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ABSTRACT. This work is concerned with singularly perturbed multi-scale switching diffusions.
The switching process is a two-time-scale Markov chain with slow and fast components subject to
weak and strong interactions. In the model, there are two small parameters € and 6. The first one
highlights the fast changing part of the switching process, and the other delineates the slow diffusion.
We treat the case that € and § are related in that ¢ = §7. Under certain conditions, asymptotic
expansions of the probability densities for the underlying processes are developed. The approach is

constructive and the asymptotic series are rigorously justified with error bounds.
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1. INTRODUCTION

This work studies the analysis of probability densities of multi-scale switching
diffusions. The motivation comes from many problems in optimization and control
in which continuous dynamics and discrete events coexist and the systems display
multi-scales; see, for example, [9, 10] for a spectrum of manufacturing models, [15] for
applications to ecology systems, [11] for hierarchical decomposition and aggregation in
economic systems, and [8] for problems arising in queueing theory and applications;
see also [18] for a comprehensive treatment of switching diffusion processes and a

collection of applications in [16].

This paper is concerned with multi-scale switching diffusion. To be more specific,

consider the switching diffusion process (z5°(-), a®(+)) given by
(1.1) da®°(t) = b(a=°(t), o (t))dt + Voo (=°(t), o (t))dw(t), 25°(0) = x,a°(0) = i,

for appropriate functions b(+, ) and o(+, -), where € and 0 are two small positive param-
eters, a®(t) is a two-time-scale Markov chain with slow and fast components subject

to weak and strong interactions. The weak and strong interactions of the system are

Received March 31, 2016 1056-2176 $15.00 @Dynamic Publishers, Inc.



154 K. Q. TRAN, G. YIN, L. Y. WANG, AND H. ZHANG

modeled by assuming the generator of the underlying Markov chain Q(t) = (qj;(t))
to be of the form

(1.2) (1) = Q1) /= + Q(),

with Q(t) and Q(t) being generators of continuous-time Markov chains. Note that
@(t) governs the rapidly changing part and @(t) describes the slow component. The
state space of af(t) is given by a finite set M = {1,...,m}. Intuitively, when &
and ¢ are sufficiently small, a®(t) converges rapidly to its stationary distribution and
the intensity of the diffusion is negligible. Therefore, the dynamic system is close
to a deterministic one. However, when we look at the joint probability distribution
of #%°(+) and o°(-), the randomness cannot be ignored completely due to its various
impact on the dynamics of the underlying system. Much research work has been
devoted to such perturbed dynamic systems; see [1, 12, 13| for studies on diffusion
processes with small diffusion. For studies on asymptotic properties of (1.1), we refer
the reader to [4]. In [14], we constructed an asymptotic expansion of the expectation
of g(z5°(t),a%(t)) for some appropriate function g(-,-). Corresponding to (1.1), we

can write down the associated operator

Lf(z,it) = =f(x,i,t) + —<72(x,z’)7 (z,i,1)

for a suitably smooth function f(-,4,-) for each i € M. Our current effort in this
paper is to further explore the limiting behavior of the process z°°(-) by construct-
ing asymptotic expansions of its probability densities, which are associated with the
adjoint operator L*. In the next section, we define the operator, but suppress the

superscript * for notation simplification. We consider the case in which the small

parameters ¢ and ¢ are related by ¢ = §” for some v > 0. Depending on 7, 1iII(1) - is
e—0 &
a nonzero constant (y = 1), or 0 (y < 1), or oo (v > 1). These three different cases

could yield different outcomes.

Switching diffusion models can represent naturally system dynamics in a wide va-
riety of applications, and hence become increasingly important in system optimization
and control. To solve related problems, we need to have a thorough understanding on
the structure of the underlying probability density. To illustrate the importance and
applications of the asymptotic expansion approach, consider the following motiva-
tional example whose detailed discussions can be found in [17, 18]. Suppose that the

process (z°(t), a°(t)) satisfies (1.1) and one wants to minimize an objective function

T T m
J5(0) = E / Gz=5(8), (1), 1, 6)dt — / / S Gl it 0)p (w, ),
0 0 i=1
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over [0, 7] for a given T' € (0, 00), where 6 is a parameter, pf"s(x, t) is the probability
density of (z5°(t), a*(t)) with a given initial probability density, and G(-) is a suitable
function. The presence of the multi-scale structure together with the weak and strong
interactions among states of a°(t) makes analysis and solutions very complicated.
One cannot obtain closed form solutions except in some special cases. It is thus vital
to reduce the complexity of the underlying problem. We will show in this paper
that pf’é(x, t) has a uniform asymptotic expansion. This expansion allows us to also
obtain an asymptotic expansion for J*(6). Therefore, we can approximate a complex
problem by an asymptotic problem which is much simpler than the original one and

is easier to analyze.

Although the motivation of our study comes from treating switching diffusion
processes, the approach that we are using and the solution method are mainly an-
alytic. The original asymptotic expansion method can be found in [5]. For some
related works on asymptotic expansions of systems of the Kolmogorov-Fokker-Planck
equations associated with switching diffusions, we refer the reader to [6, 7]. One of the
distinct features of this work is: We treat multi-scale systems of rapid switchings and
slow diffusion with two small parameters € and 6. The € and ¢ are related through
€ = 07 so that different values of v lead to different behaviors of the underlying sys-
tems. It should be noted that different from previous works on asymptotic expansions
(of systems of forward equations arising from singularly perturbed switching diffu-
sions; see [6, 7]), in lieu of non-degenerate second order partial differential equations,

we have to deal with certain first order linear equations.

The rest of the paper is arranged as follows. Section 2 begins with the problem
formulation and presents certain preliminary results. In Section 3, we work with the
case that ¢ = 2. In particular, we construct the matched asymptotic expansions so
that the outer expansions are smooth and the initial layer corrections decay exponen-
tially fast. Then, the asymptotic expansions are validated and uniform error bounds
are obtained. Section 4 treats the case § = £ with its unique features. Finally, we

give some further remarks in Section 5.

2. FORMULATION

We work with a filtered probability space (2, F, {F;}, P), where {F;} is a family
of o-algebras such that 7, C F; if s < t. We assume that Fy is complete, i.e.,
it contains all null sets. Let w(-) be a one-dimensional standard Brownian motion
defined in the filtered probability space (2, F,{F;}, P). Throughout the paper, we
work with a finite horizon ¢ € [0, 7] for some 7" > 0. We use v’ to denote the transpose
of v € R™*™2 with my,my > 1. We also use the notation 1 = (1,...,1) € R™.
Suppose € > 0 and 6 > 0 are small parameters. Since we only work with the case

that € = §7, we only use superscripts € to indicate that the objects we are working
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with depend on parameters € and §. For notational simplicity, K and kg are generic

positive constants. Their values may change for different appearances.

Suppose that a®(t) is a continuous-time Markov chain, independent of the Brow-
nian motion w(t), with generator Q<(t) = Q(t)/c + Q(t) and a finite state space
M ={1,...,m}, where Q(t) and Q(t) are the generators of continuous-time Markov

chains. Recall that a generator Q(t) € R™ ™ is said to be weakly irreducible if the

system of equations

m

P =0, > m(t) =1,

i=1
has a unique solution 7(t) = (71(¢),...,Un(t)) € R™™ satisfying 7;(t) > 0 for each
1 € M. Such a nonnegative solution is termed a quasi-stationary distribution; see
[17, p. 23]. The state space of the process (z°(t), a°(t)) is S x M, where S is the unit
circle. By identifying the endpoints 0 and 1, let « € [0, 1] be the coordinates in S.
The existence and uniqueness of such switching diffusion processes can be found in
3, Section 2.2].

Suppose that b(+, -, ) : Rx M x[0,7] — R and that o(-,+,+) : Rx M x[0,T] — R.
Consider the switching diffusion (2(-),a°(+)) given by (1.1). It is known that the
probability density of the process satisfying

/pr(:v,t)d:)s =P (z°(t) eT,a(t) =14), T C[0,1],

is the solution to the Kolmogorov-Fokker-Planck equation

Z:5Di§+£i§+2 55,

p;i(x,0) = gi(x), i € M,

p,.- Z(@i))

2022 or
and g(z) = (g1(z),. .., gm(x)) is the initial probability density of (z°(t),a°(t)). De-
note p°(x,t) = (p‘i (x,t,...,p5 (z, t)) In view of the periodicity given above,

/ g(x)ldx = 1.
[0.1]

Our main interest is to derive asymptotic properties of the solution of (2.1) when

e — 0. For convenience, we define

Lp(z,t) := (Elpi(x, )y Lops (2, t)) e R>™
Dp°(x,t) :== (Dlpi(:ﬁ, t)y..., Dppi, (2, t)) € R™>™,
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and sometimes we suppress the variable (z,t). Then (2.1) can be rewritten as

Q)

€

Wi 47 0Q0),

To carry out the desired asymptotic analysis, we need the following assumptions:

(2.2) = 0Dp (z,t) + Lp®(x,t) + p°(z, 1)

(A1) There is a T' > 0 such that for all ¢ € [0, 7], the generator Q(¢) is weakly irre-
ducible. There is an n > 1 such that Q(-) € C"*3([0, 7)) and Q(-) € C™*3([0, T]).

(A2) For each i € M, b(+,i), o(+,7), and g(-,7) are periodic with period 1. Moreover,
b(-,7), o(-,7), and g(-,) are 2(n + 3)-times continuously differentiable.

(A3) For given real-valued functions hy (-, -) € C™"2([0, 1]x[0,T]) and ho(-) € C™ (0, 1]),
with ny, ny being integers, 1 < n; < 2(n+ 3), and 1 < ny < n + 3, the system

h(z,0) = hs(x),

has a unique solution A(-,-) € C™"2([0, 1] x [0,T7).

Remark 2.1. Condition (A1) indicates that the weak irreducibility of Qv(t) implies
the existence of the unique quasi-stationary distribution 7(t) = (71(t),...,Un(t)) €
R**™. Condition (A2) ensures certain smoothness of coefficients in operator D, L,
and the initial probability density g(-). Our analysis in the next sections shows that in
constructing an asymptotic expansion of order n, we only need (A3) holds for certain
functions hq (-, -) and hy(-).

Now we present several lemmas needed in the subsequent development, which

are essential for constructing asymptotic expansions.

Lemma 2.2. Suppose that a constant matriz () € R™*"™ is a generator of a continuous-
time Markov chain and that Q) is weakly irreducible with v = (11, ...,vy,) being the

quasi-stationary distribution associated with Q).

(a) Then for any z € R™™ the equation

(2.4) yQ =z,

has a solution if and only if 211 = 0. Moreover, suppose that y, and ys are two
solutions of (2.4). Then y; — yo = cov for some ¢y € R.
(b) Define Q, — (]1 Q) € R™<(mt) | Thep,

rank(Q.) = m, rank(Q.Q.) = m.

(c) Define z = (0 z) Any solution of (2.4) can be written as n = cov + £, where

co € R is an arbitrary constant and & = ZQ.(Q.Q".)~" is the unique solution of
(2.4) satisfying 1 = 0.
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(d) There are constants K > 0 and ko > 0 such that
|exp(Qs) — P| < K exp(—kgs), s >0,

where P = 1(vy,...,v,) € R™™,

Proof. The first part of (a) follows from the Fredholm alternative (see [17, Corol-
lary A.38]). If y; and y» are two solutions of (2.4), we have Q'(y1 —y2)" = 0. Because
Q is weakly irreducible, the rank of Q" = m — 1. So the null space of @)’ is one
dimensional. Consequently, the null space is spanned by /' = (v,...,1,,) € R™*L
This yields that y; — yo = cov for some ¢y € R. Part (b) follows from the weak
irreducibility of Q). We proceed to prove part (c). Consider the system

Q=2 ¢€1=0,

that can be rewritten as £Q. = Zz. Thus its solution can be represented by & =
2Q.(Q.Q.)~". The proof of part (d) can be found in [17, Lemma 4.4]. O

3. ASYMPTOTIC EXPANSION: ¢ = §°

This section focuses on the case ¢ = §7 for a positive integer v > 2, i.e., € goes
to zero much faster than §. To be more specific, let € = §%. A similar argument can

be used for v > 3. To proceed, we seek asymptotic expansions of p°(x,t) of the form

n

Q¢ (z,t) + Ve (2, t) = Z( For(, t) —1—2 Ve (, 7)

k=0
:Zégpk Zlﬁ',t +Z§k¢k ZE','T),
k=0 k=0

where 7 = t/¢ is the stretched-time variables,

(3.1)

or(z,t) = (or(z, 1,8), ..., ez, m,t)) € RIxm
Yz, 7) = (@bk(x, 1,7), ..., ¢Yk(x,m, 7')) e Rixm,

The pr(z,t) are called regular terms or outer expansion terms, and the ¥ (z, 7) are
the initial layer corrections. We aim to obtain asymptotic expansions of order n, and
derive the uniform error bounds. For the purposes of error bound estimates, we need
to calculate six extra terms g (z,t), ¥p(x,7) with k =n+ 1,n + 2,n + 3. This will

become clear when we carry out the error analysis.
First let us look at the regular part of the asymptotic expansions @7, s(x,t) =
"3 5% or(x, ). Substituting it into (2.2), we obtain

n+4 n+3 n+3 n+1 n+3

25 Dpj—1 + 25 Loy, = Z5k8¢k Z 5 o 12Q(t) Z5ks0kQ

k=—-2
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Comparing coefficients of like powers of §* for k = —2,...,n + 1 leads to
(3.2)
o(z,)Q(t) =0,
(,1)Q(t) = 0,
Opo(x,t ~
(@030 = 20D g (o1) — gl 000),
~ Opp(z,t ~

Define the stretched variable 7 = /2 as in the usual practice of singular pertur-

bation method. Substituting the initial layer corrections

n+3

n+3xr E 5k¢er

into (2.1), we obtain

n+3 n+3 n+3 n+3

(33) DD+ Y 6L+ Y e = 5’“—2(‘%’“ 0Q)),

k=0 k=0 k=0 k=0

Owing to the smoothness of @(), a truncated Taylor expansion about ¢t = 0 up

to order k leads to

k J J
(3.4) Q) = Z i ddtj Ly ),

where

. dk d*Q(0
RO (1) = k‘( 2159- fiz(f))’

for some 0 < £ < t. By virtue of assumption (Al), for each k =0,...,n+ 1,

(3.5) IRM ()| = O(t*+1) uniformly in t € [0, 7).

Denote QW (0) = £ Cﬁ] Drop the term RV (¢) and use the first (n 4 2) terms

in the Taylor expansion up to the order (n + 1) for Q(t), we obtain from (3.3) that

(3.6)
n+3 n+3 n+3 n+3 n+1 ;
8 My~
k=0 7=0
that is,
n+3 n+3 n+3
> Dy + Z F L+ Q)
h=0 n+3 F=0 n+3 n+1

_25k 2(8% D00 ) de 22 ka (0).
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Then comparing coefficients of like powers of §¥ for k = —2,...,n + 2 leads to
OYo(x, T ~
HET) _ (2. m)G0),
0 , ~
3.) WD) (e, m)Q0),
0 , ~
% = (2, 7)Q(0) + rp(x,7), k=2,...,n+ 3,

where

ro(xz,7) = Libo(x, T) + ho(x, 7)Q ( )+ o (x, T)Q( )A(O)
Te(z,7) = D3z, 7) + Lp_o(x, 7) + Yp_o(x, 7)Q(2)

[k/2]

+Z wmj:m @(0), k=3,...,n+3.

To ensure the match of the initial conditions, we choose

@o(,0) +1o(z,0) = g(z),

3.8
(3:8) or(2,0) + Yp(x,0) =0, k=1,...,n+ 3.

Our task to follow is to construct the sequences {¢x(z,t)} and {¢y(z,1t)}.

3.1. Construction of py(z,t) and ¢y(z, 7). By virtue of Lemma 2.2, the first equa-
tion in (3.2) implies that po(x,t) = Bo(x, t)v(t), where Gy(x,t) € R is a real-valued

function to be determined. Consider the third equation of (3.2), namely,

o230 = 285D o 1) — ol 000,
e
0,

t)v(t), we obtain

A (t)
dt

Plugging in ¢o(z,t) =

or(e 1)) = 240

Postmultiplying 1 in the above equation with notice that v(¢)1 = 1, dﬁdy) 1 =0, and
Q)1 = Q(¢)1 = 0, we arrive at

0B (, ~
59) D) _ (s ty7(0)) =0,

ﬂo(l’, 0) = g(l’)]l,
where the second equation in (3.9) is the initial condition we chose. By virtue of
assumption (A3), (3.9) has a unique solution. It follows from (3.7) and (3.8) that

(3.10) wo(x,7) = (g(x) — oz, 0)) exp(Q(0)T).

We are in a position to derive certain smoothness of ¢g(z,t) and the exponential

D(t) + o, 1) — = — L(Bo(x, )F(t)) — Bol, )F(H)Q(2).

decay property of ¥ (x, 7).

Lemma 3.1. For ¢g(x,t) and vo(z,T) obtained above, the following assertions hold.

(a) The o(-,-) € C*+m+3([0, 1] x [0, 7).
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(b) There exist positive constants K and ko such that

Fibo(x, T)

5 < Kexp(—kor), j=0,1,...,2(n+ 3).

sup
z€[0,1]

Proof. (a) Denote Q1(t) = (@(t) ]1). Then v(t)Q1(t) = (lem 1). Moreover, us-
ing the irreducibility of Q(¢), similar to Lemma 2.2, we can show that rank (Ql (1)@} (t)) =
m. As a result, D(t) = (Olm 1)@3@) (Ql(t)Q’l(t)>_1. Thus 7(t) € C"3(]0, T)).
Then (a) follows from assumption (A3).
(b) Since 1y(z,0) = g(z) — @o(x,0), then ¥y(-,0) € C2*+3)(]0,1]). We deduce
that 1g(-, ) € C2F3)m+3(]0,1] x [0, 7). Since @o(x,0) = g(x)17(0),
o(x, 0)1 = g(x) 1 — g(x)1r(0)1 = 0.
It follows that 1(x,0)P = 0, where P = 1(0). By virtue of Lemma 2.2, we have
[o, 7)| = [to(,0)P + to(x, 0) (exp(Q(0)7) — P)]
< |vo(x, 0)]| exp(Q(0)7) — P)|
< K exp(—koT).

Moreover, it follows from (3.7) and to(x,0)P = 0 that for each j = 1,...,2(n + 3),

Dby (x, &ibo(z, 0 - &bo(z,0)—
) 20D e, TP -0

A similar argument as that for ¢y(x, 7) yields that

dho(z, ) 4
- -~ - 7 < J— —
‘ > ‘ Kexp(—kot), j=1,...,2(n+3).

Furthermore, it is readily seen that the above estimate holds uniformly for = € [0, 1].

The conclusion follows. U

3.2. Construction of Higher-Order Terms. We proceed to obtain the asymptotic

expansions. Using the second equation in (3.2),

¥1 ($7 t) = ﬁl (ZL’, t)g(t%

with f1(x,t) € R being a real-valued function to be determined, we obtain that
¢1(z,4,t) is a function independent of i. By substituting ¢y (z,t) = fi(z,t)v(t) into
the fourth equation of (3.2) and postmultiplying it by 1, we obtain

(3.11) % — L(B1(z, t)(t)) = Depo(x, )1

We need to determine the initial value 3;(z,0). It follows from the second equation
in (3.7) that

(3.12) i(z,7) = —p1(2,0) exp(Q0)7)

= —f1(z,0)7(0) exp(Q(0)7).
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We require the initial layer terms go to 0 for large 7 leading to #(x,7) — 0 as

7 — o00. Letting 7 — oo in (3.12) and noting that exp(Q(0)7) — P with P = 1(0),
we obtain 0 = —f(x,0)v(0), that is,

(3.13) Bi(z,0) = 0.

As aresult, ¢ (x, 7) = 0. Moreover, (3;(z,t) can be determined from (3.11) and (3.13).
Since (-, -) € CHH3)n+3([0, 1] x [0, T]), we have B(-,-) € C2+2:7+2([0, 1] x [0, T7).

Next, for k = 2,...,n + 1, we construct ¢i(x,t) and ¢y (x,7) by induction.
Suppose that the terms ¢;(x,t) and 9;(z,7) for j < k have been constructed such
that for each j < k, ¢;(-,-) € C?H3=D:n+3-3([0, 1] x [0, T]), ¢;(x, ) and its partial
derivatives in = up to order 2(n + 3 — j) decay exponentially fast. Moreover, assume
that

ci(z, )1 =0, j <k—1,

where

ol t) = 2D e ) — (e 0Q0)

¢, t) = w — Lpj(x,t) — (2, )Q(t) — Dpj_y(2,t), j=1,2,... k—1.
We proceed to construct o (z,t) and ¢y (x, 7). Using (3.2), we have
(3.14) oi(z, )Q(t) = cra(x,1).

The right-hand side above, namely ¢;_s(x, ) is a known function since @y_o(x,t) and
¢r—3(x,t) have been constructed. Because cx_o(z,t)1 = 0, by Lemma 2.2, @i (z,t) is
the sum of solutions to the homogeneous equation and a particular solution @y (x,t)

of the nonhomogeneous equation with @y (x,t)1 = 0. It is of the form
(3.15) or(2,t) = Be(x, )v(t) + or(z,1).
Define
Qult) = (1 Q1) € R™ ™D, G y(a,1) = (0 choa(a, 1)) € R,

By virtue of Lemma 2.2, it follows from (3.14) that

(3.16) Bulr 1) = ol N (D@D
Note that @y (x,t)1 = 0. We proceed to find Fi(x,t). Using (3.2), we obtain
3.17) Gua(. 030 = 20D 0 (0,000 ~ D (4. = exla, 1)

Multiplying both sides by 1 from the right and noting the form of ¢y (x,t) in (3.15),

we arrive at

(3.18) w — L(Br(z, t)0(t) =

0Bl t)
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Equation (3.18) is solvable if the initial condition is specified. We need to use the
initial layer term to determine the initial condition. In view of (3.7),
(3.19)

Uz, 7) = —pp(x,0) exp(@(O)T) + /OT ri(x, s) exp(@(O)(T —s))ds, k=2,...,n+ 1.

We demand that ¢y (x,7) — 0 as 7 — oo. Letting 7 — oo in (3.19) and noting that

exp(Q(0)7) — P with P = 17(0), we obtain

(3.20) 0= —px(z,0)P + /OOO re(z, s)Pds,

By multiplying both sides from the right by 1, the above equation is equivalent to
(3.21) 0=—vi(z,0)1 + /000 ri(z, s)lds.

On the other hand, we have
(3.22)

—p(z,0)1 + /000 ri(x, s)lds = —(ﬁk(x, 0)7(0)1 + @k (x, 0)]1) + /000 ri(x, s)lds
= —0O(2,0) + /000 ri(x, s)lds,

where @i (z,0)1 = 0 by our construction. Note that the integral involving r4(z, s)
is well defined since |ri(z,s)| < Kexp(—krgs) for some K > 0 and kg > 0 by the
induction hypothesis. By virtue of (3.21) and (3.22),

(3.23) Br(x,0) = /000 ri(x, s)lds.

Conversely, with fi(z,0) given in (3.23), ¢y (z,7) — 0 as 7 — oo and (3.20) holds as
desired. The initial condition for fj(x,t) has thus been found. Then it follows from

(3.15) that

1

(324) ka(x> t) = ﬁk ([L’, t)g(t) + 6]6—2(1'7 t)éc(t)/(éc(t)@/c(t» - )

with f(x,t) determined by (3.18) and the initial condition (3.23). By our construc-

tion, we have cx(z,t)1 = 0. Then we can establish the following lemma.

Lemma 3.2. For ¢i(x,t) and ¥y (x, T) obtained above, the following assertions hold.

(a) The u(-,) € C2O43-Rm+3k((0,1] x [0, ).
(b) There exist positive constants K and ko such that

8jwk(l’, T)
oxJ

sup
z€(0,1]

< Kexp(—kor), j=0,1,...,2(n+3—k).

Proof. (a) Recall from Lemma 3.1 that we have ¢, (-, -) € C?("3=0)m+3=3([0 1] x [0, T)
for 0 < j < kand () € C"3(]0,T)). Then c;_s(-,-) € C2HA=Rn+4=k([0 1] x [0, T7).
Then we derive from (3.16) and (3.18) that & (-,-) € C?(nH4=kln+i=k([0 1] x [0,T])
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and By(-,-) € Crt3=knt3=k([g 1] x [0,T]). Thus, (3.24) implies that ¢.(-,-) €
CHn+3=k)nt3-k(10 1] x [0,7]) as desired.

(b) Since Yi(-,0) = —pi(-,0) € C*H3=R)([0,1]), Yr(-,0) € C*H37F)([0, 1]). We
deduce that ¢y(-,-) € C2+3=k).n+3=k([0 1] x [0, 7]). Recall that forl =0,1,... k—1,

we have

j
‘%’<K6Xp( koT), 7=0,1,...,2(n+3=1),
It follows that
dry(x, T .
‘T‘<Kexp( koT), 7=0,1,...,2(n+4 —k).

We proceed to show that ¢ (z,7) and its partial derivatives in = also decays expo-

nentially fast. In view of (3.20), we have
Ule,7) = [z, 0) (exp(Q0)7) — P)
+/0T ri(z, ) (exp (Q(0)(1 — 5)) — P)ds + /OO —r(x, s)Pds
< Kexp(—koT) + K/ exp(—rko(T — s)) exp(—kos)ds
—I—K/ exp(—kos)ds.
Thus |¢g(z, 7)| < K exp(—ko7) as desired. In view of (3.7), we have

aﬂwgg,r) _ awgg;,()) xp(G(0)7) + /0 T%@(p (Q(0)(r — ))ds,

for j=1,...,2(n+ 3 — k). Moreover, it follows from (3.20) that

i 00 9
SOl lpy [y
oxJ 0 oxJ

(3.25)

(3.26) s =0.

By combining (3.25) and (3.26), we arrive at

Pip(z,7) ‘8j¢k(x,0)(
0w ;

— (exp(Q(0)7) — P)
# [ (e @0y — o) - P+ [ -2,
< Kexp(—koT +K/ exp(—ko(T — 8)) exp(—kos)ds

—I—K/ exp(—kos)ds.

Detail computations lead to

8]¢k T, T

‘<Kexp( koT), j=0,1,...,2(n+3 —k).

Furthermore, it is readily seen that the above estimates hold uniformly for = € [0, 1].
The desired result thus follows. O
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Up to this point, ¢k (x,t) and ¥ (z,7) have been completely specified for k =
0,1,...,n+1. By virtue of Lemma 2.2, the last two equations in (3.2) have solutions
and we choose
(3.27)

ok (2, 1) = G, )Qe(t) (Qe()QL(1)) ™ + ( /0 N (2, 5)]1ds) U(t), k=n+2,n+3.

Finally, using (3.7),

Ve(x,7) = —pr(z, 0) exp(Q(0)7) + / ri(z, s) exp (@(0)(7’ —s))ds, k=n+2,n+3.
0

With ¢,,0(x, t) and ¢, 13(z, t) defined above, (3.20) holds for k = n+2, n+3. We have

Onia( ) € C+2([0,1] x [0,T]) and @ny3(-,-) € C*1([0,1] x [0,7]). The exponential

decay property of ¥, o(x, 7), Vnis(z, 7), and their partial derivatives with respect to

x can be obtained as in Lemma 3.2. We summarize what we have obtained thus far.

It is given in the following theorem.

Theorem 3.3. Under conditions (A1), (A2), and (A3), we can construct sequences
{pr(x,t) 1 k=0,....,n+ 3} and {Yr(x,t) : k=0,...,n+ 3} satisfying (3.2), (3.7),
and (3.8) as follows.

(a) The po(x,t) = Bo(x, t)v(t) with Go(z,t) given by (3.9); wo(x,T) is given by
(3.10).
(b) The p1(x,t) = py(z, t)v(t) with Bi(x,t) given by (3.11) and (3.13); Y1 (z,7) = 0.
(c) Fork=2,....n+1, pp(z,t) = Bp(z,t)v(t) + Pr(x,t), where Bi(x,1t) is given by
(3.18) and py(x,t) is given by (3.16); Yp(x, T) is given by (3.19).
(@) pulat) € CXOHBRINS(0,1] x [0,T]) for kb = 0,....n+ 1; puea(,t) €
C2([0,1] x [0,T1) and pn13(z,t) € C*1([0,1] x [0, ])
(e) Yx(x, T) decays exponentially fast in that
sup ka@ﬂ—)
2€[0,1] O’
with j = 0,1,...,2(n+ 3 — k) for each k = 0,....n+1, j = 0,1,...,4 for
k=n+2,and j=0,1,2 for k=n+ 3.

< K exp(—kKoT),

3.3. Error Bounds. We have constructed the formal asymptotic expansions of p*(z, t).
We need to prove the validity of the expansions by deriving the error bounds. We
aim to show that

n n t
sup — Z(skcpk(x,t) — Z §F b (;);, g)‘ = O(6™+) = O (/2
k=0

(a,t)€[0,1] x[0,T] —
We first recall a lemma from [7, Propposition 4.1]. Let V' : [0,1] x M x [0,T] — R

be a sufficiently smooth function. We define

GV (n,1) = - 2L 0

+ 0DV (z,t) + LV (x,t) + V(x,t)Q°(t), (x,t) € [0,1] x [0,T7.
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Lemma 3.4. Suppose that v¢(x,t) is a solution of the following system
Gov®(x,t) = f(a,t), (z,t) €[0,1] x (0,77,
v*(z,0) =0, z € [0, 1],

where sup | f(x,t)| = O(6""2). Then
(z,t)

sup [vf (2, £)] = O(5™).
(z,t)

With the preparation above, we proceed to obtain the desired upper bounds on
the approximation errors. For k = 0,...,n + 3, define a sequence of approximation

errors
ex(a,t) = p(x, 1) — By (2, t) — Vi(z,7),
where p°(x,t) is the solution of (2.1), and &% (z,t) + Vi(z,7) is the kth-order ap-

proximation to p*(z,t). We proceed to obtain the order of magnitude estimates of
e (x,t).
Theorem 3.5. Assume (Al), (A2), and (A3). Then for the asymptotic expansions

constructed in Theorem 3.3, there exists a positive constant K such that

sup €5 (z, 1) < Ko™t
(.£)€[0,1]x[0,7]

Proof. First, we obtain an estimate on G°¢;, 4(x,t). Then we derive the desired order
estimate. Since p®(x,t) is a solution of (2.1), G*p®(x,t) = 0. Therefore,

862-1-3(37 t) -G°o n+3( ) gov n+3($77)'

In view of (3.2), we have

n+3

£ FE a(pk (ka( )
Gevs (2, 1) Zé’f( + 6Dy, + Loy, + 0pQ(t) + 5 )
&po 1 ~ ~ ~
=2t £<P0 +0oQ(t) + FPoQ(1) + 5@1@(15) + ©2Q(t)
n+1
+ Z 5k( TE 4 Loy + onQ(t) + Dy + <Pk+2Q(t)>
n+3 a n+4
+ Y 5k<—ﬁ+£¢k+¢kQ )+ > S Dpp
k=n+2 k=n+2
n+3 a n+4
k
:Z(S(—W‘l'ﬁ%@k“‘%@kQ ) > Dy
k=n+2 k=n+2

The smoothness of @i (z,t) then yields
|G @5 (2. t)] < K62, (1) € [0,1] x [0,T].
Using the definition 7 = /62,

diy(x, T) _ 1 dypy(z, 7)
dt 62 dr
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which yields

n+3 o)
st = 30 (3 SO0y 5Du+ L+ Q) + P2
n+3
= - Z 32 (4 Q(0) + ru(x, 7))
k=0
n+3 N
+ Z §" (59% + Lo(z, 7) + Q) + wkg(w ),
k=0
where we set 7o(z, 7) = ri(x,7) = 0. Note that
n n+3 N .
i%k%m@ﬂm>+mx7 = D0 2Q(0) + Lo + 4oQ(1) + T40Q ™ (0)
s o LI
D3 (D + L + Q1) 0+ 3 GronnQ 0 ))
n—l—l R n+3 (k/2]
_ Zak(wk+wkg(t)) Za’f“m +25k QZ T i 09)(0).
k=0 k=0 =0 :
Therefore,

g€ n+3( 77-) = 5n+2£¢n+2 + 5"+2¢n+2@(t) + 5"+3£¢n+3 + 5n+3wn+3@(t)
+6" 2 Digr + 5”+3D¢n+2 + 6" Dy

(3.28) ni3 k/2] n+3
Zé’f 22 T Q0 (0 (0)+ > 8" *Q(t).
! k=0

By the smoothness of 'lvbn-i-l ($7 T)a ¢n+2(93> T)a and ¢n+3(93> ’7'),

5n+2£wn+2 + 5n+2wn+2@(t> + 5n+3£wn+3 + 5n+3¢n+3@(t)‘ S K5n+27

3.29
( ) 5n+2pwn+1 _|_5n+3pwn+2 +5n+4p¢n+3‘ S K5n+2.

By virtue of (3.4) and (3.5),

k
Q) - @w>kwMWm$A%“,temﬂ.

Jj= 0

Using this estimate and the exponential decay property of ¢y (x, 7), we obtain

n+3 B n+3 [k/2] .
Y6 - Y QZ wk @7 (0)]
o n+3 Nk - [(n+3 k)/2} g
(3.30) = }25'“_2% (Q(t) - ) ﬁQ(J)(O))‘
=
<K Z SF=2(§2 )3 =R/ A+ exp(— ko)
k=0

S K5n+2.
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It follows from (3.28), (3.29), and (3.30) that
}gallfan+3(a:,7)} < K62,
Putting these together with the estimates on G*®5  4(z,t), we have shown that
G%¢5 s(2, )| < K0"?, for any (x,t) € [0,1] x [0,T7.
Note that the initial condition €5, 4(z,0) = 0 for « € [0, 1]. By virtue of Lemma 3.4,

sup €5 sz, )| < K&
(2,£)€[0,1]%[0,7)

Finally,
n+3
(3:31) (e t) = e(@t) = 3 0" (gulet) + (e 7).
k=n+1

The boundedness of g (x,t) and ¢y (x, 7) yields that

n+3

sup Z 5k‘g0k(x, t)+ wk(x,T)‘ < K&t

(@.H)e0,1]x[0,7] 57,

Substituting this into (3.31), we obtain the order estimate in terms of §. Finally, note
that e = 6%. The desired result follows. O

4. ASYMPTOTIC EXPANSION: § = &2

In this section, we consider the case ¢ = §7 satisfying 1/v > 1. That is, § goes
to 0 much faster than €. There are many different choices. To fix the notation for
discussion, we work with v = 1/2 that is, § = 2. The other cases can be handled in

the same way.

We use the same method as in Section 3. However, some important modifications
are required. We will only discuss such modifications and skip the details. First,

instead of (3.1), we now seek asymptotic expansions of p*(x,t) of the form
(4.1) O (z,1) + Ui (z,7) = Y _hop(a t) + > efun(z,7),
k=0 k=0

where 7 = t/e is the stretched-time variables. Moreover, we only need four extra

terms @i (x,t), Yr(x,7) with & = n 4+ 1,n 4+ 2. Substituting the outer expansions

Zig ek (z,t) into (2.2) and comparing coefficients of like powers of ¥ for k =
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—1,...,n+ 1, we obtain
(4.2)
ool )30) =
o1l )30 = w Loola. 1) — ol QD)
o230 = 2D o0y — (2,000,
Opp(x,t)

— Low(a, 1) — o, )Q(t) — Dipg_a(x, 1),
k=2,....,n+1.

(pk—l—l(x? t>Q(t) = ot

Likewise, substituting V5 ,(z,7) = ZZJFS efy.(z,7) into (2.2) and using the Taylor

expansion nh (aié(j) 0) as an approximation for @ t), we obtain
j=0 "I

. n+2 N n+2 O ntl (57.)]' =)
Z Dot HewntuQn) =32 (50 - 2 eV ),

k= k=0 =0
Le.,
n+2 R .
S+ >t (et 0Qw) = S e (2 )
k=0 -
n+2 o n+1 (8’7‘)] ~
SIS —— " @Y(0),
k=0 j=1
Then comparing the coefficients of £ for k = —1,...,n + 1 leads to
Oo(x, T ~
PET) _ . 1)300).
(43) ouilr. ) .
# = (2, 7)Q0) + (2, 7), k=1,...,n+2
where

ri(z,7) = Labo + YoQ(t) + 7@50@(”(0),
ro(w,7) = L1 + 11 Q1) + T—'wo@(z)( )+ 7‘@/}1@(1)(0)

(2, 7) = Diby_g + Lahp—1 + Yy 1@ —l—Z .¢k ]Q(J() k=3,...,n+2.

To ensure the match of the initial conditions, we choose

900(‘% 0) + ¢0(x> 0) - g(!L’),

4.4
(44) or(2,0) + Yp(2,0) =0, k=1,...,n+2.

Similar to the previous case, we then proceed to construct the asymptotic expansions.
In view of (4.3),
(4.5)

Yo, 7) = o (w, 0) exp(Q(0)7),

Yr(z, 7) = Yr(x,0) exp(Q(0)T) + /OT ri(z,s)exp(Q0)(T —s))ds, k=1,...,n+ 2.
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Using the first two equations in (4.2), we have po(x,t) = [o(z,t)v(t), where [y(z, 1)

is a real-valued function satisfying

8 o\, ~
o { OB L (o ) =0,
Go(x,0) = g(x)1.

Then 1y(z,0) = g(x) — wo(z,0) and Yo (z, 7) is specified by (4.5). Moreover, we can

also prove that ¢y(x, 7) and its partial derivative in x decay exponentially fast. Next,

(4.7) pr(x,t) = Pi(x, v (t) + Pu(x, 1),
where
(48) B (1) = do(e @) (G0
with
do(z,t) = % = Loo(w, ) = po(e, QM) and do(w,t) = (0 do(a,1))
Moreover, (3, (z,t) is a real-valued function satisfying
0By (x, 1) 0P (1)

5 " E@gﬁl(rﬂ, () = ——o =0+ L (1)1,
By (z,0) = /0 ri(z, s)lds.

Then ¢y(2,0) = —pi(2,0) and ¢ (z,7) is specified by (4.5). Moreover, we can

also prove that ;(x,7) and its partial derivatives in = decay exponentially fast.

(4.9)

Proceeding in a similar way, for k =2,....,n+1,
where
~ ~ - -1
(4.11) Bulw,t) = dia (2@ (QeOALD))
with
0 1 _
die,t) = 28D 08) — i@ )Q0),
Opp_1(x,t ~
dp—1(z,t) = %(x) — Lop1(z,t) — pp_1(2,1)Q(t) — Dpp_s(x,1),
k=3,...,n+1,
dea(w,t) = (0 dis(2.1)).
Moreover, fi(x,t) is a real-valued function satisfying
(4.12)
00z, t ~ 0pi(x,t -
% — E(ﬁk(x, t)l/(t)) = —%ﬂ + LPp(z,t) 1 + Dpp_o(x, )11,

Br(x,0) = /000 re(z, s)lds.
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Then ¥ (z,0) = —@i(x,0) and Yy (x, 7) is specified by (4.5). Using the same argu-
ment as in 3.2, we can also prove that v (x,7) and its partial derivatives in = decay

exponentially fast. Finally, we choose

[e.e]

on(@, 1) = dps (2, ) QL(1) (@C(t)@’c(t)> 4 ( /0 ro(z, s)nds)a(t), k=n+1,n+2,

where

Opvr_1(z,t)
ot

and cik_l(x,t) = (O dk_l(:c,t)>. For k = n+ 1,n+ 2, p(z,0) = —pr(z,0) and
i (z, 7) is specified by (4.5). With ¢, 41(x,t) and @, 12(z, t) defined above, we can also

dp—1(z,t) = — Lop(2,t) — prr(2,)Q(t) — Depy_s(x, 1),

prove that ¥,.1(x, 7), V¥nio(x, 7) and its partial derivatives in x decay exponentially
fast. We summarize the results in the following theorem. It provides a detailed
construction of the asymptotic series as well as the error bounds. The details are

omitted for brevity.

Theorem 4.1. Under conditions (A1), (A2), and (A3), we can construct sequences
{or(z,t) 1 k=0,...,n} and {Yp(z,t) : k=0,...,n} as follows.

(a) wol(x,t) = Loz, t)v(t) with Bo(x,t) is given by (4.6); Yoz, T) is given by (4.5)
with 1o(z,0) = g(x) — @o(z, 0).

(b) p1(z,t) = Bi(x, t)v(t) + o1z, t), where By(x,t) is given by (4.9) and oy (x,t) is
given by (4.8); Y (z, T) is given by (4.5) with 11 (x,0) = —p1(x,0).

(c) For k =2,...,n, pp(x,t) = Br(z, t)v(t) + @r(x,t), where Gy(x,t) is given by
(4.12) and pp(z,t) is given by (4.11); Yy (z, T) is given by (4.5) with ¥y(x,0) =
—pr(x,0).

(d) er(z,t) € CHF3=Rnw3=k(10 1] x [0, T7).

(e) Yp(x,T) decays exponentially fast in that

sup L@bk(%ﬂ’
z€[0,1] Oxd

(f) The following error bound holds:
n n t
DI TCOED BN ERY ‘ — O(").
k=0 k=0

To illustrate the utility of the results, let us take § = 2 and revisit the optimiza-

< Kexp(—kor), 7=0,1,...,2(n +3 — k).

sup
(z,t)€[0,1]x[0,T]

tion problem for .J<* () given by

(4.13)  J5=( /G “(t),t,0)dt = //ZGx,z,t@plxt)dxdt

for a given T' € (0,00), where 6 is a parameter, p(z,t) is the probability density of
(°(t), a°(t)) with a given initial probability density, and G(-) is a suitable function.
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We have shown that, under appropriate conditions,
n n t
€ _ k k - n+1
Ft) =Y folet) + Y i (n o) + 0.
k=0 k=0
Thus, we obtain asymptotic expansions for J€’€2(9) as follows
JEE0) =Y ILO) + Y R IL0) + O,
k=0 k=0

where

50 = [ [ 6twin 0t
=1

JE(6) = /0 : / S Gl i, 0) s, )l
=1

As a result, we get the leading term in the approximation of the objective function
as

T m
JE(6) = /0 / S Gl i, 1, 0) g0, £)ddt.
i=1

Therefore, in lieu of (4.13), we can use J§(6) for an approximation with error O(g).
The resulting problem then is much simpler than the original one and is easier to
analyze. Note that the expansions obtained shows not only Jo¢*(8) — J£(6), but

also the rate of convergence.

5. FURTHER REMARKS

In this paper, we have developed asymptotic expansions for probability densities
of multi-scale switching diffusions with rapid switching and slow diffusion. For def-
initeness, to specify ¢ < § and § < &, we used € = §% and § = &2 for convenience.
Our approach works for other scalings as well. Our results indicate that the limiting
behavior of the underlying system depends on how fast small parameters € and d go to
zero. Our work focuses on the case of scalar systems, although the main methodology
of this paper can be directly carried over to multi-dimensional cases, with perhaps
more complicated notation. Similar to the study on pure jump processes in [17], one
may study alternative forms of switching processes with multiple weakly irreducible
classes, including absorbing states and transient states. A worthwhile effort is to
consider singularly perturbed multi-scale systems in which the processes can jump

from a state to another state; see [6].
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