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ABSTRACT. This paper is dedicated to some results in the thermodynamic theory of porous elas-

tic bodies. Unlike other studies, here is included the voidage time derivative among the independent

constitutive variables. In order to analyse the spatial behavior of solutions, we use some estimates

of Saint-Venant type in the case of bounded bodies, while for the unbounded bodies, the spatial

behavior is described by means of some estimates of Phragmén-Lindelöf type.
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1. Introduction

For a more faithful characterization of the behavior of some kinds of materials it

is necessary to introduce into continuum theory of the appropriate terms reflecting

the microstructure of the materials. Materials which operate at elevated temperature

will invariable be subjected to heat flow at some time during normal use. The heat

flow will involve a temperature distribution which will inevitably give rise to thermal

stresses. The role of the pertinent material properties and other variables can affect

the magnitude of thermal stress must be well understood and all possible mode of

failure must be considered.

The results of our present study can be useful in other fields of applications which

deal with porous materials as geological materials, solid packed granular and many

others. Goodman and Cowin made the first investigations on materials with voids,

they are the initiators of the granular theory, in the paper [7].

Similar studies appear in the paper [5] where the authors Cowin and Nunziato

introduce, as in fact they did Goodman and Cowin, an additional degree of freedom in

order to develop the mechanical behavior of porous solids in which the matrix material
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is elastic and the interstices are voids material. interstices are voids of material. This

theory has found immediate applications to geological materials like rocks and soil

and to manufactured porous materials, like ceramics and pressed powders. We want

to emphasize that the basic feature of this theory is the introduction of a concept of

material for which the bulk density is written as the product of two fields, the matrix

material density field and the volume fraction field (see also Iesan and Quitanilla [8]).

The theory of Cowin and Nunziato (see also Nunziato and Cowin [15]) is dedicated

to non conductor of heat materials. In the context of behavior of solutions, the

author of paper [14] consider the Cahn-Hilliard equation and obtain the exponential

decay of solutions under suitable assumptions on the data. Also, Quintanilla [17]

investigates the spatial behavior of the solutions for a theory for the heat conduction

with a delay term. Chirita and Ciarletta, in the paper [3], have used for first time

in this context the method of time-weighted surface power function. Ciarletta and

Scarpetta in [4] give a variational characterization of Gurtin type for the incremental

problem of thermoelasticity for porous dielectric materials, by means of non-standard

techniques. In [16] Passarella and his co-workers derive a uniqueness theorem with

no positive definiteness assumption on the elastic constitutive coefficients and, under

non homogeneous initial conditions, a reciprocal relation and a variational principle.

The main result of the paper [6] is the calculation of mechanical properties and of

the mechanical behavior of single wall carbon nanotubes. The authors of paper [2]

introduce a novel particle approach for elasticity, namely the modified finite particle

method. In our paper [11] a minimum principle for dipolar materials with stretch is

presented in the study. A kind of weak solutions is presented in our study [10] in

the context of thermoelasticity of dipolar materials with voids, and the paper [12] is

dedicated to a partition of energy in thermoelasticity of microstretch bodies. In [18]

the authors consider the reflection and transmission of waves from imperfect boundary

between two heat conducting micropolar thermoelastic materials. Some results on

existence and uniquenes of solutions for thermoelastic micropolar materials are made

in [9]. A model for a microstretch thermoelastic material with two temperatures can

be found in the paper [13].

In our present study we whish to extend the Cowin and Nunziato theory to cover

the micropolar themoelastic materials with voids. The basic premise underlying our

paper is the introduction into the set of constitutive variables of the time derivative

of the voidage to characterize the inelastic effects.

2. Basic equations

Let us assume that a micropolar themoelastic material with voids occupies at

time t = 0 a properly regular region B of Euclidian three-dimensional space R3. The
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boundary of B, denoted by ∂B, is a sufficiently smooth surface to admit the applica-

tion of divergence theorem. The closure of B will be denoted by B̄. Throughout this

paper we refer the motion of the continuum to a fixed system of rectangular Cartesian

axes Oxi, (i = 1, 2, 3) and adopt Cartesian tensor notation. The Geek indices will al-

ways assume the values 1, 2, whereas the italic indices will range over the value 1, 2,

3. A comma followed by a subscript denotes partial derivatives with respect to the

spatial respective coordinates whereas a superposed dot stands for the material time

derivative. Convention of mute indice summation (Einstein convention) on repeated

indices is also used. The spatial argument and the time argument of a function will

be omitted when there is no likelihood of confusion.

The bulk density ̺0, the matrix density γ and the matrix volume fraction ν, in

the reference configuration, are related by

̺0 = γ0ν0,

where γ0 and ν0 are spatially constants.

The motion of the micropolar thermoelastic body with voids is described by

means of the following independent variables

- ui(x, t), ϕi(x, t) - the displacement and microrotation fields from reference con-

figuration;

- θ - the change in temperature from T0, the absolute temperature of the reference

configuration, i.e. θ(x, t) = T (x, t) − T0;

- σ - the change in volume fraction measured from the reference configuration

volum fraction ν0, i.e. σ(x, t) = ν(x, t) − ν0.

If the initial body is stress free and with zero intrinsic equilibrated body force and

zero flux rate, we can write the free energy function as follows

Ψ =
1

2
Aijmnεijεmn +Bijmnεijγmn +

1

2
Cijmnγijγmn

+Bijσεij + Cijσγij +Dijkφkεij + Eijkφkγij

− αijθεij − βijθγij −mθσ + diσφi + γiθφi(1)

−
1

2
aθ2 +

1

2
ξσ2 +

1

2
Aijφiφj −

1

2
ωσ̇2.

With a suggestion given in [5], the expression −ωσ̇ is the dissipation which takes into

account of the inelastic behavior of the voids. Here ω is a positive constant.

With the aid of the free energy function, using an usual procedure, we can derive

the following constitutive equations (see [10], [16])

tij = Cijmnεmn +Bijmnγmn +Bijσ +Dijkφk − βijθ,

mij = Bmnijεmn + Cijmnγmn + Cijσ + Eijkφk − αijθ,
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hi = Dmniεmn + Emniγmn + diσ + Aijφj − γiθ,(2)

g = −Bijεij − Cijγij − ξσ − diφi +mθ,

̺η = αijεij + βijγij +mσ + γiφi + aθ,

qi = kijθ,j ,

where εij , γij and φi are the kinematic characteristics of the strain which are computed

by means of the following geometric relations

εij = uj, i + εjikϕk, γij = ϕj,i,

φi = σ,i, θ = T − T0, σ = ν − ν0.(3)

By using a procedure similar to that used by Nunziato and Cowin in [15], we obtain

the following fundamental equations (see also, [9])

- the equations of motion

(4) tij,j + ̺Fi = ̺üi, mij,j + εijktjk + ̺Mi = Iijϕ̈j;

- the balance of the equilibrated forces

(5) hi,i + g + ̺L = ̺κσ̈;

- the energy equation

(6) ̺T0η̇ = qi,i + ̺S.

In the above equations we used the following notations: ̺-the constant mass den-

sity; η-the specific entropy; T0-the constant absolute temperature of the body in

its reference state; Iij-coefficients of microinertia; κ-the equilibrated inertia; ui-the

components of displacement vector; ϕi-the components of microrotation vector; ϕ-

the volume distribution function which in the reference state is ϕ0; σ-the change

in volume fraction measured from the reference state; θ-the temperature variation

measured from the reference temperature T0; εij, γij, φi-kinematic characteristics of

the strain; tij-the components of the stress tensor; mij-the components of the couple

stress tensor; hi-the components of the equlibrated stress vector; qi-the components of

the heat flux vector; Fi-the components of the body forces; Mi-the components of the

body couple; S-the heat supply per unit time; g-the intrinsic equilibrated force; L-the

extrinsic equilibrated body force; Aijmn, Bijmn, . . . , kij-the characteristic functions of

the material, and they are prescribed functions of the spatial variable and obey the

symmetry relations

(7) Aijmn = Amnij , Cijmn = Cmnij, Aij = Aji, kij = kji.

A consequence of the entropy inequality is the following useful relation

(8) kijθ,iθ,j ≥ 0.
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The equations (4) and (6) are analogous to equations of motion and, respectively, to

the balance equation, as in the classical theory.

The new balance of equilibrated force (5) can be motivated by a variational

argument as in the paper Cowin and Nunziato [5]. It is necessary to assume that the

functions coefficients ̺, κ and a and the above constitutive coefficients are continuous

differentiable functions on closure B̄ of B. Also, we assume that ̺, κ and a are strictly

positive functions on B̄, that is

̺(x) ≥ ̺0 > 0, κ(x) ≥ κ0 > 0, a(x) ≥ a0 > 0, ̺0, κ0, a0 = constants.(9)

Suppose that the conductivity tensor kij is symmetric, positive definite and satisfies

the following double inequality

kmθ, iθ, j ≤ kijθ, iθ, j ≤ kMθ, iθ, j.(10)

Here km and kM are the minimum, respectively, maximum value of the conductivity

tensor.

With the help of inequality (10) by taking into account the constitutive equation

(2)6 and the Schwarz’s inequality, we obtain:

qiqi = (kijθ,j) qi ≤ (kijθ,iθ,j)
1/2 (kmnqmqn)

1/2 ≤ (kijθ, iθ, j)
1/2 (kMqnqn)1/2(11)

from where we deduce

qiqi ≤ kMkijθ, iθ, j .(12)

We assume that the free energy function Ψ defined in (1) is a positive definite qua-

dratic form. As such, we deduce that it satisfies the inequalities

µm

(

εijεij + γijγij + φiφi + σ2
)

≤ 2Ψ ≤ µM

(

εijεij + γijγij + φiφi + σ2
)

(13)

where µm and µM are positive constants.

Let us donote by S7 the seven-dimensional space of all displacement fields U,

were U is of the form

U = {ui, ϕi, σ}(14)

On the the space S7 we define the following inner product

U . V = uivi + ϕiψi + σχ, U = {ui, ϕi, σ} , V = {vi, ψi, χ}(15)

and, as usual, this inner product induces the following norm

|V| = (V . V)1/2 =
(

vivi + ψiψi + χ2
)1/2

(16)

for a vector field V = {vi, ψi, χ} ∈ S7. In order to characterize the state of strain

we will use the fields

E(U) = {εij(U), γij(U), φi(U), σ}(17)
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Taking into account (3), the tensors of the strain from (17) are

εij(U) = uj, i + εjikϕk, γij(U) = ϕj, i, φi(U) = σ, i(18)

Now, we introduce an other vector space, namely the vector space of the strains,

which will be denoted by E and which consists of elements of the form (17). The

norm of this vector space has the form

|E| = (E . E)1/2 =
(

εijεij + γijγij + φiφi + σ2
)1/2

(19)

With a suggestion given by E from (17) and the constitutive equations (2) we intro-

duce the notations

Tij(E) = Cijmnεmn +Bijmnγmn +Bijσ +Dijkφk,(20)

Mij(E) = Bmnijεmn + Cijmnγmn + Cijσ + Eijkφk,(21)

Hi(E) = Dmniεmn + Emniγmn + diσ + Aijφj ,(22)

G(E) = −Bijεij − Cijγij − ξσ − diφi,(23)

and attach to these notations the quantity S(E), defined by

S(E) = {Tij(E), Mij(E), Hi(E), G(E)}

for every E ∈ E .

If we take into account (17) and (19), for every S(E) ∈ E we define the norm by

(24) |S(E)| =
{

Tij(E)Tij(E) +Mij(E)Mij(E) +Hi(E)Hi(E) +G(E)G(E)
}1/2

Considering E), we introduce the bilinear form F
(

E(1), E(2)
)

by

F
(

E(1), E(2)
)

=
1

2

[

Aijmnε
(1)
ij ε

(2)
mn +Bijmn

(

ε
(1)
ij γ

(2)
mn + ε

(2)
ij γ

(1)
mn

)

+ Cijmnγ
(1)
ij γ

(2)
mn +Bij

(

σ(1)ε
(2)
ij + σ(2)ε

(1)
ij

)

+ Cij

(

σ(1)γ
(2)
ij + σ(2)γ

(1)
ij

)

(25)

+Dijk

(

φ
(1)
k ε

(2)
ij + φ

(2)
k ε

(1)
ij

)

+ Eijk

(

φ
(1)
k γ

(2)
ij + φ

(2)
k γ

(1)
ij

)

+di

(

σ(1)φ
(2)
i + σ(2)φ

(1)
i

)

+ ξσ(1)σ(2) + Aijφ
(1)
i φ

(2)
j

]

.

for every E(α) ∈ E , where E(α) =
{

ε
(α)
ij , γ

(α)
ij , Φ

(α)
i , σ(α)

}

, α = 1, 2.

It is easy to deduce the symmetry relation

F
(

E(1), E(2)
)

= F
(

E(2), E(1)
)

, ∀ E(1), E(2) ∈ E(26)

taking into account the symmetry relations (7).

Considering the free energy function Ψ defined by (1), by direct calculations we

deduce that

F (E, E) = Ψ (E) , ∀ E ∈ E(27)
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Taking into account the inequalities (13) and using the well known Cauchy-Buniakovschi-

Schwarz’s inequality, it is no difficult to obtain that

F
(

E(1), E(2)
)

≤
[

Ψ
(

E(1)
)]1/2 [

Ψ
(

E(1)
)]1/2

, ∀ E(1), E(2) ∈ E(28)

Through a combination of relations (20)–(25) we are lead to

|S(E)|2 = Tij(E)Tij(E) +Mij(E)Mij(E) +Hi(E)Hi(E) +G(E)2

= AijmnTijεmn +BijmnTijγmn +BijTijσ +DijkTijΦk

+BmnijMijεmn + CijmnMijγmn + CijMijσ + EijkMijΦk(29)

+DmniεmnHi + EmniγmnHi + diσHi + AijΦjHi

− BijεijG− CijγijG− ξσG− diΦiG = 2F
(

E, S̄(E)
)

where we have used the notation

S̄(E) = {Tij(E), Mij(E), Hi(E), −G(E)}

With the help of relations (13), (19), (28) and (29) one obtains

|S(E)|2 ≤ 2µMΨ(E)(30)

Considering the norm (24) and the inequality (30) we get

Tij(E)Tij(E) +Mij(E)Mij(E) +Hi(E)Hi(E) ≤ 2µMΨ(E), ∀ E ∈ E(31)

such that for any arbitrarly positive number ε, we obtain

(Tij +Mij) (Tij +Mij) ≤ (1 + ε)TijTij +

(

1 +
1

ε

)

MijMij ,(32)

As a consequence of the inequality (31) we are led to

tijtij +mijmij + hihi = (Tij − αijθ) (Tij − αijθ) +

+ (Mij − βijθ) (Mij − βijθ) + (Hi − γiθ) (Hi − γiθ) ≤

≤ (1 + ε)TijTij +

(

1 +
1

ε

)

αijαijθ
2 + (1 + ε)MijMij(33)

+

(

1 +
1

ε

)

βijβijθ
2 + (1 + ε)HiHi +

(

1 +
1

ε

)

γijγijθ
2

≤ (1 + ε)2µMΨ(E) +

(

1 +
1

ε

)

M2θ2, ∀ ε > 0,

where we took into account relations (2), (20)–(23) and the inequality (32). Also, M2

is defined by

M2 = max
B̄

(

αijαij + βijβij + γiγi

)

(34)

To complete the mixed initial-boundary value problem within context of thermoelastic

theory of micropolar bodies with voids we give the boundary and initial conditions.

The boundary conditions can be prescribed as in classical elasticity and we must give
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the additional data for the surface continuous temperature field on the boundary ∂B

of the geometry of the body B and for the time interval for which the solution is

desired. As such, we use the initial conditions in the form

ui(x, 0) = u0
i (x), u̇i(x, 0) = u1

i (x), x ∈ B̄,

ϕi(x, 0) = ϕ0
i (x), ϕ̇i(x, 0) = ϕ1

i (x), x ∈ B̄,(35)

θ(x, 0) = θ0(x), σ(x, 0) = σ0(x), σ̇(x, 0) = σ1(x), x ∈ B̄,

Also, we take the boundary conditions in the form

ui = ūi on ∂B1 × [0,∞), ti ≡ tijnj = t̄i on ∂Bc
1 × [0,∞),

ϕi = ϕ̄i on ∂B2 × [0,∞), mi ≡ mijnj = m̄i on ∂Bc
2 × [0,∞),(36)

σ = σ̄ on ∂B3 × [0,∞), h ≡ hini = h̄ on ∂Bc
3 × [0,∞),

θ = θ̄ on ∂B4 × [0,∞), q ≡ qini = q̄ on ∂Bc
4 × [0,∞).

Above, the surfaces ∂B1, ∂B2, ∂B3 and ∂B4 with respective complements ∂Bc
1, ∂B

c
2,

∂Bc
3 and ∂Bc

4 are subsets of the surface ∂B. By ni we denote the components of the

unit outward normal to ∂B.

The given functions u0
i , u

1
i , ϕ

0
i , ϕ

1
i , θ

0, σ0, σ1, ūi, t̄i, ϕ̄i, m̄i, σ̄, θ̄, q̄ and h̄ are are

continous functions in their domains.

By a solution of the mixed initial-boundary value problem for the thermoelasticity

of micropolar bodies with voids, in the cylinder Ω0 = B× [0,∞) we mean an ordered

array (ui, ϕi, σ, θ) which satisfies the equations (4)–(6) for all (x, t) ∈ Ω0, the boundary

conditions (36) and the initial conditions (35).

If we substitute constitutive relations (2) into equations (4), (5) and (6), we

obtain the following system of equations

̺üi = (Aijmnεmn +Bijmnγmn +Bijσ +Dijkφk − αijθ), j + ̺Fi,

Iijϕ̈j = (Bmnijεmn + Cijmnγmn + Cijσ + Eijkφk − βijθ), j

+ εijk(Ajkmnεmn +Bjkmnγmn +Bjkσ +Djkmφm − αjkθ) + ̺Mi,

̺κσ̈ = (Dmniεmn + Emniγmn + diσ + Aijφj − γiθ), i + ̺L(37)

− Bijεij − Cijγij − ξσ − diφi +mθ,

aθ̇ =
1

̺T0
(kijθ, j), i +

1

T0
S − βij ε̇ij − αij γ̇ij −mσ̇ − aiφ̇i.

In the following we will address the initial boundary value problem consisting of

system of equations (37), the initial conditions (35) and the boundary conditions (36)

which will be denoted by P.
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3. Preliminary results

To demonstrate the main results with regard to the spatial behavior of the solu-

tions of the problem P, we need some integral identities that are proved in next three

theorems.

Theorem 1. Let us consider an arbitrary solution (ui, ϕi, σ, θ) of the problem P.

Then takes place the following conservation law of total energy
∫

B

e−λt

{

1

2

[

̺u̇i(t)u̇i(t) + Iijϕ̇i(t)ϕ̇j(t) + ̺κσ̇2(t)
]

+ Ψ(E(t)) +
1

2
aθ2(t)

}

dV

+

∫ t

0

∫

B

e−λsλ

2

[

̺u̇i(s)u̇i(s) + Iijϕ̇i(s)ϕ̇j(s) + ̺κσ̇2(s)
]

dV ds

+

∫ t

0

∫

B

e−λs

[

λΨ(E(s)) +
λ

2
aθ2(s) +

1

T0
kijθ, i(s)θ, j(s)

]

dV ds(38)

=

∫

B

{

1

2

[

̺u̇i(0)u̇i(0) + Iijϕ̇i(0)ϕ̇j(0) + ̺κσ̇2(0)
]

+ Ψ(E(0)) +
1

2
aθ2(0)

}

dV

+

∫ t

0

∫

B

e−λs̺

[

u̇i(s)Fi(s) + ϕ̇i(s)Mi(s) + σ̇(s)L(s) +
1

T0
θ(s)S(s)

]

dV ds

+

∫ t

0

∫

∂B

e−λs

[

ti(s)u̇i(s) +mi(s)ϕ̇i(s) + h(s)σ̇(s) +
1

T0

q(s)θ(s)

]

dAds,

Here λ is a given positive parameter and quantities ti, mi, h and q are defined in (35).

Proof. Taking into account the system of equations (37), the constitutive equa-

tions (2), the geometric relations (3) and the symmetry relations (7), one obtains

d

ds

{

1

2

[

̺u̇i(s)u̇i(s) + Iijϕ̇i(s)ϕ̇j(s) + ̺κσ̇2(s)
]

+ Ψ(E(s)) +
1

2
aθ2(s)

}

+
1

T0
kijθ, i(s)θ, j(s)(39)

= ̺

[

u̇i(s)Fi(s) + ϕ̇i(s)Mi(s) + σ̇(s)L(s) +
1

T0

θ(s)S(s)

]

+

[

tij(s)u̇i(s) +mik(s)ϕ̇i(s) + hj(s)σ̇(s) +
1

T0
qj(s)θ(s)

]

, j

In this equality we by e−λs and then integrate the obtained identity over the cylinder

B× [0, t]. But, by hypothesis, the surface ∂B was assumed be sufficient smooth such

that we can apply the divergence theorem. With the help of this theorem we are led

to the desired result (38) and Theorem 1 is concluded. �

Theorem 2. Let (ui, ϕi, σ, θ) be a solution of the mixed initial-boundary value problem

consists of the equations (11), the boundary conditions (10) and the initial conditions

(9). Then we have the following identity:

2

∫

B

[̺ui(t)u̇i(t) + Iijϕi(t)ϕ̇j(t) + ̺κσ(t)σ̇(t)] dV
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+ 2

∫

B

[

1

T0
kij

(
∫ t

0

θ, i(s)ds

)(
∫ t

0

θ, j(s)ds

)]

dV

= 2

∫ t

0

∫

B

[

̺u̇i(s)u̇i(s) + Iijϕ̇i(s)ϕ̇j(s) + ̺κσ̇2(s) − 2Ψ(E(s)) − aθ2(s)
]

dV ds

+ 2

∫ t

0

∫

B

̺η(0)θ(s)dV ds

(40)

+ 2

∫

B

[̺ui(0)u̇i(0)+Iijϕi(0)ϕ̇j(0) + ̺κσ(0)σ̇(0)] dV

+ 2

∫ t

0

∫

B

̺

[

Fi(s)ui(s) +Mi(s)ϕi(s) + L(s)σ(s) +
1

T0
θ(s)

∫ s

0

S(z)dz

]

dV ds

+ 2

∫ t

0

∫

B

̺η(0)θ(s)dV ds+ 2

∫

B

[̺ui(0)u̇i(0)+Iijϕi(0)ϕ̇j(0) + ̺κσ(0)σ̇(0)] dV

+ 2

∫ t

0

∫

∂B

[

ti(s)ui(s) +mi(s)ϕi(s) + h(s)σ(s) +
1

T0

θ(s)

∫ s

0

q(z)dz

]

dAds

Proof. By direct calculations, taking into account the equations of motion (4)1

and the geometric relations (3), one obtains

(41)
d

ds
[̺ui(s)u̇i(s)] = ̺u̇i(s)u̇i(s) + [tji(s)ui(s)], j − tji(s)ui, j(s) + ̺ui(s)Fi(s)

In a similar way, using the motion equations (4)2 and the geometric relations (3) we

are led to

d

ds
[Iijϕi(s)ϕ̇i(s)] = Iijϕ̇i(s)ϕ̇i(s) + [mji(s)ϕi(s)], j

−mji(s)ϕi, j(s) + εijktjk(s)ϕi(s) + ̺ϕi(s)Mi(s)(42)

Now, we add the relations (41) and (42) therefore we deduce that

d

ds
[̺ui(s)u̇i(s) + Iijϕi(s)ϕ̇j(s)] = ̺u̇i(s)u̇i(s) + Iijϕ̇i(s)ϕ̇i(s)

+ [tji(s)ui(s) +mji(s)ϕi(s)], j − tij(s)εij(s) −mij(s)γij(s)(43)

If we take into account the constitutive equation (2)1, we can write

tij(s)εij(s) = Aijmnεij(s)εmn(s) +Bijmnεij(s)γmn(s) + 2Bijσ(s)εij(s)

+ 2Dijkφk(s)εij(s) − [Bijσ(s)εij(s) +Dijkφk(s)εij(s) + αijθ(s)εij(s)](44)

In a similar way, using the constitutive equation (2)2 we can write:

mij(s)γij(s) = Bmnijεij(s)γmn(s) + Cijmnγij(s)γmn(s) + 2Cijσ(s)γij(s)

+ 2Eijkφk(s)γij(s) − [Cijσ(s)γij(s) + Eijkφk(s)γij(s) + βijθ(s)γij(s)](45)

If we add member by member the relations (44) and (45), we are lead to the following

identity

tij(s)εij(s) +mij(s)γij(s) = Aijmnεij(s)εmn(s)
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+ 2Bmnijεij(s)γmn(s) + Cijmnγij(s)γmn(s) + 2Bijσ(s)εij(s)

+ 2Dijkφk(s)εij(s) + 2Cijσ(s)γij(s) + 2Eijkφk(s)γij(s)(46)

− [Bijσ(s)εij(s) +Dijkφk(s)εij(s) + αijθ(s)εij(s)]

− [Cijσ(s)γij(s) + Eijkφk(s)γij(s) + βijθ(s)γij(s)]

If we use formulas (2)3–(2)5 and (3) we can obtain equivalent expressions for the last

two parentheses in (46)

[Bijεij(s) + Cijγij(s)]σ(s) + [Dijkεij(s) + Eijkγij(s)]φk(s)

+ [αijεij(s) + βijγij(s)] θ(s) = g(s)σ(s) − ξσ2(s) − 2diφi(s)σ(s)(47)

+ [hi(s)σ(s)], i − hi, i(s)σ(s) −Aijφi(s)φj(s) − aθ2(s) + ̺η(s)θ(s)

Integrating the energy equation (6) over interval [0, s], we deduce

̺η(s) =
1

T0

∫ s

0

qi, i(z)dz +
̺

T0

∫ s

0

S(z)dz + ̺η(0)(48)

such that, in view of balance of the equilibrated forces (5) and above relation (48),

we are led to

[g(s) + hi, i(s)]σ(s) − ̺η(s)θ(s) = [̺κσ̈(s) − ̺L(s)] σ(s) − ̺η(0)θ(s)

−
̺

T0

∫ s

0

S(z)dz −

[

1

T0
θ(s)

∫ s

0

qi(z)dz

]

, i

+
1

T0
θ, i(s)

∫ s

0

qi, i(z)dz(49)

With the help of the constitutive equation (2)6, the equality (49) can be restated in

the form

[g(s) + hi, i(s)]σ(s) − ̺η(s)θ(s) = −̺κσ̇2(s) − ̺η(0)θ(s)

+
d

ds

[

̺κσ(s)σ̇(s) +
1

2T0

kij

(
∫ s

0

θ, i(z)dz

) (
∫ s

0

θ, j(z)dz

)]

(50)

− ̺

[

L(s)σ(s) +
1

T0
θ(s)

∫ s

0

S(z)dz

]

−

[

1

T0
θ(s)

∫ s

0

qi(z)dz

]

, i

By substituting the relations (46), (47) and (50) into equality (43), then it received

the form

d

ds

[

2̺ui(s)u̇i(s)+2Iijϕi(s)ϕ̇j(s)+2̺κσ(s)σ̇(s)+
1

T0
kij

(
∫ s

0

θ, i(z)dz

)(
∫ s

0

θ, j(z)dz

)

]

= 2̺u̇i(s)u̇i(s) + 2Iijϕ̇i(s)ϕ̇j(s) + 2̺κσ̇2(s) − 2
[

2Ψ(E(s)) + aθ2(s)
]

+ 2̺

[

Fi(s)ui(s) +Mi(s)ϕi(s) + L(s)σ(s) +
1

T0
θ(s)

∫ s

0

S(z)dz

]

(51)

+ 2

[

tji(s)ui(s) +mji(s)ϕi(s) + hj(s)σ(s) +
1

T0

θ(s)

∫ s

0

qj(z)dz

]

, j

+ 2̺η(0)θ(s).
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Now, we integrate the equality (51) onto the cylinder B × [0, t] and apply the diver-

gence. In this way we get to the desired identity (40) and the proof of Theorem 2 is

complete. �

Theorem 3. For a solution (ui, ϕi, σ, θ) of the mixed initial-boundary value problem

consisting of the equations (11), the boundary conditions (10) and the initial conditions

(9), we have the following identity:

2

∫

B

[

̺ui(t)u̇i(t) + Iijϕi(t)ϕ̇j(t) + ̺κσ(t)σ̇(t) +
1

T0
kij

(
∫ t

0

θ, i(s)ds

) (
∫ t

0

θ, j(s)ds

)]

dV

=

∫

B

{

̺ [ui(0)u̇i(2t) + u̇i(0)ui(2t)] + Iij [ϕi(0)ϕ̇j(2t) + ϕ̇j(0)ϕi(2t)]
}

dV

+

∫

B

̺κ [σ(0)σ̇(2t) + σ̇(0)σ(2t)] dV +

∫ t

0

∫

B

̺η(0) [θ(t− s) − θ(t+ s)] dV ds

+

∫ t

0

∫

B

̺ [ui(t+ s)Fi(t− s) − ui(t− s)Fi(t+ s)] dV ds

+

∫ t

0

∫

B

Iij [ϕi(t+ s)Mi(t− s) − ϕi(t− s)Mi(t+ s)] dV ds

+

∫ t

0

∫

B

[σ(t+ s)L(t− s) − σ(t− s)L(t+ s)] dV ds

(52)

+

∫ t

0

∫

B

1

T0

[

θ(t− s)

∫ t+s

0

S(z)dz − θ(t+ s)

∫ t−s

0

S(z)dz

]

dV ds

+

∫ t

0

∫

∂B

[ui(t+ s)ti(t− s) − ui(t− s)ti(t+ s)] dAds

+

∫ t

0

∫

∂B

[ϕi(t+ s)mi(t− s) − ϕi(t− s)mi(t+ s)] dAds

+

∫ t

0

∫

∂B

[σ(t+ s)h(t− s) − σ(t− s)h(t+ s)] dAds

+

∫ t

0

∫

∂B

1

T0

[

θ(t− s)

∫ t+s

0

q(z)dz − θ(t+ s)

∫ t−s

0

q(z)dz

]

dAds

Proof. It is easy to deduce the obvious identity

−
d

ds

{

̺ [ui(t+ s)u̇i(t− s) + u̇i(t+ s)ui(t− s)]
}

= ̺ [ui(t+ s)üi(t− s) − ui(t− s)üi(t+ s)] , s ∈ [0, t], t ∈ [0,∞)(53)

Taking into account the equations of motion (4)1, the right side term of identity (53)

received the form

̺ [ui(t+ s)üi(t− s) − ui(t− s)üi(t+ s)]

= ̺ [ui(t+ s)Fi(t− s) − ui(t− s)Fi(t+ s)](54)

+ [ui(t+ s)tji(t− s) − ui(t− s)tji(t+ s)], j
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+ [ui, j(t− s)tji(t+ s) − ui, j(t+ s)tji(t− s)]

With the help of relation (54), the identity (53) can be restated in the form

−
d

ds

{

̺ [ui(t+ s)u̇i(t− s) + u̇i(t+ s)ui(t− s)]
}

= ̺ [ui(t+ s)Fi(t− s) − ui(t− s)Fi(t+ s)](55)

+ [ui(t+ s)tji(t− s) − ui(t− s)tji(t+ s)], j

+ [ui, j(t− s)tji(t+ s) − ui, j(t+ s)tji(t− s)]

It is easy to see that

−
d

ds

{

Iij [ϕi(t+ s)ϕ̇j(t− s) + ϕ̇i(t+ s)ϕi(t− s)]
}

= Iij [ϕi(t+ s)ϕ̈i(t− s) − ϕi(t− s)ϕ̈i(t+ s)] , s ∈ [0, t], t ∈ [0,∞)(56)

If we take into account the equations of motion (4)2, the right side term from equality

(56) can be rewritten in the form

Iij [ϕi(t+ s)ϕ̈i(t− s) − ϕi(t− s)ϕ̈i(t+ s)]

= ̺ [ϕi(t+ s)Mi(t− s) − ϕi(t− s)Mi(t+ s)]

+ [ϕi(t+ s)mji(t− s) − ϕi(t− s)mji(t+ s)], j(57)

+ [ϕi, j(t− s)mji(t+ s) − ϕi, j(t+ s)mji(t− s)]

+ εijk [ϕi(t+ s)tjk(t− s) − ϕi(t− s)tjk(t+ s)]

introducing the relation (57) into the identity (56), we obtain

−
d

ds
{Iij [ϕi(t+ s)ϕ̇j(t− s) + ϕ̇i(t+ s)ϕi(t− s)]}

= ̺ [ϕi(t+ s)Mi(t− s) − ϕi(t− s)Mi(t+ s)]

+ [ϕi(t+ s)mji(t− s) − ϕi(t− s)mji(t+ s)], j(58)

+ [ϕi, j(t− s)mji(t+ s) − ϕi, j(t+ s)mji(t− s)]

+ εijk [ϕi(t+ s)tjk(t− s) − ϕi(t− s)tjk(t+ s)]

If we add the relations (55) and (58), term by term, and use the geometric relations

(3), we are led to

−
d

ds
{̺ [ui(t+ s)u̇i(t− s) + u̇i(t+ s)ui(t− s)]}

−
d

ds

{

Iij [ϕi(t+ s)ϕ̇j(t− s) + ϕ̇i(t+ s)ϕi(t− s)]
}

= ̺ [ui(t+ s)Fi(t− s) − ui(t− s)Fi(t+ s)]

+ ̺ [ϕi(t+ s)Mi(t− s) − ϕi(t− s)Mi(t+ s)](59)

+ [ui(t+ s)tji(t− s) − ui(t− s)tji(t+ s)], j

+ [ϕi(t+ s)mji(t− s) − ϕi(t− s)mji(t+ s)], j
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+ [tij(t+ s)εij(t− s) − tij(t− s)εij(t+ s)]

+ [mij(t+ s)γij(t− s) −mij(t− s)γij(t+ s)]

Now, we try to find another form for the last two parenthesis from equality (59). To

this aim, first, we use the constitutive equations (2)1-(2)5 in order to obtain

[tij(t+ s)εij(t− s) − tij(t− s)εij(t+ s)]

+ [mij(t+ s)γij(t− s) −mij(t− s)γij(t+ s)]

= [σ(t− s)g(t+ s) − σ(t+ s)g(t− s)](60)

+ [hi(t− s)φ(t+ s) − hi(t+ s)φ(t− s)]

+ ̺ [θ(t− s)η(t+ s) − θ(t+ s)η(t− s)]

Considering the geometric equations (3) and the balance of the equilibrated forces

(5), we are lead to

hi(t− s)φ(t+ s) − hi(t+ s)φ(t− s)

= [hi(t− s)σ(t+ s) − hi(t+ s)σ(t− s)], i

+ [σ(t+ s)g(t− s) − σ(t− s)g(t+ s)](61)

+ ̺ [σ(t+ s)L(t− s) − σ(t− s)L(t+ s)]

+ ̺κ [σ(t− s)σ̈(t+ s) − σ(t+ s)σ̈(t− s)]

Analogous, if we take into account the equation of energy (6) we obtain a similar

identity

̺ [θ(t− s)η(t+ s) − θ(t+ s)η(t− s)] = ̺η(0) [θ(t− s) − θ(t+ s)]

+
̺

T0

[

θ(t− s)

∫ t+s

0

S(z)dz − θ(t+ s)

∫ t−s

0

S(z)dz

]

+
1

T0

[

θ(t− s)

∫ t+s

0

qi(z)dz − θ(t+ s)

∫ t−s

0

qi(z)dz

]

, i

(62)

+
1

T0
kij

[

θ, i(t+ s)

∫ t−s

0

θ, j(z)dz − θ, i(t− s)

∫ t+s

0

θ, i(z)dz

]

We introduce the results from equalities (62) and (61) into (60) and then the resulting

equality is introduced in (59). As a consequence, we obtain

−
d

ds

{

̺ [ui(t+ s)u̇i(t− s) + u̇i(t+ s)ui(t− s)]
}

−
d

ds

{

Iij [ϕi(t+ s)ϕ̇j(t− s) + ϕ̇i(t+ s)ϕi(t− s)]
}

−
d

ds

{

̺κ [σ(t− s)σ̇(t+ s) + σ(t+ s)σ̇(t− s)]
}

−
d

ds

[

1

T0
kij

(
∫ t+s

0

θ, i(z)dz

) (
∫ t−s

0

θ, j(z)dz

)]
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= ̺ [ui(t+ s)Fi(t− s) − ui(t− s)Fi(t+ s)]

+ ̺ [ϕi(t+ s)Mi(t− s) − ϕi(t− s)Mi(t+ s)](63)

+ ̺ [σ(t+ s)L(t− s) − σ(t− s)L(t+ s)]

+
̺

T0

[

θ(t− s)

∫ t+s

0

S(z)dz − θ(t+ s)

∫ t−s

0

S(z)dz

]

+ ̺η(0) [θ(t− s) − θ(t+ s)]

+ [ui(t+ s)tji(t− s) − ui(t− s)tji(t+ s)], j

+ [ϕi(t+ s)mji(t− s) − ϕi(t− s)mji(t+ s)], j

+ [hj(t− s)σ(t+ s) − hj(t+ s)σ(t− s)], j

+
1

T0

[

θ(t− s)

∫ t+s

0

qj(z)dz − θ(t+ s)

∫ t−s

0

qj(z)dz

]

, j

To get the desired result, that is, the identity (52) we must just to integrate the

equality (63) over cylinder B × [0, t] and use the divergence theorem. Thus the proof

of Theorem 3 is complete. �

4. Behaviour of solutions

We start this section with some auxiliary results. These will be used to prove the

main results of our study, that is, the spatial behavior of solutions of the problem P,

defined at the end of Section 2.

We will assume that the boundary of B, denoted by ∂B, is a sufficiently smooth

surface to enable us the application of divergence theorem. Also, we denote the

closure of B by B̄.

For fixed T > 0 define the space ΩT of all x ∈ B̄ such that

1. If x ∈ B, then

u0
i (x) 6= 0 or u1

i (x) 6= 0 or ϕ0
i (x) 6= 0 or ϕ1

i (x) 6= 0 or

σ0(x) 6= 0 or σ1(x) 6= 0 or θ0(x) 6= 0 or η0(x) 6= 0 or(64)

Fi(x, t) 6= 0 or Mi(x, t) 6= 0 or L(x, t) 6= 0 or S(x, t) 6= 0, t ∈ [0, T ](65)

2. If x ∈ ∂B, then

ūi(x, t) 6= 0 or t̄i(x, t) 6= 0 or ϕ̄i(x, t) 6= 0 or m̄i(x, t) 6= 0 or

σ̄(x, t) 6= 0 or h̄(x, t) 6= 0 or θ̄(x, t) 6= 0 or η̄(x, t) 6= 0, t ∈ [0, T ](66)

If we analyze the above relations, we find that the space ΩT is the support of the

initial and boundary data and the body supplies in the problem P on the interval

[0, T ].
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Now, we define the set Ωr by

Ωr =
{

x̄ ∈ B̄ : Ω∗

r ∩ S̄(x, t) 6= 0
}

(67)

where r is a non-negative number, r ≥ 0. Also, we have denoted by Ω∗

r the smallest

regular surface of ∂B that include Ωr. In the case that Ωr is an empty set, then Ω∗

r is

an arbitrary nonempty regular subsurface of ∂B. Also, in (67) S̄(x, t) represents, as

usual, the notation of the closure of the ball with radius r and center at x. Other two

new notations will be used in what follows. First, we note by Br the part of B such

that Br = B \Dr and for r1 > r2 we set B(r1, r2) = Br2
\Br1

. The second notation

is Sr and it stand for the subsurface of ∂Br contained inside of B and whose outward

unit normal vector is forwarded to the exterior of Dr. For a solution (ui, ϕi, σ, θ)

of the problem P we will associate time-weighted surface power function, defined as

follows

(68) I(r, t) = −

∫ t

0

∫

Sr

e−λs

[

ti(s)u̇i(s) +mi(s)ϕ̇i(s) + h(s)σ̇(s) +
1

T0
q(s)θ(s)

]

dAds

The function I(r, t) is defined for any r ≥ 0 and t ∈ [0, T ]. Also, by λ we denoted

a positive parameter which is given and the functions ti(s), mi(s), h(s) and q(s) are

defined in (36).

Also, we will denote by J the integral of function I, that is

J(r, t) =

∫ r

0

I(r, s)ds, r ≥ 0, t ∈ [0, T ](69)

The main properties of the time-weighted surface power function I, defined in (68),

are formulated and demonstrated in the following theorem.

Theorem 4. For each r ≥ 0 and t ∈ [0, T ], the time-weighted surface power func-

tion I(r, t), associated with the solution (ui, ϕi, σ, θ) of problem P, has the following

properties

i). If 0 ≤ r2 ≤ r1, then

I(r1, t) − I(r2, t)

=

∫

B(r1,r2)

e−λt

{

1

2

[

̺u̇i(t)u̇i(t) + Iijϕ̇i(t)ϕ̇j(t) + ̺κσ̇2(t)
]

+ Ψ(E(t)) +
1

2
aθ2(t)

}

dV

−

∫ t

0

∫

B(r1,r2)

e−λs

{

1

2

[

̺u̇i(s)u̇i(s) + Iijϕ̇i(s)ϕ̇j(s) + ̺κσ̇2(s)
]

}

dV ds

(70)

−

∫ t

0

∫

B(r1,r2)

e−λs

{

λΨ(E(s)) +
λ

2
aθ2(s) +

1

T0
kijθ, i(s)θ, j(s)

}

dV ds
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ii). The function I(r, t) is continuous differentiable with respect to r and its

derivative has the expression

∂I

∂r
(r, t) =

∫

Sr

e−λt

{

1

2

[

̺u̇i(t)u̇i(t) + Iijϕ̇i(t)ϕ̇j(t) + ̺κσ̇2(t)
]

+ Ψ(E(t)) +
1

2
aθ2(t)

}

dA

−

∫ t

0

∫

Sr

e−λs

{

1

2

[

̺u̇i(s)u̇i(s) + Iijϕ̇i(s)ϕ̇j(s) + ̺κσ̇2(s)
]

}

dAds

(71)

−

∫ t

0

∫

Sr

e−λs

{

λΨ(E(s)) +
λ

2
aθ2(s) +

1

T0

kijθ, i(s)θ, j(s)

}

dAds

iii). The function I(r, t) is non-increasing with respect to r.

iv). The function I(r, t) satisfies a first order differential inequality, for each

r ≥ 0, namely

λ

c

∣

∣

∣
I(r, t)

∣

∣

∣
+
∂I

∂r
(r, t) ≤ 0,(72)

where we denoted by c the constant defined by

c =

√

(1 + ε0)µM

̺0
(73)

Also, ε0 represents the positive root of the following second order algebraic equation

x2 + x

(

1 −
M2

a0µM
−

λ̺0kM

2a0T0µM

)

−
M2

a0µM
= 0(74)

v). For each r ≥ 0 and t ∈ [0, T ], I(r, t) is a positive function.

Proof. We will put B(r1, r2) instead of B in Theorem 1, for r1 ≥ r2 ≥ 0.

Considering the definitions of B(r1, r2) and I(r, t), with the help of equality (38) from

Theorem 1, we are led to i). Taking into account the assumptions (9) and (10), from

the identity (70) we deduce the assertion ii). Also, if we take into account inequalities

(13), from the identity (70), we deduce point iii). Now, we wish to prove the assertion

iv). To this aim we will apply the Schwarz’s inequality and the arithmetic-geometric

mean inequality in (68) such that we are led to

∣

∣

∣
I(r, t)

∣

∣

∣
≤

∫ t

0

∫

Sr

e−λs

{

ε1

2̺0
[tij(s)tij(s) +mij(s)mij(s) + hi(s)hi(s)]

+
1

2ε1

[

̺u̇i(s)u̇i(s) + Iijϕ̇i(s)ϕ̇i(s) + ̺κσ̇2
]

+
ε2

2T0a0
qi(s)qi(s) +

1

2T0ε2
aθ2(s)

}

dAds

≤

∫ t

0

∫

Sr

e−λs

{

1

λε1
.
λ

2

[

̺u̇i(s)u̇i(s) + Iijϕ̇i(s)ϕ̇i(s) + ̺κσ̇2(s)
]

(75)

+
ε1(1 + ε)µM

λ̺0
.λΨ(E(s)) +

[

ε1M
2

λa0̺0

(

ε+
1

ε

)

+
1

λT0ε2

]

.
λ

2
aθ2(s)
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+
ε2kM

2a0
.
1

T0
kijθ, i(s)θ, j(s)

}

dAds, r ≥ 0, 0 ≤ t ≤ T, ∀ ε1, ε2, ε3 > 0

In the last integral from (75) we equate the coefficients of energetic terms such that

we are lead to

1

λε1
=
ε1(1 + ε)µM

λ̺0
=
ε1M

2

λa0̺0

(

ε+
1

ε

)

+
1

λT0ε2
=
ε2kM

2a0
(76)

and from these equalities we can set

ε1 =
1

c
, ε2 =

2a0c

λkM

.(77)

The constant c has the expression defined in (73).

Now, considering the relations (71) and (75) together, we obtain the relation (72).

Finally, we will use the definition (67) of the set ΩT and the definition (68) of the

time-weighted surface power function I(r, t), such that considering the result of point

iii), the property v) is obtained. �

In the following corollary, we state and prove a first-order differential inequality

satisfied by the function J(r, t) defined in (69).

Corollary. The main property of the function J(r, t) is the following

tγ(t)
∂J

∂r
(r, t) +

∣

∣

∣
J(r, t)

∣

∣

∣
≤ 0, r ≥ 0, 0 ≤ t ≤ T,(78)

where the function γ(t) is defined by

γ(t) =

√

(1 + δ0(t))µM

̺0
(79)

We denoted by δ0(t) the positive root of the second order algebraic equation

x2 + x

(

1 −
M2

a0µM
−

̺0kM

2ta0T0µM

)

−
M2

a0µM
= 0.(80)

Proof. Inequality that follows is evident
∫ t

0

∫ s

0

f 2(z)dzds ≤ t

∫ s

0

f 2(z)dz(81)

Using a procedure that is analogous to that used in deduction of point iv) from

Theorem 4, with the help of inequality (81) we obtain the inequality (78). �

Now we are able to formulate and to demonstrate the main result regarding the

spatial behavior of solutions of the problem P in the case of a bounded domain B.

This behavior will be evaluated with the help of functions I(r, t) and J(r, t).

Theorem 5. Let us consider the problem P which is defined on the bounded domain

B and the time-weighted surface power function I(r, t) associated with the solution of

problem P. We suppose that the initial and boundary data and the body supplies have
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the support ΩT on the interval [0, T ]. Then the solution of problem P decays spatially

with regard to functions I(r, t) and J(r, t), for each t ∈ [0, T ], that is,

I(r, t) ≤ I(0, t)e−λr/c, 0 ≤ r ≤ D(82)

J(r, t) ≤ J(0, t)e−r/(tγ(t)), 0 ≤ r ≤ D.(83)

We denoted by D the diameter of the domain B \ Ω∗

T .

Proof. According to point v) of Theorem 4, I(r, t) is a positive function. Con-

sidering the definition of function J(r, t), we can writte the differential inequalities

satisfied by the functions I(r, t) and, respectively, J(r, t), in the form

∂

∂r

[

eλr/cI(r, t)
]

≤ 0, 0 ≤ r ≤ D(84)

∂

∂r

[

er/(tγ(t))J(r, t)
]

≤ 0, 0 ≤ r ≤ D(85)

From inequality (84), integrating with respect to r, we get estimate (82). Also,

integrating inequality (85) with respect to r, we obtain the estimate (83) and this

ends the proof of Theorem 5. �

Finally, we study the spatial behavior of solution of problem P in the case that

the micropolar thermoelastic medium occupies an unbounded domain. To this aim

will be useful some estimates of Phragmén-Lindelöf type, [1].

Theorem 6. Consider the problem P which is defined on the unbounded domain

B and the time-weighted surface power function I(r, t) associated with the solution

(ui, ϕi, σ, θ). The initial and boundary data and the body supplies have the support ΩT

on the interval [0, T ]. The the solution of problem P decays spatially with regard to

functions I(r, t) and J(r, t), for each fixed t ∈ [0, T ], according to one of the following

situations:

1. If I(r, t) ≥ 0 for all r ≥ 0, then

I(r, t) ≤ I(0, t)e−λr/c, r ≥ 0(86)

J(r, t) ≤ J(0, t)e−r/(tγ(t)), r ≥ 0(87)

2. Assume that ∃r1 ≥ 0 such that I(r1, t) < 0. Then we have I(r, t) ≤ I(r1, t) <

0 and J(r, t) < 0, for all r ≥ r1. Also, the following estimations are true

−I(r, t) ≥ −I(r1, t)e
λ(r−r1)/c, r ≥ r1(88)

−J(r, t) ≥ −J(r1, t)e
(r−r1)/c, 0 ≤ r ≥ r1(89)

Proof. Because I(r, t) is a non-increasing function with respect to r, we can

use point iii) from Theorem 4 in order to deduce that I(r, t) ≥ 0, for all r ≥ 0.

As a consequence, the differential inequality (72), satisfied by function I(r, t), can

be written in the form (84). As such we obtain estimate (86). Analogously, the
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differential inequality (78), satisfied by function J(r, t), can be written in the form

(85) from where we obtain estimate (87).

Suppose now that we are in the situation 2. of Theorem, that is, there exists

r1 ≥ 0 such that I(r, t) ≤ 0, then from point iii)of Theorem 4 we deduce that

I(r, t) < I(r1, t) ≤ 0 for all r ≥ r1. As a consequence, the differential inequality (72)

receives the form

∂

∂r

[

e−λr/cI(r, t)
]

≤ 0, r ≤ r1.(90)

Therefore, if we integrate with respect to r, we obtain the estimate (88). On the other

hand, because I(r, t) ≤ 0 we deduce J(r, t) ≤ 0, taking into account the definition

(69) of the function J(r, t). Hence, inequality (78) acquires the form

∂

∂r

[

e−λr/(tγ(t))J(r, t)
]

≤ 0, r ≤ r1

from where, if we integrate with respect to r, we obtain the desired estimate (89).

Thus, the proof of Theorem 6 is complete. �

5. Conclusions

If we look back previous relations, it is not difficult to find that the evaluations

of the form (82), (86) and (88) are suitable for appropriate short values of time, while

evaluations of the form (83), (87) and (89) are suitable for appropriate large values

of time. As such, we coupled the demonstrations of the the previous inequalities, as

follows: (82) coupled with (83), (86) coupled with (87) and (88) coupled with (89).

This coupling allows a complete description for the spatial behavior of the solutions

of problem P.
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