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ABSTRACT. This work is concerned with singularly perturbed multi-scale switching diffusions.

The switching process is a two-time-scale Markov chain with slow and fast components subject to

weak and strong interactions. In the model, there are two small parameters ε and δ. The first one

highlights the fast changing part of the switching process, and the other delineates the slow diffusion.

We treat the case that ε and δ are related in that ε = δγ . Under certain conditions, asymptotic

expansions of the probability densities for the underlying processes are developed. The approach is

constructive and the asymptotic series are rigorously justified with error bounds.
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1. INTRODUCTION

This work studies the analysis of probability densities of multi-scale switching

diffusions. The motivation comes from many problems in optimization and control

in which continuous dynamics and discrete events coexist and the systems display

multi-scales; see, for example, [9, 10] for a spectrum of manufacturing models, [15] for

applications to ecology systems, [11] for hierarchical decomposition and aggregation in

economic systems, and [8] for problems arising in queueing theory and applications;

see also [18] for a comprehensive treatment of switching diffusion processes and a

collection of applications in [16].

This paper is concerned with multi-scale switching diffusion. To be more specific,

consider the switching diffusion process (xε,δ(·), αε(·)) given by

(1.1) dxε,δ(t) = b(xε,δ(t), αε(t))dt+
√
δσ(xε,δ(t), αε(t))dw(t), xε,δ(0) = x, αε(0) = i,

for appropriate functions b(·, ·) and σ(·, ·), where ε and δ are two small positive param-

eters, αε(t) is a two-time-scale Markov chain with slow and fast components subject

to weak and strong interactions. The weak and strong interactions of the system are
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modeled by assuming the generator of the underlying Markov chain Qε(t) = (qεij(t))

to be of the form

(1.2) Qε(t) = Q̃(t)/ε+ Q̂(t),

with Q̃(t) and Q̂(t) being generators of continuous-time Markov chains. Note that

Q̃(t) governs the rapidly changing part and Q̂(t) describes the slow component. The

state space of αε(t) is given by a finite set M = {1, . . . , m}. Intuitively, when ε

and δ are sufficiently small, αε(t) converges rapidly to its stationary distribution and

the intensity of the diffusion is negligible. Therefore, the dynamic system is close

to a deterministic one. However, when we look at the joint probability distribution

of xε,δ(·) and αε(·), the randomness cannot be ignored completely due to its various

impact on the dynamics of the underlying system. Much research work has been

devoted to such perturbed dynamic systems; see [1, 12, 13] for studies on diffusion

processes with small diffusion. For studies on asymptotic properties of (1.1), we refer

the reader to [4]. In [14], we constructed an asymptotic expansion of the expectation

of g(xε,δ(t), αε(t)) for some appropriate function g(·, ·). Corresponding to (1.1), we

can write down the associated operator

Lf(x, i, t) =
∂

∂t
f(x, i, t) +

1

2
σ2(x, i)

d2

dx2
f(x, i, t)

+b(x, i)
d

dx
f(x, i, t) +

m∑

j=1

qεij(t)f(x, j, t), i ∈ M,

for a suitably smooth function f(·, i, ·) for each i ∈ M. Our current effort in this

paper is to further explore the limiting behavior of the process xε,δ(·) by construct-

ing asymptotic expansions of its probability densities, which are associated with the

adjoint operator L∗. In the next section, we define the operator, but suppress the

superscript ∗ for notation simplification. We consider the case in which the small

parameters δ and ε are related by ε = δγ for some γ > 0. Depending on γ, lim
ε→0

δ

ε
is

a nonzero constant (γ = 1), or 0 (γ < 1), or ∞ (γ > 1). These three different cases

could yield different outcomes.

Switching diffusion models can represent naturally system dynamics in a wide va-

riety of applications, and hence become increasingly important in system optimization

and control. To solve related problems, we need to have a thorough understanding on

the structure of the underlying probability density. To illustrate the importance and

applications of the asymptotic expansion approach, consider the following motiva-

tional example whose detailed discussions can be found in [17, 18]. Suppose that the

process
(
xε,δ(t), αε(t)

)
satisfies (1.1) and one wants to minimize an objective function

Jε,δ(θ) = E

∫ T

0

G(xε,δ(t), αε(t), t, θ)dt =

∫ T

0

∫ m∑

i=1

G(x, i, t, θ)pε,δi (x, t)dxdt,
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over [0, T ] for a given T ∈ (0,∞), where θ is a parameter, pε,δi (x, t) is the probability

density of
(
xε,δ(t), αε(t)

)
with a given initial probability density, and G(·) is a suitable

function. The presence of the multi-scale structure together with the weak and strong

interactions among states of αε(t) makes analysis and solutions very complicated.

One cannot obtain closed form solutions except in some special cases. It is thus vital

to reduce the complexity of the underlying problem. We will show in this paper

that pε,δi (x, t) has a uniform asymptotic expansion. This expansion allows us to also

obtain an asymptotic expansion for Jε,δ(θ). Therefore, we can approximate a complex

problem by an asymptotic problem which is much simpler than the original one and

is easier to analyze.

Although the motivation of our study comes from treating switching diffusion

processes, the approach that we are using and the solution method are mainly an-

alytic. The original asymptotic expansion method can be found in [5]. For some

related works on asymptotic expansions of systems of the Kolmogorov-Fokker-Planck

equations associated with switching diffusions, we refer the reader to [6, 7]. One of the

distinct features of this work is: We treat multi-scale systems of rapid switchings and

slow diffusion with two small parameters ε and δ. The ε and δ are related through

ε = δγ so that different values of γ lead to different behaviors of the underlying sys-

tems. It should be noted that different from previous works on asymptotic expansions

(of systems of forward equations arising from singularly perturbed switching diffu-

sions; see [6, 7]), in lieu of non-degenerate second order partial differential equations,

we have to deal with certain first order linear equations.

The rest of the paper is arranged as follows. Section 2 begins with the problem

formulation and presents certain preliminary results. In Section 3, we work with the

case that ε = δ2. In particular, we construct the matched asymptotic expansions so

that the outer expansions are smooth and the initial layer corrections decay exponen-

tially fast. Then, the asymptotic expansions are validated and uniform error bounds

are obtained. Section 4 treats the case δ = ε2 with its unique features. Finally, we

give some further remarks in Section 5.

2. FORMULATION

We work with a filtered probability space (Ω,F , {Ft}, P ), where {Ft} is a family

of σ-algebras such that Fs ⊂ Ft if s ≤ t. We assume that F0 is complete, i.e.,

it contains all null sets. Let w(·) be a one-dimensional standard Brownian motion

defined in the filtered probability space (Ω,F , {Ft}, P ). Throughout the paper, we

work with a finite horizon t ∈ [0, T ] for some T > 0. We use v′ to denote the transpose

of v ∈ R
m1×m2 with m1, m2 ≥ 1. We also use the notation 11 = (1, . . . , 1)′ ∈ R

m.

Suppose ε > 0 and δ > 0 are small parameters. Since we only work with the case

that ε = δγ , we only use superscripts ε to indicate that the objects we are working
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with depend on parameters ε and δ. For notational simplicity, K and κ0 are generic

positive constants. Their values may change for different appearances.

Suppose that αε(t) is a continuous-time Markov chain, independent of the Brow-

nian motion w(t), with generator Qε(t) = Q̃(t)/ε + Q̂(t) and a finite state space

M = {1, . . . , m}, where Q̃(t) and Q̂(t) are the generators of continuous-time Markov

chains. Recall that a generator Q̃(t) ∈ R
m×m is said to be weakly irreducible if the

system of equations

ν̃(t)Q̃(t) = 0,
m∑

i=1

ν̃i(t) = 1,

has a unique solution ν̃(t) = (ν̃1(t), . . . , ν̃m(t)) ∈ R
1×m satisfying ν̃i(t) ≥ 0 for each

i ∈ M. Such a nonnegative solution is termed a quasi-stationary distribution; see

[17, p. 23]. The state space of the process (xε(t), αε(t)) is S×M, where S is the unit

circle. By identifying the endpoints 0 and 1, let x ∈ [0, 1] be the coordinates in S.

The existence and uniqueness of such switching diffusion processes can be found in

[3, Section 2.2].

Suppose that b(·, ·, ·) : R×M×[0, T ] 7→ R and that σ(·, ·, ·) : R×M×[0, T ] 7→ R.

Consider the switching diffusion (xε(·), αε(·)) given by (1.1). It is known that the

probability density of the process satisfying
∫

Γ

pεi (x, t)dx = P (xε(t) ∈ Γ, αε(t) = i) , Γ ⊂ [0, 1],

is the solution to the Kolmogorov-Fokker-Planck equation

(2.1)






∂pεi
∂t

= δDip
ε
i + Lipεi +

m∑

j=1

pεjq
ε
ji,

pεi (x, 0) = gi(x), i ∈ M,

where gi(x) ≥ 0,

Di · =
∂2
(
σ2(x, i) ·

)

2 ∂x2
, Li · = −∂

(
b(x, i) ·

)

∂x
,

and g(x) = (g1(x), . . . , gm(x)) is the initial probability density of (xε(t), αε(t)). De-

note pε(x, t) =
(
pε1(x, t, . . . , p

ε
m(x, t)

)
. In view of the periodicity given above,

∫

[0,1]

g(x)11dx = 1.

Our main interest is to derive asymptotic properties of the solution of (2.1) when

ε→ 0. For convenience, we define

Lpε(x, t) :=
(
L1p

ε
1(x, t), . . . ,Lmpεm(x, t)

)
∈ R

1×m,

Dpε(x, t) :=
(
D1p

ε
1(x, t), . . . ,Dmp

ε
m(x, t)

)
∈ R

1×m,
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and sometimes we suppress the variable (x, t). Then (2.1) can be rewritten as

(2.2)
∂pε(x, t)

∂t
= δDpε(x, t) + Lpε(x, t) + pε(x, t)

Q̃(t)

ε
+ pε(x, t)Q̂(t).

To carry out the desired asymptotic analysis, we need the following assumptions:

(A1) There is a T > 0 such that for all t ∈ [0, T ], the generator Q̃(t) is weakly irre-

ducible. There is an n ≥ 1 such that Q̃(·) ∈ Cn+3([0, T ]) and Q̂(·) ∈ Cn+3([0, T ]).

(A2) For each i ∈ M, b(·, i), σ(·, i), and g(·, i) are periodic with period 1. Moreover,

b(·, i), σ(·, i), and g(·, i) are 2(n+ 3)-times continuously differentiable.

(A3) For given real-valued functions h1(·, ·) ∈ Cn1,n2([0, 1]×[0, T ]) and h2(·) ∈ Cn1([0, 1]),

with n1, n2 being integers, 1 ≤ n1 ≤ 2(n+ 3), and 1 ≤ n2 ≤ n+ 3, the system

(2.3)





∂h(x, t)

∂t
−L

(
h(x, t)ν̃(t)

)
= h1(x, t),

h(x, 0) = h2(x),

has a unique solution h(·, ·) ∈ Cn1,n2([0, 1] × [0, T ]).

Remark 2.1. Condition (A1) indicates that the weak irreducibility of Q̃(t) implies

the existence of the unique quasi-stationary distribution ν̃(t) = (ν̃1(t), . . . , ν̃m(t)) ∈
R

1×m. Condition (A2) ensures certain smoothness of coefficients in operator D, L,

and the initial probability density g(·). Our analysis in the next sections shows that in

constructing an asymptotic expansion of order n, we only need (A3) holds for certain

functions h1(·, ·) and h2(·).

Now we present several lemmas needed in the subsequent development, which

are essential for constructing asymptotic expansions.

Lemma 2.2. Suppose that a constant matrix Q ∈ R
m×m is a generator of a continuous-

time Markov chain and that Q is weakly irreducible with ν = (ν1, . . . , νm) being the

quasi-stationary distribution associated with Q.

(a) Then for any z ∈ R
1×m, the equation

(2.4) yQ = z,

has a solution if and only if z11 = 0. Moreover, suppose that y1 and y2 are two

solutions of (2.4). Then y1 − y2 = c0ν for some c0 ∈ R.

(b) Define Qc =
(
11 Q

)
∈ R

m×(m+1). Then

rank(Qc) = m, rank(QcQ
′

c) = m.

(c) Define ẑ =
(
0 z

)
. Any solution of (2.4) can be written as η = c0ν + ξ, where

c0 ∈ R is an arbitrary constant and ξ = ẑQ′

c(QcQ
′

c)
−1 is the unique solution of

(2.4) satisfying ξ11 = 0.
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(d) There are constants K > 0 and κ0 > 0 such that

| exp(Qs) − P | ≤ K exp(−κ0s), s > 0,

where P = 11(ν1, . . . , νm) ∈ R
m×m.

Proof. The first part of (a) follows from the Fredholm alternative (see [17, Corol-

lary A.38]). If y1 and y2 are two solutions of (2.4), we have Q′(y1 − y2)
′ = 0. Because

Q is weakly irreducible, the rank of Q′ = m − 1. So the null space of Q′ is one

dimensional. Consequently, the null space is spanned by ν ′ = (ν1, . . . , νm)′ ∈ R
m×1.

This yields that y1 − y2 = c0ν for some c0 ∈ R. Part (b) follows from the weak

irreducibility of Q. We proceed to prove part (c). Consider the system

ξQ = z, ξ11 = 0,

that can be rewritten as ξQc = ẑ. Thus its solution can be represented by ξ =

ẑQ′

c(QcQ
′

c)
−1. The proof of part (d) can be found in [17, Lemma 4.4].

3. ASYMPTOTIC EXPANSION: ε = δ2

This section focuses on the case ε = δγ for a positive integer γ ≥ 2, i.e., ε goes

to zero much faster than δ. To be more specific, let ε = δ2. A similar argument can

be used for γ ≥ 3. To proceed, we seek asymptotic expansions of pε(x, t) of the form

(3.1)

Φε
n(x, t) + Ψε

n(x, t) =

n∑

k=0

(
√
ε)kϕk(x, t) +

n∑

k=0

(
√
ε)kψk(x, τ)

=

n∑

k=0

δkϕk(x, t) +

n∑

k=0

δkψk(x, τ),

where τ = t/ε is the stretched-time variables,

ϕk(x, t) =
(
ϕk(x, 1, t), . . . , ϕk(x,m, t)

)
∈ R

1×m,

ψk(x, τ) =
(
ψk(x, 1, τ), . . . , ψk(x,m, τ)

)
∈ R

1×m.

The ϕk(x, t) are called regular terms or outer expansion terms, and the ψk(x, τ) are

the initial layer corrections. We aim to obtain asymptotic expansions of order n, and

derive the uniform error bounds. For the purposes of error bound estimates, we need

to calculate six extra terms ϕk(x, t), ψk(x, τ) with k = n + 1, n + 2, n + 3. This will

become clear when we carry out the error analysis.

First let us look at the regular part of the asymptotic expansions Φε
n+3(x, t) =∑n+3

k=0 δ
kϕk(x, t). Substituting it into (2.2), we obtain

n+4∑

k=1

δkDϕk−1 +
n+3∑

k=0

δkLϕk =
n+3∑

k=0

δk
∂ϕk
∂t

−
n+1∑

k=−2

δkϕk+2Q̃(t) −
n+3∑

k=0

δkϕkQ̂(t).
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Comparing coefficients of like powers of δk for k = −2, . . . , n+ 1 leads to

(3.2)

ϕ0(x, t)Q̃(t) = 0,

ϕ1(x, t)Q̃(t) = 0,

ϕ2(x, t)Q̃(t) =
∂ϕ0(x, t)

∂t
− Lϕ0(x, t) − ϕ0(x, t)Q̂(t),

ϕk+2(x, t)Q̃(t) =
∂ϕk(x, t)

∂t
−Lϕk(x, t) − ϕk(x, t)Q̂(t) −Dϕk−1, k = 1, . . . , n+ 1.

Define the stretched variable τ = t/δ2 as in the usual practice of singular pertur-

bation method. Substituting the initial layer corrections

Ψε
n+3(x, τ) =

n+3∑

k=0

δkψk(x, τ)

into (2.1), we obtain

(3.3)

n+3∑

k=0

δk+1Dψk +

n+3∑

k=0

δkLψk +

n+3∑

k=0

δkψkQ̂(t) =

n+3∑

k=0

δk−2
(∂ψk
∂τ

− ψkQ̃(t)
)
,

Owing to the smoothness of Q̃(·), a truncated Taylor expansion about t = 0 up

to order k leads to

(3.4) Q̃(t) = Q̃(δ2τ) =
k∑

j=0

(δ2τ)j

j!

djQ̃(0)

dtj
+R(k)(t),

where

R(k)(t) =
tk

k!

(
dkQ̃(ξ)

dtk
− dkQ̃(0)

dtk

)
,

for some 0 < ξ < t. By virtue of assumption (A1), for each k = 0, . . . , n+ 1,

(3.5) |R(k)(t)| = O(tk+1) uniformly in t ∈ [0, T ].

Denote Q̃(j)(0) = dj eQ(0)
dtj

. Drop the term R(n+1)(t) and use the first (n+ 2) terms

in the Taylor expansion up to the order (n+ 1) for Q̃(t), we obtain from (3.3) that

(3.6)
n+3∑

k=0

δk+1Dψk +

n+3∑

k=0

δkLψk +

n+3∑

k=0

δkψkQ̂(t) =

n+3∑

k=0

δk−2
(∂ψk
∂τ

−
n+1∑

j=0

(δ2τ)j

j!
ψkQ̃

(j)(0)
)
,

that is,

n+3∑

k=0

δk+1Dψk +

n+3∑

k=0

δkLψk +

n+3∑

k=0

δkψkQ̂(t)

=
n+3∑

k=0

δk−2
(∂ψk
∂τ

− ψkQ̃(0)
)
−

n+3∑

k=0

δk−2
n+1∑

j=1

(δ2τ)j

j!
ψkQ̃

(j)(0).
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Then comparing coefficients of like powers of δk for k = −2, . . . , n+ 2 leads to

(3.7)

∂ψ0(x, τ)

∂τ
= ψ0(x, τ)Q̃(0),

∂ψ1(x, τ)

∂τ
= ψ1(x, τ)Q̃(0),

∂ψk(x, τ)

∂τ
= ψk(x, τ)Q̃(0) + rk(x, τ), k = 2, . . . , n+ 3,

where

r2(x, τ) = Lψ0(x, τ) + ψ0(x, τ)Q̂(t) + τψ0(x, τ)Q̃
(1)(0),

rk(x, τ) = Dψk−3(x, τ) + Lψk−2(x, τ) + ψk−2(x, τ)Q̂(t)

+

[k/2]∑

j=1

τ j

j!
ψk−2j(x, τ)Q̃

(j)(0), k = 3, . . . , n+ 3.

To ensure the match of the initial conditions, we choose

(3.8)
ϕ0(x, 0) + ψ0(x, 0) = g(x),

ϕk(x, 0) + ψk(x, 0) = 0, k = 1, . . . , n+ 3.

Our task to follow is to construct the sequences {ϕk(x, t)} and {ψk(x, t)}.

3.1. Construction of ϕ0(x, t) and ψ0(x, τ). By virtue of Lemma 2.2, the first equa-

tion in (3.2) implies that ϕ0(x, t) = β0(x, t)ν̃(t), where β0(x, t) ∈ R is a real-valued

function to be determined. Consider the third equation of (3.2), namely,

ϕ2(x, t)Q̃(t) =
∂ϕ0(x, t)

∂t
− Lϕ0(x, t) − ϕ0(x, t)Q̂(t).

Plugging in ϕ0(x, t) = β0(x, t)ν̃(t), we obtain

ϕ2(x, t)Q̃(t) =
∂β0(x, t)

∂t
ν̃(t) + β0(x, t)

dν̃(t)

dt
− L

(
β0(x, t)ν̃(t)

)
− β0(x, t)ν̃(t)Q̂(t).

Postmultiplying 11 in the above equation with notice that ν̃(t)11 = 1, deν(t)
dt

11 = 0, and

Q̃(t)11 = Q̂(t)11 = 0, we arrive at

(3.9)






∂β0(x, t)

∂t
− L

(
β0(x, t)ν̃(t)

)
= 0,

β0(x, 0) = g(x)11,

where the second equation in (3.9) is the initial condition we chose. By virtue of

assumption (A3), (3.9) has a unique solution. It follows from (3.7) and (3.8) that

(3.10) ψ0(x, τ) =
(
g(x) − ϕ0(x, 0)

)
exp(Q̃(0)τ).

We are in a position to derive certain smoothness of ϕ0(x, t) and the exponential

decay property of ψ0(x, τ).

Lemma 3.1. For ϕ0(x, t) and ψ0(x, τ) obtained above, the following assertions hold.

(a) The ϕ0(·, ·) ∈ C2(n+3),n+3([0, 1] × [0, T ]).
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(b) There exist positive constants K and κ0 such that

sup
x∈[0,1]

∣∣∣∣
∂jψ0(x, τ)

∂xj

∣∣∣∣ ≤ K exp(−κ0τ), j = 0, 1, . . . , 2(n+ 3).

Proof. (a) Denote Q1(t) =
(
Q̃(t) 11

)
. Then ν̃(t)Q1(t) =

(
01×m 1

)
. Moreover, us-

ing the irreducibility of Q̃(t), similar to Lemma 2.2, we can show that rank
(
Q1(t)Q

′

1(t)
)

=

m. As a result, ν̃(t) =
(
01×m 1

)
Q′

1(t)
(
Q1(t)Q

′

1(t)
)
−1

. Thus ν̃(t) ∈ Cn+3([0, T ]).

Then (a) follows from assumption (A3).

(b) Since ψ0(x, 0) = g(x) − ϕ0(x, 0), then ψ0(·, 0) ∈ C2(n+3)([0, 1]). We deduce

that ψ0(·, ·) ∈ C2(n+3),n+3([0, 1] × [0, T ]). Since ϕ0(x, 0) = g(x)11ν̃(0),

ψ0(x, 0)11 = g(x)11 − g(x)11ν̃(0)11 = 0.

It follows that ψ0(x, 0)P = 0, where P = 11ν̃(0). By virtue of Lemma 2.2, we have

|ψ0(x, τ)| =
∣∣ψ0(x, 0)P + ψ0(x, 0)

(
exp(Q̃(0)τ) − P

)∣∣
≤
∣∣ψ0(x, 0)

∣∣∣∣ exp(Q̃(0)τ) − P
∣∣

≤ K exp(−κ0τ).

Moreover, it follows from (3.7) and ψ0(x, 0)P = 0 that for each j = 1, . . . , 2(n+ 3),

∂jψ0(x, τ)

∂xj
=
∂jψ0(x, 0)

∂xj
exp(Q̃(0)τ),

∂jψ0(x, 0)

∂xj
P = 0.

A similar argument as that for ψ0(x, τ) yields that

∣∣∣
∂jψ0(x, τ)

∂xj

∣∣∣ ≤ K exp(−κ0τ), j = 1, . . . , 2(n+ 3).

Furthermore, it is readily seen that the above estimate holds uniformly for x ∈ [0, 1].

The conclusion follows.

3.2. Construction of Higher-Order Terms. We proceed to obtain the asymptotic

expansions. Using the second equation in (3.2),

ϕ1(x, t) = β1(x, t)ν̃(t),

with β1(x, t) ∈ R being a real-valued function to be determined, we obtain that

ϕ1(x, i, t) is a function independent of i. By substituting ϕ1(x, t) = β1(x, t)ν̃(t) into

the fourth equation of (3.2) and postmultiplying it by 11, we obtain

(3.11)
∂β1(x, t)

∂t
− L

(
β1(x, t)ν̃(t)

)
= Dϕ0(x, t)11.

We need to determine the initial value β1(x, 0). It follows from the second equation

in (3.7) that

(3.12)
ψ1(x, τ) = −ϕ1(x, 0) exp(Q̃(0)τ)

= −β1(x, 0)ν̃(0) exp(Q̃(0)τ).
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We require the initial layer terms go to 0 for large τ leading to ψ1(x, τ) → 0 as

τ → ∞. Letting τ → ∞ in (3.12) and noting that exp(Q̃(0)τ) → P with P = 11ν̃(0),

we obtain 0 = −β1(x, 0)ν̃(0), that is,

(3.13) β1(x, 0) = 0.

As a result, ψ1(x, τ) = 0. Moreover, β1(x, t) can be determined from (3.11) and (3.13).

Since ϕ0(·, ·) ∈ C2(n+3),n+3([0, 1]× [0, T ]), we have β1(·, ·) ∈ C2(n+2),n+2([0, 1]× [0, T ]).

Next, for k = 2, . . . , n + 1, we construct ϕk(x, t) and ψk(x, τ) by induction.

Suppose that the terms ϕj(x, t) and ψj(x, τ) for j < k have been constructed such

that for each j < k, ϕj(·, ·) ∈ C2(n+3−j),n+3−j([0, 1] × [0, T ]), ψj(x, τ) and its partial

derivatives in x up to order 2(n+ 3− j) decay exponentially fast. Moreover, assume

that

cj(x, t)11 = 0, j ≤ k − 1,

where

c0(x, t) =
∂ϕ0(x, t)

∂t
−Lϕ0(x, t) − ϕ0(x, t)Q̂(t),

cj(x, t) =
∂ϕj(x, t)

∂t
− Lϕj(x, t) − ϕj(x, t)Q̂(t) −Dϕj−1(x, t), j = 1, 2, . . . , k − 1.

We proceed to construct ϕk(x, t) and ψk(x, τ). Using (3.2), we have

(3.14) ϕk(x, t)Q̃(t) = ck−2(x, t).

The right-hand side above, namely ck−2(x, t) is a known function since ϕk−2(x, t) and

ϕk−3(x, t) have been constructed. Because ck−2(x, t)11 = 0, by Lemma 2.2, ϕk(x, t) is

the sum of solutions to the homogeneous equation and a particular solution ϕ̂k(x, t)

of the nonhomogeneous equation with ϕ̂k(x, t)11 = 0. It is of the form

(3.15) ϕk(x, t) = βk(x, t)ν̃(t) + ϕ̂k(x, t).

Define

Q̃c(t) =
(
11 Q̃(t)

)
∈ R

m×(m+1), ĉk−2(x, t) =
(
0 ck−2(x, t)

)
∈ R

1×(m+1).

By virtue of Lemma 2.2, it follows from (3.14) that

(3.16) ϕ̂k(x, t) = ĉk−2(x, t)Q̃c(t)
′

(
Q̃c(t)Q̃

′

c(t)
)
−1

.

Note that ϕ̂k(x, t)11 = 0. We proceed to find βk(x, t). Using (3.2), we obtain

(3.17) ϕk+2(x, t)Q̃(t) =
∂ϕk(x, t)

∂t
−Lϕk(x, t)−ϕk(x, t)Q̂(t)−Dϕk−1(x, t) = ck(x, t).

Multiplying both sides by 11 from the right and noting the form of ϕk(x, t) in (3.15),

we arrive at

(3.18)
∂βk(x, t)

∂t
− L

(
βk(x, t)ν̃(t)

)
= −∂ϕ̂k(x, t)

∂t
11 + Lϕ̂k(x, t)11 + Dϕk−1(x, t)11.
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Equation (3.18) is solvable if the initial condition is specified. We need to use the

initial layer term to determine the initial condition. In view of (3.7),

(3.19)

ψk(x, τ) = −ϕk(x, 0) exp(Q̃(0)τ) +

∫ τ

0

rk(x, s) exp(Q̃(0)(τ − s))ds, k = 2, . . . , n+ 1.

We demand that ψk(x, τ) → 0 as τ → ∞. Letting τ → ∞ in (3.19) and noting that

exp(Q̃(0)τ) → P with P = 11ν̃(0), we obtain

(3.20) 0 = −ϕk(x, 0)P +

∫
∞

0

rk(x, s)Pds,

By multiplying both sides from the right by 11, the above equation is equivalent to

(3.21) 0 = −ϕk(x, 0)11 +

∫
∞

0

rk(x, s)11ds.

On the other hand, we have

(3.22)

−ϕk(x, 0)11 +

∫
∞

0

rk(x, s)11ds = −
(
βk(x, 0)ν̃(0)11 + ϕ̂k(x, 0)11

)
+

∫
∞

0

rk(x, s)11ds

= −βk(x, 0) +

∫
∞

0

rk(x, s)11ds,

where ϕ̂k(x, 0)11 = 0 by our construction. Note that the integral involving rk(x, s)

is well defined since |rk(x, s)| ≤ K exp(−κ0s) for some K > 0 and κ0 > 0 by the

induction hypothesis. By virtue of (3.21) and (3.22),

(3.23) βk(x, 0) =

∫
∞

0

rk(x, s)11ds.

Conversely, with βk(x, 0) given in (3.23), ψk(x, τ) → 0 as τ → ∞ and (3.20) holds as

desired. The initial condition for βk(x, t) has thus been found. Then it follows from

(3.15) that

(3.24) ϕk(x, t) = βk(x, t)ν̃(t) + ĉk−2(x, t)Q̃c(t)
′
(
Q̃c(t)Q̃

′

c(t)
)
−1
,

with βk(x, t) determined by (3.18) and the initial condition (3.23). By our construc-

tion, we have ck(x, t)11 = 0. Then we can establish the following lemma.

Lemma 3.2. For ϕk(x, t) and ψk(x, τ) obtained above, the following assertions hold.

(a) The ϕk(·, ·) ∈ C2(n+3−k),n+3−k([0, 1] × [0, T ]).

(b) There exist positive constants K and κ0 such that

sup
x∈[0,1]

∣∣∣∣
∂jψk(x, τ)

∂xj

∣∣∣∣ ≤ K exp(−κ0τ), j = 0, 1, . . . , 2(n+ 3 − k).

Proof. (a) Recall from Lemma 3.1 that we have ϕj(·, ·) ∈ C2(n+3−j),n+3−j([0, 1]×[0, T ])

for 0 ≤ j < k and ν̃(·) ∈ Cn+3([0, T ]). Then ck−2(·, ·) ∈ C2(n+4−k),n+4−k([0, 1]× [0, T ]).

Then we derive from (3.16) and (3.18) that ϕ̂k(·, ·) ∈ C2(n+4−k),n+4−k([0, 1] × [0, T ])
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and βk(·, ·) ∈ C2(n+3−k),n+3−k([0, 1] × [0, T ]). Thus, (3.24) implies that ϕk(·, ·) ∈
C2(n+3−k),n+3−k([0, 1] × [0, T ]) as desired.

(b) Since ψk(·, 0) = −ϕk(·, 0) ∈ C2(n+3−k)([0, 1]), ψk(·, 0) ∈ C2(n+3−k)([0, 1]). We

deduce that ψk(·, ·) ∈ C2(n+3−k),n+3−k([0, 1]×[0, T ]). Recall that for l = 0, 1, . . . , k−1,

we have
∣∣∣
∂jψl(x, τ)

∂xj

∣∣∣ ≤ K exp(−κ0τ), j = 0, 1, . . . , 2(n+ 3 − l),

It follows that
∣∣∣
∂jrk(x, τ)

∂xj

∣∣∣ ≤ K exp(−κ0τ), j = 0, 1, . . . , 2(n+ 4 − k).

We proceed to show that ψk(x, τ) and its partial derivatives in x also decays expo-

nentially fast. In view of (3.20), we have

ψk(x, τ) =
∣∣∣ψk(x, 0)

(
exp(Q̃(0)τ) − P

)

+

∫ τ

0

rk(x, s)
(
exp

(
Q̃(0)(τ − s)

)
− P

)
ds+

∫
∞

τ

−rk(x, s)Pds
∣∣∣

≤ K exp(−κ0τ) +K

∫ τ

0

exp(−κ0(τ − s)) exp(−κ0s)ds

+K

∫
∞

τ

exp(−κ0s)ds.

Thus |ψk(x, τ)| ≤ K exp(−κ0τ) as desired. In view of (3.7), we have

(3.25)
∂jψk(x, τ)

∂xj
=
∂jψk(x, 0)

∂xj
exp(Q̃(0)τ) +

∫ τ

0

∂jrk(x, s)

∂xj
exp

(
Q̃(0)(τ − s)

)
ds,

for j = 1, . . . , 2(n+ 3 − k). Moreover, it follows from (3.20) that

(3.26)
∂jψk(x, 0)

∂xj
P +

∫
∞

0

∂jrk(x, s)

∂xj
Pds = 0.

By combining (3.25) and (3.26), we arrive at

∂jψk(x, τ)

∂xj
=
∣∣∣
∂jψk(x, 0)

∂xj
(
exp(Q̃(0)τ) − P

)

+

∫ τ

0

∂jrk(x, s)

∂xj
(
exp(Q̃(0)(τ − s)) − P

)
ds+

∫
∞

τ

−∂
jrk(x, s)

∂xj
Pds

∣∣∣

≤ K exp(−κ0τ) +K

∫ τ

0

exp(−κ0(τ − s)) exp(−κ0s)ds

+K

∫
∞

τ

exp(−κ0s)ds.

Detail computations lead to

∣∣∣
∂jψk(x, τ)

∂xj

∣∣∣ ≤ K exp(−κ0τ), j = 0, 1, . . . , 2(n+ 3 − k).

Furthermore, it is readily seen that the above estimates hold uniformly for x ∈ [0, 1].

The desired result thus follows.
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Up to this point, ϕk(x, t) and ψk(x, τ) have been completely specified for k =

0, 1, . . . , n+1. By virtue of Lemma 2.2, the last two equations in (3.2) have solutions

and we choose

(3.27)

ϕk(x, t) = ĉk−2(x, t)Q̃c(t)
′
(
Q̃c(t)Q̃

′

c(t)
)
−1

+
(∫ ∞

0

rk(x, s)11ds
)
ν̃(t), k = n+ 2, n+ 3.

Finally, using (3.7),

ψk(x, τ) = −ϕk(x, 0) exp(Q̃(0)τ) +

∫ τ

0

rk(x, s) exp
(
Q̃(0)(τ − s)

)
ds, k = n+ 2, n+ 3.

With ϕn+2(x, t) and ϕn+3(x, t) defined above, (3.20) holds for k = n+2, n+3. We have

ϕn+2(·, ·) ∈ C4,2([0, 1] × [0, T ]) and ϕn+3(·, ·) ∈ C2,1([0, 1] × [0, T ]). The exponential

decay property of ψn+2(x, τ), ψn+3(x, τ), and their partial derivatives with respect to

x can be obtained as in Lemma 3.2. We summarize what we have obtained thus far.

It is given in the following theorem.

Theorem 3.3. Under conditions (A1), (A2), and (A3), we can construct sequences

{ϕk(x, t) : k = 0, . . . , n + 3} and {ψk(x, t) : k = 0, . . . , n + 3} satisfying (3.2), (3.7),

and (3.8) as follows.

(a) The ϕ0(x, t) = β0(x, t)ν̃(t) with β0(x, t) given by (3.9); ψ0(x, τ) is given by

(3.10).

(b) The ϕ1(x, t) = β1(x, t)ν̃(t) with β1(x, t) given by (3.11) and (3.13); ψ1(x, τ) = 0.

(c) For k = 2, . . . , n+ 1, ϕk(x, t) = βk(x, t)ν̃(t) + ϕ̂k(x, t), where βk(x, t) is given by

(3.18) and ϕ̂k(x, t) is given by (3.16); ψk(x, τ) is given by (3.19).

(d) ϕk(x, t) ∈ C2(n+3−k),n+3−k([0, 1] × [0, T ]) for k = 0, . . . , n + 1; ϕn+2(x, t) ∈
C4,2([0, 1] × [0, T ]) and ϕn+3(x, t) ∈ C2,1([0, 1] × [0, T ]).

(e) ψk(x, τ) decays exponentially fast in that

sup
x∈[0,1]

∣∣∣∣
∂jψk(x, τ)

∂xj

∣∣∣∣ ≤ K exp(−κ0τ),

with j = 0, 1, . . . , 2(n + 3 − k) for each k = 0, . . . , n + 1, j = 0, 1, . . . , 4 for

k = n + 2, and j = 0, 1, 2 for k = n + 3.

3.3. Error Bounds. We have constructed the formal asymptotic expansions of pε(x, t).

We need to prove the validity of the expansions by deriving the error bounds. We

aim to show that

sup
(x,t)∈[0,1]×[0,T ]

∣∣∣∣p
ε(x, t) −

n∑

k=0

δkϕk(x, t) −
n∑

k=0

δkψk

(
x,
t

ε

)∣∣∣∣ = O(δn+1) = O(ε(n+1)/2).

We first recall a lemma from [7, Propposition 4.1]. Let V : [0, 1] ×M× [0, T ] 7→ R

be a sufficiently smooth function. We define

GεV (x, t) = −∂V (x, t)

∂t
+ δDV (x, t) + LV (x, t) + V (x, t)Qε(t), (x, t) ∈ [0, 1] × [0, T ].
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Lemma 3.4. Suppose that vε(x, t) is a solution of the following system
{

Gεvε(x, t) = f(x, t), (x, t) ∈ [0, 1] × (0, T ],

vε(x, 0) = 0, x ∈ [0, 1],

where sup
(x,t)

|f(x, t)| = O(δn+2). Then

sup
(x,t)

|vε(x, t)| = O(δn+1).

With the preparation above, we proceed to obtain the desired upper bounds on

the approximation errors. For k = 0, . . . , n + 3, define a sequence of approximation

errors

eεk(x, t) = pε(x, t) − Φε
k(x, t) − Ψε

k(x, τ),

where pε(x, t) is the solution of (2.1), and Φε
k(x, t) + Ψε

k(x, τ) is the kth-order ap-

proximation to pε(x, t). We proceed to obtain the order of magnitude estimates of

eεn(x, t).

Theorem 3.5. Assume (A1), (A2), and (A3). Then for the asymptotic expansions

constructed in Theorem 3.3, there exists a positive constant K such that

sup
(x,t)∈[0,1]×[0,T ]

∣∣eεn(x, t)
∣∣ ≤ Kδn+1.

Proof. First, we obtain an estimate on Gεeεn+3(x, t). Then we derive the desired order

estimate. Since pε(x, t) is a solution of (2.1), Gεpε(x, t) = 0. Therefore,

Gεeεn+3(x, t) = −GεΦε
n+3(x, t) − GεΨε

n+3(x, τ).

In view of (3.2), we have

GεΦε
n+3(x, t) =

n+3∑

k=0

δk
(
− ∂ϕk

∂t
+ δDϕk + Lϕk + ϕkQ̂(t) +

ϕkQ̃(t)

δ2

)

= −∂ϕ0

∂t
+ Lϕ0 + ϕ0Q̂(t) +

1

δ2
ϕ0Q̃(t) +

1

δ
ϕ1Q̃(t) + ϕ2Q̃(t)

+
n+1∑

k=1

δk
(
− ∂ϕk

∂t
+ Lϕk + ϕkQ̂(t) + Dϕk−1 + ϕk+2Q̃(t)

)

+

n+3∑

k=n+2

δk
(
− ∂ϕk

∂t
+ Lϕk + ϕkQ̂(t)

)
+

n+4∑

k=n+2

δkDϕk−1

=

n+3∑

k=n+2

δk
(
− ∂ϕk

∂t
+ Lϕk + ϕkQ̂(t)

)
+

n+4∑

k=n+2

δkDϕk−1.

The smoothness of ϕk(x, t) then yields

|GεΦε
n+3(x, t)| ≤ Kδn+2, (x, t) ∈ [0, 1] × [0, T ].

Using the definition τ = t/δ2,

dψk(x, τ)

dt
=

1

δ2

dψk(x, τ)

dτ
,
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which yields

GεΨε
n+3(x, τ) =

n+3∑

k=0

δk
(
− 1

δ2

∂ψk
∂τ

+ δDψk + Lψk + ψkQ̂(t) +
ψkQ̃(t)

δ2

)

= −
n+3∑

k=0

δk−2
(
ψkQ̃(0) + rk(x, τ)

)

+
n+3∑

k=0

δk
(
δDψk + Lψk(x, τ) + ψkQ̂(t) +

ψkQ̃(t)

δ2

)
,

where we set r0(x, τ) = r1(x, τ) = 0. Note that

n+3∑
k=0

δk−2
(
ψk(x, τ)Q̃(0) + rk(x, τ)

)
=

n+3∑

k=0

δk−2ψkQ̃(0) + Lψ0 + ψ0Q̂(t) + τψ0Q̃
(1)(0)

+

n+3∑

k=3

δk−2
(
Dψk−3 + Lψk−2 + ψk−2Q̂(t) +

[k/2]∑

j=1

τ j

j!
ψk−2jQ̃

(j)(0)
)

=
n+1∑

k=0

δk
(
Lψk + ψkQ̂(t)

)
+

n∑

k=0

δk+1Dψk +
n+3∑

k=0

δk−2

[k/2]∑

j=0

τ j

j!
ψk−2jQ̃

(j)(0).

Therefore,

(3.28)

GεΨε
n+3(x, τ) = δn+2Lψn+2 + δn+2ψn+2Q̂(t) + δn+3Lψn+3 + δn+3ψn+3Q̂(t)

+δn+2Dψn+1 + δn+3Dψn+2 + δn+4Dψn+3

−
n+3∑

k=0

δk−2

[k/2]∑

j=0

τ j

j!
ψk−2jQ̃

(j)(0) +
n+3∑

k=0

δk−2ψkQ̃(t).

By the smoothness of ψn+1(x, τ), ψn+2(x, τ), and ψn+3(x, τ),

(3.29)

∣∣∣δn+2Lψn+2 + δn+2ψn+2Q̂(t) + δn+3Lψn+3 + δn+3ψn+3Q̂(t)
∣∣∣ ≤ Kδn+2,∣∣∣δn+2Dψn+1 + δn+3Dψn+2 + δn+4Dψn+3

∣∣∣ ≤ Kδn+2.

By virtue of (3.4) and (3.5),

∣∣∣Q̃(t) −
k∑

j=0

tj

j!
Q̃(j)(0)

∣∣∣ = |R(k)(t)| ≤ Ktk+1, t ∈ [0, T ].

Using this estimate and the exponential decay property of ψk(x, τ), we obtain

(3.30)

∣∣∣
n+3∑

k=0

δk−2ψkQ̃(t) −
n+3∑

k=0

δk−2

[k/2]∑

j=0

τ j

j!
ψk−2jQ̃

(j)(0)
∣∣∣

=
∣∣∣
n+3∑

k=0

δk−2ψk

(
Q̃(t) −

[(n+3−k)/2]∑

j=0

tj

j!
Q̃(j)(0)

)∣∣∣

≤ K

n+3∑

k=0

δk−2(δ2τ)[(n+3−k)/2]+1 exp(−κ0τ )

≤ Kδn+2.
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It follows from (3.28), (3.29), and (3.30) that

∣∣GεΨε
n+3(x, τ)

∣∣ ≤ Kδn+2.

Putting these together with the estimates on GεΦε
n+3(x, t), we have shown that

|Gεeεn+3(x, t)| ≤ Kδn+2, for any (x, t) ∈ [0, 1] × [0, T ].

Note that the initial condition eεn+3(x, 0) = 0 for x ∈ [0, 1]. By virtue of Lemma 3.4,

sup
(x,t)∈[0,1]×[0,T ]

|eεn+3(x, t)| ≤ Kδn+1.

Finally,

(3.31) eεn+3(x, t) = eεn(x, t) −
n+3∑

k=n+1

δk
(
ϕk(x, t) + ψk(x, τ)

)
.

The boundedness of ϕk(x, t) and ψk(x, τ) yields that

sup
(x,t)∈[0,1]×[0,T ]

n+3∑

k=n+1

δk
∣∣∣ϕk(x, t) + ψk(x, τ)

∣∣∣ ≤ Kδn+1.

Substituting this into (3.31), we obtain the order estimate in terms of δ. Finally, note

that ε = δ2. The desired result follows.

4. ASYMPTOTIC EXPANSION: δ = ε2

In this section, we consider the case ε = δγ satisfying 1/γ > 1. That is, δ goes

to 0 much faster than ε. There are many different choices. To fix the notation for

discussion, we work with γ = 1/2 that is, δ = ε2. The other cases can be handled in

the same way.

We use the same method as in Section 3. However, some important modifications

are required. We will only discuss such modifications and skip the details. First,

instead of (3.1), we now seek asymptotic expansions of pε(x, t) of the form

(4.1) Φε
n(x, t) + Ψε

n(x, τ) =
n∑

k=0

εkϕk(x, t) +
n∑

k=0

εkψk(x, τ),

where τ = t/ε is the stretched-time variables. Moreover, we only need four extra

terms ϕk(x, t), ψk(x, τ) with k = n + 1, n + 2. Substituting the outer expansions∑n+2
k=0 ε

kϕk(x, t) into (2.2) and comparing coefficients of like powers of εk for k =
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−1, . . . , n+ 1, we obtain

(4.2)

ϕ0(x, t)Q̃(t) = 0,

ϕ1(x, t)Q̃(t) =
∂ϕ0(x, t)

∂t
− Lϕ0(x, t) − ϕ0(x, t)Q̂(t),

ϕ2(x, t)Q̃(t) =
∂ϕ1(x, t)

∂t
− Lϕ1(x, t) − ϕ1(x, t)Q̂(t),

ϕk+1(x, t)Q̃(t) =
∂ϕk(x, t)

∂t
−Lϕk(x, t) − ϕk(x, t)Q̂(t) −Dϕk−2(x, t),

k = 2, . . . , n+ 1.

Likewise, substituting Ψε
n+2(x, τ) =

∑n+2
k=0 ε

kψk(x, τ) into (2.2) and using the Taylor

expansion
∑n+1

j=0
(ετ)j

j!
Q̃(j)(0) as an approximation for Q̃(t), we obtain

n+2∑

k=0

εk+2Dϕk +

n+2∑

k=0

εk
(
Lψk + ψkQ̂(t)

)
=

n+2∑

k=0

εk−1
(∂ψk
∂τ

−
n+1∑

j=0

(ετ)j

j!
ψkQ̃

(j)(0)
)
,

i.e.,

n+2∑

k=0

εk+2Dϕk +
n+2∑

k=0

εk
(
Lψk + ψkQ̂(t)

)
=

n+2∑

k=0

εk−1
(∂ψk
∂τ

− ψkQ̃(0)
)

−
n+2∑

k=0

εk−1
n+1∑

j=1

(ετ)j

j!
ψkQ̃

(j)(0),

Then comparing the coefficients of εk for k = −1, . . . , n+ 1 leads to

(4.3)

∂ψ0(x, τ)

∂τ
= ψ0(x, τ)Q̃(0),

∂ψk(x, τ)

∂τ
= ψk(x, τ)Q̃(0) + rk(x, τ), k = 1, . . . , n+ 2,

where

r1(x, τ) = Lψ0 + ψ0Q̂(t) + τψ0Q̃
(1)(0),

r2(x, τ) = Lψ1 + ψ1Q̂(t) +
τ 2

2!
ψ0Q̃

(2)(0) + τψ1Q̃
(1)(0),

rk(x, τ) = Dψk−3 + Lψk−1 + ψk−1Q̂(t) +
k∑

j=1

τ j

j!
ψk−jQ̃

(j)(0), k = 3, . . . , n+ 2.

To ensure the match of the initial conditions, we choose

(4.4)
ϕ0(x, 0) + ψ0(x, 0) = g(x),

ϕk(x, 0) + ψk(x, 0) = 0, k = 1, . . . , n+ 2.

Similar to the previous case, we then proceed to construct the asymptotic expansions.

In view of (4.3),

(4.5)

ψ0(x, τ) = ψ0(x, 0) exp(Q̃(0)τ),

ψk(x, τ) = ψk(x, 0) exp(Q̃(0)τ) +

∫ τ

0

rk(x, s) exp(Q̃(0)(τ − s))ds, k = 1, . . . , n + 2.
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Using the first two equations in (4.2), we have ϕ0(x, t) = β0(x, t)ν̃(t), where β0(x, t)

is a real-valued function satisfying

(4.6)





∂β0(x, t)

∂t
− L

(
β0(x, t)ν̃(t)

)
= 0,

β0(x, 0) = g(x)11.

Then ψ0(x, 0) = g(x) − ϕ0(x, 0) and ψ0(x, τ) is specified by (4.5). Moreover, we can

also prove that ψ0(x, τ) and its partial derivative in x decay exponentially fast. Next,

(4.7) ϕ1(x, t) = β1(x, t)ν̃(t) + ϕ̂1(x, t),

where

(4.8) ϕ̂1(x, t) = d̂0(x, t)Q̃
′

c(t)
(
Q̃c(t)Q̃

′

c(t)
)
−1

,

with

d0(x, t) =
∂ϕ0(x, t)

∂t
−Lϕ0(x, t) − ϕ0(x, t)Q̂(t) and d̂0(x, t) =

(
0 d0(x, t)

)
.

Moreover, β1(x, t) is a real-valued function satisfying

(4.9)






∂β1(x, t)

∂t
− L

(
β1(x, t)ν̃(t)

)
= −∂ϕ̂1(x, t)

∂t
11 + Lϕ̂1(x, t)11,

β1(x, 0) =

∫
∞

0

r1(x, s)11ds.

Then ψ1(x, 0) = −ϕ1(x, 0) and ψ1(x, τ) is specified by (4.5). Moreover, we can

also prove that ψ1(x, τ) and its partial derivatives in x decay exponentially fast.

Proceeding in a similar way, for k = 2, . . . , n+ 1,

(4.10) ϕk(x, t) = βk(x, t)ν̃(t) + ϕ̂k(x, t),

where

(4.11) ϕ̂k(x, t) = d̂k−1(x, t)Q̃
′

c(t)
(
Q̃c(t)Q̃

′

c(t)
)
−1

,

with

d1(x, t) =
∂ϕ1(x, t)

∂t
− Lϕ1(x, t) − ϕ1(x, t)Q̂(t),

dk−1(x, t) =
∂ϕk−1(x, t)

∂t
− Lϕk−1(x, t) − ϕk−1(x, t)Q̂(t) −Dϕk−3(x, t),

k = 3, . . . , n+ 1,

d̂k−1(x, t) =
(
0 dk−1(x, t)

)
.

Moreover, βk(x, t) is a real-valued function satisfying

(4.12)



∂βk(x, t)

∂t
−L

(
βk(x, t)ν̃(t)

)
= −∂ϕ̂k(x, t)

∂t
11 + Lϕ̂k(x, t)11 + Dϕk−2(x, t)11,

βk(x, 0) =

∫
∞

0

rk(x, s)11ds.
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Then ψk(x, 0) = −ϕk(x, 0) and ψk(x, τ) is specified by (4.5). Using the same argu-

ment as in 3.2, we can also prove that ψk(x, τ) and its partial derivatives in x decay

exponentially fast. Finally, we choose

ϕk(x, t) = d̂k−1(x, t)Q̃
′

c(t)
(
Q̃c(t)Q̃

′

c(t)
)
−1

+
(∫ ∞

0

rk(x, s)11ds
)
ν̃(t), k = n + 1, n+ 2,

where

dk−1(x, t) =
∂ϕk−1(x, t)

∂t
−Lϕk−1(x, t) − ϕk−1(x, t)Q̂(t) −Dϕk−3(x, t),

and d̂k−1(x, t) =
(
0 dk−1(x, t)

)
. For k = n + 1, n + 2, ψk(x, 0) = −ϕk(x, 0) and

ψk(x, τ) is specified by (4.5). With ϕn+1(x, t) and ϕn+2(x, t) defined above, we can also

prove that ψn+1(x, τ), ψn+2(x, τ) and its partial derivatives in x decay exponentially

fast. We summarize the results in the following theorem. It provides a detailed

construction of the asymptotic series as well as the error bounds. The details are

omitted for brevity.

Theorem 4.1. Under conditions (A1), (A2), and (A3), we can construct sequences

{ϕk(x, t) : k = 0, . . . , n} and {ψk(x, t) : k = 0, . . . , n} as follows.

(a) ϕ0(x, t) = β0(x, t)ν̃(t) with β0(x, t) is given by (4.6); ψ0(x, τ) is given by (4.5)

with ψ0(x, 0) = g(x) − ϕ0(x, 0).

(b) ϕ1(x, t) = β1(x, t)ν̃(t) + ϕ̂1(x, t), where β1(x, t) is given by (4.9) and ϕ̂1(x, t) is

given by (4.8); ψ1(x, τ) is given by (4.5) with ψ1(x, 0) = −ϕ1(x, 0).

(c) For k = 2, . . . , n, ϕk(x, t) = βk(x, t)ν̃(t) + ϕ̂k(x, t), where βk(x, t) is given by

(4.12) and ϕ̂k(x, t) is given by (4.11); ψk(x, τ) is given by (4.5) with ψk(x, 0) =

−ϕk(x, 0).

(d) ϕk(x, t) ∈ C2(n+3−k),n+3−k([0, 1] × [0, T ]).

(e) ψk(x, τ) decays exponentially fast in that

sup
x∈[0,1]

∣∣∣∣
∂jψk(x, τ)

∂xj

∣∣∣∣ ≤ K exp(−κ0τ), j = 0, 1, . . . , 2(n+ 3 − k).

(f) The following error bound holds:

sup
(x,t)∈[0,1]×[0,T ]

∣∣∣∣p
ε(x, t) −

n∑

k=0

εkϕk(x, t) −
n∑

k=0

εkψk

(
x,
t

ε

)∣∣∣∣ = O(εn+1).

To illustrate the utility of the results, let us take δ = ε2 and revisit the optimiza-

tion problem for Jε,ε
2

(θ) given by

(4.13) Jε,ε
2

(θ) = E

∫ T

0

G(xε(t), αε(t), t, θ)dt =

∫ T

0

∫ m∑

i=1

G(x, i, t, θ)pεi (x, t)dxdt,

for a given T ∈ (0,∞), where θ is a parameter, pεi (x, t) is the probability density of

(xε(t), αε(t)) with a given initial probability density, and G(·) is a suitable function.
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We have shown that, under appropriate conditions,

pε(x, t) =

n∑

k=0

εkϕk(x, t) +

n∑

k=0

εkψk

(
x,
t

ε

)
+O(εn+1).

Thus, we obtain asymptotic expansions for Jε,ε
2

(θ) as follows

Jε,ε
2

(θ) =

n∑

k=0

εkJϕk (θ) +

n∑

k=0

εkJψk (θ) +O(εn+1),

where

Jϕk (θ) =

∫ T

0

∫ m∑

i=1

G(x, i, t, θ)ϕk,i(x, t)dxdt,

Jψk (θ) =

∫ T

0

∫ m∑

i=1

G(x, i, t, θ)ψk,i(x, t)dxdt.

As a result, we get the leading term in the approximation of the objective function

as

Jϕ0 (θ) =

∫ T

0

∫ m∑

i=1

G(x, i, t, θ)ϕ0,i(x, t)dxdt.

Therefore, in lieu of (4.13), we can use Jϕ0 (θ) for an approximation with error O(ε).

The resulting problem then is much simpler than the original one and is easier to

analyze. Note that the expansions obtained shows not only Jε,ε
2

(θ) → Jϕ0 (θ), but

also the rate of convergence.

5. FURTHER REMARKS

In this paper, we have developed asymptotic expansions for probability densities

of multi-scale switching diffusions with rapid switching and slow diffusion. For def-

initeness, to specify ε ≪ δ and δ ≪ ε, we used ε = δ2 and δ = ε2 for convenience.

Our approach works for other scalings as well. Our results indicate that the limiting

behavior of the underlying system depends on how fast small parameters ε and δ go to

zero. Our work focuses on the case of scalar systems, although the main methodology

of this paper can be directly carried over to multi-dimensional cases, with perhaps

more complicated notation. Similar to the study on pure jump processes in [17], one

may study alternative forms of switching processes with multiple weakly irreducible

classes, including absorbing states and transient states. A worthwhile effort is to

consider singularly perturbed multi-scale systems in which the processes can jump

from a state to another state; see [6].
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