assume that the symbol P (s, T ) denotes a price of the zero-coupon bond at the time

s with a nominal value 1 and the maturity T . Then

f (s, T ) = −
∂ lnP (s, T )

∂T

denotes a temporary forward rate of a such investment. Hence the price P (s, T ) is

given by

P (s, T ) = exp

{

−
∫ T

s
f (s, u) du

}

.

For a fixed maturity T the dynamics of the forward rate is usually modeled by the

following stochastic equation of Itô type

(3.9) df (s, T ) = a (s, f (s, T )) ds+ b (s, f (s, T )) dWs,
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i.e. by diffusion models of interest rates. Such models are well-known and there exists

a wide literature devoted to this subject. Taking particular choices of mappings a and

b in (3.9), we arrive to popular diffusion models (see [46]):

- the Merton model

a (s, f (s, T )) = α, b (s, f (s, T )) = γ,

- the Vasiček model

a (s, f (s, T )) = α− βf (s, T ) , b (s, f (s, T )) = γ,

- the Dothan model

a (s, f (s, T )) = αf (s, T ) , b (s, f (s, T )) = γf (s, T ) ,

- the Cox-Ingersoll-Ross model

a (s, f (s, T )) = α− βf (s, T ) , b (s, f (s, T )) = γf
1

2 (s, T ) ,

- the Hull-White model

a (s, f (s, T )) = α(s)− β(s)f (s, T ) , b (s, f (s, T )) = γ(s)f
1

2 (s, T ) ,

- the Black-Karasiński model

a (s, f (s, T )) = f (s, T ) (α(s)− β(s) ln f (s, T )) , b (s, f (s, T )) = γ(s)f (s, T ) .

Let us suppose now that the maturity T is not fixed, but it may be varied. More

precisely it may be postponed. Let us denote it by t. In this case we have

f (s, t) = −
∂ lnP (s, t)

∂t
and P (s, t) = exp

{
−
∫ t

s
f (s, u) du

}
.

Then one can consider the following diffusion model, which models dynamics of for-

ward rate, as a stochastic equation with two-parameter Wiener processW = (Ws,t)s¬t,

i.e.

df (s, t) = g (s, t, f (s, t)) dsdt+ h (s, t, f (s, t)) dWs,t

or

f (s, t)− f (0, 0) = f (s, 0) + f (0, t)(3.10)

+
∫

[0,s]×[0,t]
g (s, t, f (s, t)) dsdt+

∫

[0,s]×[0,t]
h (s, t, f (s, t)) dWs,t.

It is evident that equation (3.10) is a particular case of stochastic inclusion (3.1).
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4. Stochastic inclusions and multivalued equations

Using the notions of set-valued stochastic integrals discussed in part 2 one can

consider connections between stochastic integral inclusions and appropriately defined

set-valued stochastic integral equation driven by two-parameter processes.

From now on we assume that the σ-field F is separable with respect to the prob-

ability measure P . Then L2,d = L2
(
Ω,F, P ;Rd

)
is a separable Banach space.

As earlier we consider the stochastic integral inclusion generated by the triple

(F,G, ξ)

(4.1)






∆s
′,t′

s,t (x) ∈
∫
[s,s′]×[t,t′] F (u, v, x (u, v)) dAu,v

+
∫
[s,s′]×[t,t′]G (u, v, x (u, v)) dMu,v

x (0, t) = ξ (0, t)

x (s, 0) = ξ (s, 0)

for every (s, t) , (s′, t′) ∈ I × J , where (s, t) � (s′, t′). Now we assume that set-valued

mappings F,G : I × J × Ω× L2,d → Kbc
(
R
d
)
satisfy the following conditions:

(A1) for every η ∈ L2,d the mappings

F (·, ·, ·, η) , G (·, ·, ·, η) : I × J × Ω→ Kbc(R
d)

are predictable,

(A2) there exists a constant L > 0 such that

max
{
HRd (F (s, t, ω, η1) , F (s, t, ω, η2)) ,

HRd (G (s, t, ω, η1) , G (s, t, ω, η2))
}
¬ L ‖η1 − η2‖L2,d

for every (s, t, ω) ∈ I × J × Ω, and every η1, η2 ∈ L
2,d,

(A3) there exists a constant K > 0 such that

max
{
HRd (F (s, t, ω, η) , {θ}) , HRd (G (s, t, ω, η) , {θ})

}

¬ K (1 + ‖η‖L2,d)

for every (s, t, ω) ∈ I × J × Ω, and every η ∈ L2,d, while ξ : I × J × Ω → R
d

is now {Fs,t}(s,t)∈I×J -adapted and square integrable stochastic process such that

the mapping I × J ∋ (s, t) 7→ ξ (s, t, ·) ∈ L2,d is continuous.

By a solution to stochastic integral inclusion (4.1) generated by the triple (F,G, ξ)

we mean now {Fs,t}(s,t)∈I×J -adapted stochastic process x : I × J ×Ω→ R
d such that

the mapping I×J ∋ (s, t) 7→ x (s, t, ·) ∈ L2,d is continuous and which has the following

representation

x (s, t) + ξ (0, 0)− ξ (s, 0)− ξ (0, t) =
∫

[0,s]×[0,t]
f1 (u, v) dAu,v +

∫

[0,s]×[0,t]
g1 (u, v) dMu,v
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for some f1 ∈ S
2
P(F ◦ x, νA) and g1 ∈ S

2
P(G ◦ x, µM).

In order to introduce a set-valued stochastic integral equation associated with

inclusion (4.1), let F̂ , Ĝ : I×J×Ω×Kbc
(
L2,d

)
→ Kbc

(
R
d
)
be set-valued maps defined

as follows

(4.2) F̂ (s, t, ω, B) := co




⋃

b∈B

F (s, t, ω, b)





and

(4.3) Ĝ (s, t, ω, B) := co




⋃

b∈B

G (s, t, ω, b)





for (s, t, ω, B) ∈ I × J × Ω×Kbc
(
L2,d

)
.

Moreover we assume that the multifunction ψ : I × J → Kbc
(
L2,d

)
is continuous

and such that

(A4) ξ (s, 0) + ξ (0, t)− ξ (0, 0) ∈ (ψ (s, 0) + ψ (0, t))⊖ψ (0, 0) for every (s, t) ∈ I × J .

By a set-valued stochastic integral equation associated with inclusion (4.1) we

mean the following relation in the metric space
(
Kbc
(
L2,d

)
, HL2,d

)

X (s, t) + ψ (0, 0) = ψ (s, 0) + ψ (0, t)(4.4)

+
∫

[0,s]×[0,t]
F̂ (u, v,X (u, v)) dAu,v

+
∫

[0,s]×[0,t]
Ĝ (u, v,X (u, v)) dMu,v

for (s, t) ∈ I × J .

By a solution to equation (4.4) we mean HL2,d-continuous map X : I × J →

Kbc
(
L2,d

)
that satisfies (4.4). Let C = C

(
I × J,Kbc

(
L2,d

))
be the space of all contin-

uous mappings from I × J to Kbc
(
L2,d

)
with a metric

ρ (X, Y ) = sup
(s,t)∈I×J

HL2,d (X (s, t) , Y (s, t))

for X, Y ∈ C. Then (C, ρ) is a complete metric space.

Moreover let us assume that ψ : I × J → Kbc
(
L2,d

)
satisfies

(A5) the mapping ψ : I × J → Kbc
(
L2,d

)
is continuous with respect to the Hausdorff

metric HL2,d and such that the Hukuhara difference (ψ (s, 0) + ψ (0, t))⊖ψ (0, 0)

exists for every (s, t) ∈ I × J , and
∫

I×J×Ω
H2L2,d ((ψ (s, 0) + ψ (0, t))⊖ ψ (0, 0) , {Θ}) (dνA + dµM) <∞.

Let PΩ := {B × Ω : B ∈ B} . Then PΩ is a sub-σ-field of a predictable σ-field

P. Let ν̃A and µ̃M be marginals of νA and µM , respectively, defined on (I × J,B) as

follows

ν̃A (B) := νA (B × Ω) and µ̃M (B) := µM (B × Ω) for B ∈ B.
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Let γ : I × J → R+ be a function given by

γ (s, t) := ν̃A ([0, s]× [0, t]) + µ̃M ([0, s]× [0, t]) for (s, t) ∈ I × J.

Theorem 4.1. Let F,G : I × J × Ω× L2,d → Kbc
(
R
d
)
satisfy conditions (A1)–(A3)

and suppose that ψ : I × J → Kbc
(
L2,d

)
satisfies assumption (A5). Then equation

(4.4) admits an unique solution.

Proof. The proof is similar to the proof of Theorem 27 in [39]. Therefore, we only

sketch its main parts.

(Existence) Firstly, by (A1)–(A3) one can show in a similar way as in Proposition 1

in [26] that the mappings F̂ and Ĝ defined by (4.2) and (4.3) satisfy conditions:

(B1) for every B ∈ Kbc
(
L2,d

)
the mappings

F̂ (·, ·, ·, B) , Ĝ (·, ·, ·, B) : I × J × Ω→ Kbc(R
d)

are predictable,

(B2) there exists a constant L1 > 0 such that

max{HRd(F̂ (s, t, ω, B) , F̂ (s, t, ω, C)), HRd(Ĝ (s, t, ω, B) , Ĝ (s, t, ω, C))}

¬ L1HL2,d (B,C)

for every (s, t, ω) ∈ I × J × Ω, and every B,C ∈ Kbc
(
L2,d

)
,

(B3) there exists a constant K1 > 0 such that

max{HRd(F̂ (s, t, ω, B) , {θ}), HRd(Ĝ (s, t, ω, B) , {θ})} ¬ K1 (1 +HL2,d (B, {Θ}))

for every (s, t, ω) ∈ I × J ×Ω, and every B ∈ Kbc
(
L2,d

)
, where the symbol Θ denotes

the zero element in L2,d.

Let us define set-valued mappings Xn : I × J → K
b
c

(
L2,d

)
for n ­ 0 as follows

X0 (s, t) + ψ (0, 0) = ψ (s, 0) + ψ (0, t)

and for n ­ 1

Xn (s, t) + ψ (0, 0) = ψ (s, 0) + ψ (0, t)(4.5)

+
∫

[0,s]×[0,t]
F̂ (u, v,Xn−1 (u, v)) dAu,v

+
∫

[0,s]×[0,t]
Ĝ (u, v,Xn−1 (u, v)) dMu,v for (s, t) ∈ I × J.

Due to Theorem 8.2.8 in [7] it follows that for every continuous multifunction X :

I × J → Kbc
(
L2,d

)
the mappings (s, t, ω) 7→ clRd (F (s, t, ω,X (s, t))) and (s, t, ω) 7→

clRd (G (s, t, ω,X (s, t))) are predictable. Then by Proposition 2.26 in [13] we know

that the mappings (s, t, ω) 7→ F̂ (s, t, ω,X (s, t)) and (s, t, ω) 7→ Ĝ (s, t, ω,X (s, t)) are

predictable too. On the other hand, by condition (B3) they are L2,dP (νA) and L
2,d
P (µM)-

integrally bounded, respectively. Hence, due to the definition of the sequence {Xn}
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we deduce that the multifunctions (s, t, ω) 7→ F̂ (s, t, ω,Xn (s, t)) and (s, t, ω) 7→

Ĝ (s, t, ω,Xn (s, t)) are predictable, and L
2,d
P (νA) and L

2,d
P (µM)-integrally bounded,

respectively, for every n ­ 0. Therefore, the integrals in (4.5) are correctly defined.

Now applying Theorem 2.5 and (B3) we obtain

H2L2,d

(∫

[0,s]×[0,t]
F̂ (u, v,X0 (u, v)) dAu,v, {Θ}

)

¬
∫

[0,s]×[0,t]×Ω
2K21

(
1 +H2L2,d (X0 (u, v) , {Θ})

)
dνA.

In a similar way, due to Theorem 2.10, we obtain

H2L2,d

(∫

[0,s]×[0,t]
Ĝ (u, v,X0 (u, v)) dMu,v, {Θ}

)

¬
∫

[0,s]×[0,t]×Ω
2K21

(
1 +H2L2,d (X0 (u, v) , {Θ})

)
dµM .

Thus, by properties (2.1) and (2.2) we get

H2L2,d (X1 (s, t) , X0 (s, t))

¬ 2
∫

[0,s]×[0,t]×Ω
2K21

(
1 +H2L2,d (X0 (u, v) , {Θ})

)
(dνA + dµM) ¬ 2η,

where

η =
∫

[0,S]×[0,T ]×Ω
2K21

(
1 +H2L2,d (X0 (u, v) , {Θ})

)
(dνA + dµM) .

Similarly, by condition (B2) we have

H2L2,d (Xn (s, t) , Xn−1 (s, t))

¬ 2L21

∫

[0,s]×[0,t]×Ω
H2L2,d (Xn−1 (u, v) , Xn−2 (u, v)) (dνA + dµM)

= 2L21

∫

[0,s]×[0,t]
H2L2,d (Xn−1 (u, v) , Xn−2 (u, v)) dγ (u, v) for n ∈ N,

where γ (s, t) := ν̃A ([0, s]× [0, t]) + µ̃M ([0, s]× [0, t]) for (s, t) ∈ I × J. In particular,

we get

H2L2,d (X2 (s, t) , X1 (s, t)) ¬ 2L
2
1 · 2η · γ (s, t) .

Since the processes A and M are continuous, ∂A = ∂M = 0, it follows that γ is

continuous, increasing (both in the sense of Definition 2.2 and with respect to the

order �) and ∂γ = 0. Hence, by the two-parameter version of Ito’s formula (see

Theorem 2.1 in [29]) it holds

∫

[0,s]×[0,t]
γn(u, v)dγ (u, v) ¬

γn+1(s, t)

n+ 1
for n ∈ N.

Therefore, by mathematical induction we get

H2L2,d (Xn (s, t) , Xn−1 (s, t)) ¬ 2
n
(
L21

)n−1
η
γn−1 (S, T )

(n− 1)!
.
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Consequently, for m < n we have

ρ (Xn, Xm) ¬
√
2η

n∑

k=m+1

√√√√(2L21)
k−1 γk−1 (S, T )

(k − 1)!
.

Thus {Xn} is a Cauchy sequence in a complete metric space (C, ρ). Hence, there exists

X ∈ C such that ρ (Xn, X)→ 0, as n→∞.

In order to show that X is a solution to equation (4.4), let us fix (s, t) ∈ I × J .

Then by properties of Hausdorff distance we have

H2L2,d

(
X (s, t) + ψ (0, 0) , ψ (s, 0) + ψ (0, t)

+
∫

[0,s]×[0,t]
F̂ (u, v,X (u, v)) dAu,v +

∫

[0,s]×[0,t]
Ĝ (u, v,Xu,v) dMu,v

)

¬ 3H2L2,d (X (s, t) + ψ (0, 0) , Xn (s, t) + ψ (0, 0))

+ 3H2L2,d

(
Xn (s, t) + ψ (0, 0) , ψ (s, 0) + ψ (0, t)

+
∫

[0,s]×[0,t]
F̂ (u, v,Xn−1 (u, v)) dAu,v +

∫

[0,s]×[0,t]
Ĝ (u, v,Xn−1 (u, v)) dMu,v

)

+ 3H2L2,d

(

ψ (s, 0) + ψ (0, t) +
∫

[0,s]×[0,t]
F̂ (u, v,Xn−1 (u, v)) dAu,v

+
∫

[0,s]×[0,t]
Ĝ (u, v,Xn−1 (u, v)) dMu,v, ψ (s, 0) + ψ (0, t)

+
∫

[0,s]×[0,t]
F̂ (u, v,X (u, v)) dAu,v +

∫

[0,s]×[0,t]
Ĝ (u, v,X (u, v)) dMu,v

)

.

The first and the second term on the right-hand side of the above inequality converges

to zero as n→∞. It is also true for the last term above. Indeed, again by Theorem

2.5, 2.10 and (B2) we have

H2L2,d

(

ψ (s, 0) + ψ (0, t) +
∫

[0,s]×[0,t]
F̂ (u, v,Xn−1 (u, v)) dAu,v

+
∫

[0,s]×[0,t]
Ĝ (u, v,Xn−1 (u, v)) dMu,v, ψ (s, 0) + ψ (0, t)

+
∫

[0,s]×[0,t]
F̂ (u, v,X (u, v)) dAu,v +

∫

[0,s]×[0,t]
Ĝ (u, v,X (u, v)) dMu,v

)

¬ 2L21

∫

[0,s]×[0,t]
H2L2,d (Xn−1 (u, v) , X (u, v)) dγ(u, v)

¬ 2L21ρ (Xn−1, X) γ (S, T ) .

Hence we infer that X is a solution to equation (4.4).

(Uniqueness) Let us suppose that X and Y are any solutions to (4.4). Then similarly

as above we get

H2L2,d (X (s, t) , Y (s, t)) ¬ 2L
2
1

∫

[0,s]×[0,t]
H2L2,d (X (u, v) , Y (u, v)) dγ (u, v) .
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Hence we have

H2L2,d (X (u, v) , Y (u, v)) ¬ 2L
2
1

∫

[0,s]×[0,t]
ρ2a,b (X, Y ) dγ (a, b)

for every (u, v) ∈ [0, s]× [0, t], where

ρs,t (X, Y ) = sup
(u,v)∈[0,s]×[0,t]

HL2,d (X (u, v) , Y (u, v)) .

Thus

ρ2s,t (X, Y ) ¬ 2L
2
1

∫

[0,s]×[0,t]
ρ2u,v (X, Y ) dγ (u, v)

for every (s, t) ∈ I × J . Using again Gronwall’s inequality (Theorem 2.3 in [29]) it

follows that ρs,t (X, Y ) = 0 for (s, t) ∈ I × J , what shows the uniqueness of solutions

to equation (4.4).

In a similar way one can prove the following property.

Theorem 4.2. Under assumptions of Theorem 4.1 the solution X to equation (4.4)

satisfies:

sup
(u,v)∈[0,s]×[0,t]

H2L2,d (X (u, v) , {Θ})

¬ 3[ sup
(s,t)∈I×J

H2L2,d (ψ (s, 0) + ψ (0, t) , ψ (0, 0)) + 2K
2
1γ (s, t)]

· exp
{
18K21γ (s, t)

}

for every (s, t) ∈ I × J .

Now we proceed with a further analysis of inclusion (4.1). Again by SI (F,G, ξ)

we denote the set of its solutions.

By Theorem 2.1 in [29], i.e. by the two-parameter version of Itô’s formula one

can prove the following Lemma.

Lemma 4.3. Let B be a continuous increasing process. Then
∫

[0,s]×[0,t]
ehBu,vdBu,v ¬

1

h

(
ehBs,t − 1

)

for every h > 0 and (s, t) ∈ I × J .

Now we formulate the main result of this section.

Theorem 4.4. Assume that F and G satisfy conditions (A1)–(A3) , and ψ satisfies

assumption (A5). Moreover, let ψ and ξ satisfy condition (A4). Then there exists a

solution X : I × J → Kbc
(
L2,d

)
of equation (4.4) and a solution x : I × J × Ω→ R

d

of (4.1) such that x (s, t) ∈ X (s, t) for every (s, t) ∈ I × J .
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Proof. By Theorem 4.1 there exists a unique solution X to set-valued stochastic

integral equation (4.4). Now, let us consider the set

K (ξ,X) :=
{
x ∈ C

(
I × J, L2,d

)
: x (s, t) + ξ (0, 0)− ξ (s, 0)− ξ (0, t)

=
∫

[0,s]×[0,t]
f (u, v) dAu,v +

∫

[0,s]×[0,t]
g (u, v)dMu,vP -a.e. for every

(s, t) ∈ I × J , and some f ∈ S2P(F̂ ◦X, νA), g ∈ S
2
P(Ĝ ◦X,µM)

}
.

Notice that K (ξ,X) is a nonempty subset of C
(
I × J, L2,d

)
. Indeed, similarly as in

the proof of Theorem 4.1 by the continuity ofX it follows that the set-valued mappings

F̂ ◦X : I×J×Ω→ Kbc
(
R
d
)
and Ĝ◦X : I×J×Ω→ Kbc

(
R
d
)
are predictable. Hence

by Kuratowski and Ryll-Nardzewski Measurable Selection Theorem (cf. [18]), there

exist predictable selections for F̂ ◦X and for Ĝ ◦X. Since by (A3) we have (B3) (at

it was mentioned in the beginning of the proof of Theorem 4.1), i.e.

‖(F̂ ◦X) (s, t, ω) ‖2
Rd
= ‖F̂ (s, t, ω,X (s, t)) ‖2

Rd

¬ 2K21(1 +H
2
L2,d (X (s, t) , {Θ})),

it follows due to Theorem 4.2 that

sup
(s,t)∈I×J

‖(F̂ ◦X) (s, t, ω) ||2
Rd
<∞.

Thus the set S2P(F̂ ◦X, νA) is nonempty. In a similar way one can show the nonempti-

ness of the set S2P(Ĝ ◦X,µM). It shows the nonemptiness of the set K (ξ,X).

Next, let us note that if x ∈ K (ξ,X), then for every (s, t) ∈ I × J it holds

(4.6) distL2,d (x (s, t) , X (s, t)) = 0.

Indeed, by the definition of K (ξ,X) and assumption (A4) we have

x (s, t) = ξ (s, 0) + ξ (0, t)− ξ (0, 0)

+
∫

[0,s]×[0,t]
f (u, v)dAu,v +

∫

[0,s]×[0,t]
g (u, v)dMu,v

∈ ψ (s, 0) + ψ (0, t)⊖ ψ (0, 0) +
∫

[0,s]×[0,t]
F̂ (u, v,X (u, v)) dAu,v

+
∫

[0,s]×[0,t]
Ĝ (u, v,X (u, v)) dMu,v = X (s, t) for (s, t) ∈ I × J.

Now we will show that the set K (ξ,X) is bounded. Let x ∈ K (ξ,X). Then there

exist f ∈ S2P(F̂ ◦X, νA) and g ∈ S
2
P(Ĝ ◦X,µM) such that

x (s, t) + ξ (0, 0)− ξ (s, 0)− ξ (0, t)

=
∫

[0,s]×[0,t]
f (u, v)dAu,v +

∫

[0,s]×[0,t]
g (u, v)dMu,v
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for (s, t) ∈ I × J . Hence by (A4), (2.4) and two-parameter Itô’s isometry (2.6) we

have

sup
(s,t)∈I×J

E ‖x (s, t)‖2
Rd
¬ 3 sup

(s,t)∈I×J
E ‖ξ (s, 0) + ξ (0, t)− ξ (0, 0)‖2

Rd

+ 3 sup
(s,t)∈I×J

E‖
∫

[0,s]×[0,t]
f (u, v)dAu,v‖

2
Rd

+ 3 sup
(s,t)∈I×J

E‖
∫

[0,s]×[0,t]
g (u, v) dMu,v‖

2
Rd

¬ 3 sup
(s,t)∈I×J

H2L2,d ((ψ (s, 0) + ψ (0, t))⊖ ψ (0, 0) , {Θ})

+ 3
∫

I×J×Ω
‖f (u, v)‖2

Rd
dνA + 3

∫

I×J×Ω
‖g (u, v)‖2

Rd
dµM .

On the other hand by (B3) related to (A3), Theorem 4.1 and Theorem 4.2 for every

(s, t) ∈ I × J we infer

‖f (s, t, ω)‖2
Rd
¬ ‖F̂ (s, t, ω,X (s, t)) ‖2

Rd
= H2

Rd
(F̂ (s, t, ω,X (s, t)) , {Θ})

¬ 2K21 (1 +H
2
L2,d (X (s, t) , {Θ})) <∞.

A similar argumentation gives

‖g (s, t, ω)‖2
Rd
<∞.

Therefore we have

sup
(s,t)∈I×J

E ‖x (s, t)‖2
Rd
< m,

where m is a positive constant, which does not depend on x. Hence the boundedness

of K (ξ,X) in C
(
I × J, L2,d

)
follows.

In the next step we will show that K (ξ,X) is a closed subset of C
(
I × J, L2,d

)
.

Let {xn} ⊂ K (ξ,X) and xn → x in the space C
(
I × J, L2,d

)
, as n → ∞, with

x ∈ C
(
I × J, L2,d

)
. Since xn ∈ K (ξ,X) for every n ∈ N it follows

xn (s, t) = ξ (s, 0) + ξ (0, t)− ξ (0, 0)

+
∫

[0,s]×[0,t]
fn (u, v) dAu,v +

∫

[0,s]×[0,t]
gn (u, v)dMu,v,

for every (s, t) ∈ I × J and for some fn ∈ S2P(F̂ ◦X, νA), g
n ∈ S2P(Ĝ ◦X,µM). Thus

for every (s, t) ∈ I × J

ξ (s, 0) + ξ (0, t)− ξ (0, 0)(4.7)

+
∫

[0,s]×[0,t]
fn (u, v) dAu,v +

∫

[0,s]×[0,t]
gn (u, v) dMu,v → x (s, t)

in L2,d for n → ∞. By Theorem 2.4(i) and Theorem 2.9(i) there exist subsequences

(fnk) and (gnk) of (fn) and (gn), respectively, and f ∈ S2P(F̂ ◦ X, νA), g ∈ S
2
P(Ĝ ◦



STOCHASTIC INCLUSIONS 147

X,µM) such that f
nk ⇀ f in L2,dP (νA) and g

nk ⇀ g in L2,dP (µM). Therefore by (4.7)

we get

ξ (s, 0) + ξ (0, t)− ξ (0, 0) +
∫

[0,s]×[0,t]
fnk (u, v)dAu,v(4.8)

+
∫

[0,s]×[0,t]
gnk (u, v)dMu,v → x (s, t)

in L2,d, as k → ∞, and (s, t) ∈ I × J . Similarly as in the proof of Theorem 3.4, by

the weak convergence of the sequences (fnk) and (gnk), we have
∫

[0,s]×[0,t]
fnk(u, v)dAu,v ⇀

∫

[0,s]×[0,t]
f(u, v)dAu,v

and ∫

[0,s]×[0,t]
gnk(u, v)dMu,v ⇀

∫

[0,s]×[0,t]
g(u, v)dMu,v

in L2,d, as k →∞. Thus for every (s, t) ∈ I × J we have

ξ (s, 0) + ξ (0, t)− ξ (0, 0)

+
∫

[0,s]×[0,t]
fnk (u, v) dAu,v +

∫

[0,s]×[0,t]
gnk (u, v)dMu,v

⇀ ξ (s, 0) + ξ (0, t)− ξ (0, 0)

+
∫

[0,s]×[0,t]
f (u, v) dAu,v +

∫

[0,s]×[0,t]
g (u, v)dMu,v

in L2,d, as k →∞. This convergence and (4.8) allow us to claim that

x (s, t) = ξ (s, 0) + ξ (0, t)− ξ (0, 0)

+
∫

[0,s]×[0,t]
f (u, v) dAu,v +

∫

[0,s]×[0,t]
g (u, v) dMu,vP -a.e.

Thus x ∈ K (ξ,X) which proves the closedness of K (ξ,X) in C
(
I × J, L2,d

)
.

In order to finish the proof, we will show that there exists x̂ ∈ SI (F,G, ξ) such

that x̂ ∈ K (ξ,X). Because F andG satisfy conditions (A1)–(A3), then by Proposition

3.1 there exist functions f, g : I × J × Ω× L2,d → R
d such that:

(i) f (s, t, ω, η) ∈ F (s, t, ω, η), g (s, t, ω, η) ∈ G (s, t, ω, η) for every (s, t, ω, η) ∈

I × J × Ω× L2,d,

(ii) for every η ∈ L2,d the mappings f (·, ·, ·, η) , g (·, ·, ·, η) : I × J × Ω → R
d are

predictable,

(iii) for every (s, t, ω) ∈ I × J × Ω, η1, η2 ∈ L
2,d it holds

max{
∥∥∥f (s, t, ω, η1)− f (s, t, ω, η2)

∥∥∥
2

Rd
, ‖g (s, t, ω, η1)− g (s, t, ω, η2)‖

2
Rd
}

¬ d2L2 ‖η1 − η2‖
2
L2,d ,

(iv) for every (s, t, ω) ∈ I × J × Ω, and every η ∈ L2,d

max
{∥∥∥f (s, t, ω, η)

∥∥∥
Rd
, ‖g (s, t, ω, η)‖

Rd

}
¬ K (1 + ‖η‖L2,d) .
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Then for every x ∈ K (ξ,X) the mappings

I × J × Ω ∋ (s, t, ω) 7→ f (s, t, ω, x (s, t)) ∈ R
d,

I × J × Ω ∋ (s, t, ω) 7→ g (s, t, ω, x (s, t)) ∈ R
d

are elements of L2,dP (νA) and L
2,d
P (µM), respectively. Moreover f (s, t, ω, x (s, t)) ∈

F (s, t, ω, x (s, t)) and g (s, t, ω, x (s, t)) ∈ G (s, t, ω, x (s, t)). Let us define the operator

V : K (ξ,X)→ C(I × J, L2,d) as follows

V (x) (s, t) = ξ (s, 0) + ξ (0, t)− ξ (0, 0)

+
∫

[0,s]×[0,t]
f (u, v, x (u, v)) dAu,v

+
∫

[0,s]×[0,t]
g (u, v, x (u, v)) dMu,v

for every x ∈ K (ξ,X) and (s, t) ∈ I ×J . By (4.6), properties of f and (4.2) we claim

that for every x ∈ K (ξ,X)

f (s, t, ω, x (s, t)) ∈ F (s, t, ω, x (s, t))

⊂
⋃

η∈X(s,t)

F (s, t, ω, η) ⊂ F̂ (s, t, ω,X (s, t)) .

In a similar way we conclude the same relations for g,G and Ĝ. Thus we get V (x) ∈

K (ξ,X) for every x ∈ K (ξ,X). Hence it is sufficient to show that the mapping V has

a fixed point. Such a fixed point will be also a solution to stochastic integral inclusion

(4.1) generated by the triple (F,G, ξ). We will show that V is a contraction under

the metric

ρ (x, y) := sup
(s,t)∈I×J

e−dLγ(s,t)
[
E ‖x (s, t)− y (s, t)‖2

Rd

] 1
2

in C
(
I × J, L2,d

)
, where γ (s, t) := ν̃A ([0, s]× [0, t]) + µ̃M ([0, s]× [0, t]) for (s, t) ∈

I × J. Let x, y ∈ K (ξ,X). Then by properties of the mappings f and g, inequality

(2.4) and Theorem 2.7 we have

ρ2 (V (x) , V (y)) ¬ 2 sup
(s,t)∈I×J

e−2dLγ(s,t)·

[

E‖
∫

[0,s]×[0,t]

(
f (u, v, x (u, v))− f (u, v, y (u, v))

)
dAu,v‖

2
Rd

+ E‖
∫

[0,s]×[0,t]
(g (u, v, x (u, v))− g (u, v, y (u, v))) dMu,v‖

2
Rd

]

¬ 2 sup
(s,t)∈I×J

e−2dLγ(s,t)
[∫

[0,s]×[0,t]×Ω

∥∥∥f (u, v,x (u, v))− f (u, v, y (u, v))
∥∥∥
2

Rd
dνA

+
∫

[0,s]×[0,t]×Ω
‖g (u, v, x (u, v))− g (u, v, y (u, v))‖2

Rd
dµM

]

¬ 2dL sup
(s,t)∈I×J

e−2dLγ(s,t)
∫

[0,s]×[0,t]×Ω
‖x (u, v)− y (u, v)‖2L2,d (dνA + dµM)
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= 2dL sup
(s,t)∈I×J

e−2dLγ(s,t)
∫

[0,s]×[0,t]
‖x (u, v)− y (u, v)‖2L2,d dγ (u, v)

¬ 2dL sup
(s,t)∈I×J

e−2dLγ(s,t)ρ2 (x, y)
∫

[0,s]×[0,t]
e2dLγ(u,v)dγ (u, v) .

Therefore by Lemma 4.3 we get

ρ2 (V (x) , V (y)) ¬ sup
(s,t)∈I×J

ρ2 (x, y)
(
1− e−2dLγ(s,t)

)

¬ ρ2 (x, y)
(
1− e−2dLγ(S,T )

)
.

Thus by Banach’s Contraction Principle we infer that there exists a unique element

x̂ ∈ K (ξ,X) such that

x̂ (s, t) = ξ (s, 0) + ξ (0, t)− ξ (0, 0)

+
∫

[0,s]×[0,t]
f (u, v, x̂ (u, v)) dAu,v

+
∫

[0,s]×[0,t]
g (u, v, x̂ (u, v)) dMu,v.

Thus the proof is completed.

We finish our considerations with the following remarks. Let CS (X) denote the

set of all continuous selections for X : I×J → Kbc
(
L2,d

)
being a solution to set-valued

stochastic integral equation (4.4). Since X is a continuous multifunction, it follows

by Michael’s Continuous Selection Theorem (see [7], [9]) that CS (X) 6= ∅. Hence by

Theorem 4.4 we have the following result.

Corollary 4.5. Under assumptions of Theorem 4.4 it holds

CS (X) ∩ SI (F,G, ξ) 6= ∅.

Moreover Theorem 4.4 can be also expressed in the spirit of reachable sets of

solutions to stochastic inclusion (4.1) generated by (F,G, ξ). Namely, for (s, t) ∈ I×J

let

A ((s, t) , ξ, F,G) :=
{
x (s, t) ∈ L2,d : x ∈ SI (F,G, ξ)

}
,

i.e. A ((s, t) , ξ, F,G) is the set of all possible values that are attained by trajectories

of solutions to stochastic integral inclusion (4.1) at the point (s, t). Then the following

result can be stated.

Corollary 4.6. Let assumptions of Theorem 4.4 be satisfied and X : I × J →

Kbc
(
L2,d

)
be a unique solution to the equation (4.4). Then A ((s, t) , ξ, F,G)∩X (s, t) 6=

∅ for every (s, t) ∈ I × J .



150 M. KOZARYN, M. MICHTA, AND K. Ł. ŚWIĄTEK

Let us also note that all of the above considerations can be applied to stochastic

inclusions with expectations in the coefficients:

(4.9)






∆s
′,t′

s,t (x) ∈
∫
[s,s′]×[t,t′] F1 (u, v,E (x (u, v)) , ‖x (u, v)‖L2,d) dAu,v

+
∫
[s,s′]×[t,t′]G1 (u, v,E (x (u, v)) , ‖x (u, v)‖L2,d) dMu,v

x (0, t) = ξ (0, t)

x (s, 0) = ξ (s, 0)

,

where F1, G1 : I × J × Ω × R
d × R → Kbc

(
R
d
)
are appropriately regular set-valued

mappings. Indeed, the stochastic inclusion (4.9) can be transformed to inclusion (4.1)

if one takes set-valued mappings F,G : I × J × Ω× L2,d → Kbc
(
R
d
)
such that

F (s, t, ω, η) := F1 (s, t, ω,E (η) , ‖η‖L2,d)

and

G (s, t, ω, η) := G1 (s, t, ω,E (η) , ‖η‖L2,d)

for (s, t, ω, η) ∈ I×J×Ω×L2,d. Next, one can state an associated set-valued stochastic

integral equation with coefficients defined by (4.2) and (4.3) or by mappings

F̂ (s, t, ω, B) := co




⋃

η∈B

F1 (s, t, ω,E (η) , ‖η‖L2,d)





and

Ĝ (s, t, ω, B) := co




⋃

η∈B

G1 (s, t, ω,E (η) , ‖η‖L2,d)





for (s, t, ω, B) ∈ I × J × Ω × Kbc
(
L2,d

)
. In a single-valued case the above stochastic

inclusion reduces to the stochastic integral equation

x (s, t) + ξ (0, 0)− ξ (s, 0)− ξ (0, t)

=
∫

[0,s]×[0,t]
f (u, v,E (x (u, v)) , ‖x (u, v)‖L2,d) dAu,v

+
∫

[0,s]×[0,t]
g (u, v,E (x (u, v)) , ‖x (u, v)‖L2,d) dMu,v.

Such equations driven by a two-parameter Wiener process were used in the theory of

term structure of interest rates (see e.g. [10], [16], [17] and references therein).
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