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1. Introduction

The aim of the present paper is to investigate the existence of infinitely many

solutions for the following perturbed fourth-order Kirchhoff-type problem

(1.1)

{
T (u) = λf(x, u) + µg(x, u) + h(u), x ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0

where λ is a positive parameter, µ is a non-negative parameter,

T (u) = uiυ + K

(∫ 1

0

(−A|u′(x)|2 + B|u(x)|2)dx

)
(Au′′ + Bu)

in which K : [0, +∞[→ R is a continuous function such that there exist positive

numbers m0 and m1 with m0 ≤ K(t) ≤ m1 for all t ≥ 0, and A and B are two real

constants, f, g : [0, 1] × R → R are two L2-Carathéodory functions and h : R → R is

a Lipschitz continuous function with the Lipschitz constant L > 0, i.e.,

|h(t1) − h(t2)| ≤ L|t1 − t2|

for every t1, t2 ∈ R, and h(0) = 0.
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The problem (1.1) is related to the stationary problem

(1.2) ρ
∂2u

∂t2
−
(ρ0

h
+

E

2L

∫ L

0

|∂u

∂x
|2dx

)∂2u

∂x2
= 0,

for 0 < x < L, t ≥ 0, where u = u(x, t) is the lateral displacement at the space

coordinate x and the time t, E the Young modulus, ρ the mass density, h the cross-

section area, L the length and ρ0 the initial axial tension, proposed by Kirchhoff

[19]. The equation (1.2) is an extension of the classical D’Alembert’s wave equation

by considering the effects of the changes in the length of the string during the vi-

brations. Some interesting results can be found, for example in [3, 9, 27]. On the

other hand, nonlocal boundary value problems model several physical and biological

systems where u describes a process which depend on the average of itself, as for

example, the population density. We refer the reader to [2, 12, 15, 16, 22, 24, 26] for

some related works.

Owing to the importance of fourth-order two-point boundary value problems in

describing a large class of elastic deflection, many researchers have studied the exis-

tence and multiplicity of solutions for fourth-order two-point boundary value prob-

lems, we refer the reader to [1, 4, 5, 6, 20, 23]. Moreover, since fourth order equations

of Kirchhoff type arise in the theory of bending extensible elastic beams on nonlinear

elastic foundations, in [29, 30, 14, 21] the existence and multiplicity of solutions for

nonlinear fourth order equation of Kirchhoff type was studied.

In the present paper, using a smooth version of [8, Theorem 2.1] which is a more

precise version of Ricceri’s Variational Principle [25, Theorem 2.5], requiring that the

nonlinear term f has a suitable oscillating behavior at infinity, we establish the exis-

tence of a precise interval Λ such that for every λ ∈ Λ and for every L2-Carathéodory

function g satisfying a certain growth at infinity, choosing µ sufficiently small, the

problem (1.1) admits a sequence of generalized solutions which is unbounded in the

space E which will be introduced later (Theorem 3.1). Replacing the conditions at

infinity of the nonlinear terms, by a similar one at zero, we obtain a sequence of gen-

eralized solutions strongly converging to zero; see Remark 3.7. In our results neither

symmetric nor monotonic condition on the nonlinear term f is assumed. We require

that f has a suitable oscillating behaviour either at infinity or at zero. Ricceri’s Vari-

ational Principle and its variants have been successfully used to ensure the existence

of infinitely many solutions for boundary value problems in the papers [5, 7, 13, 16].

We also refer to [11] in which the authors obtained a type of a three critical point the-

orem and applied the theorem to investigate the multiplicity of solutions to discrete

anisotropic problems with two parameters.
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2. PRELIMINARIES

Our main tool to investigate the existence of infinitely many solutions for the

problem (1.1) is a smooth version of Theorem 2.1 of [8] which is a more precise

version of Ricceri’s Variational Principle [25] that we now recall here.

Theorem 2.1. Let X be a reflexive real Banach space, let Φ, Ψ : X → R be two

Gâteaux differentiable functionals such that Φ is sequentially weakly lower semicon-

tinuous, strongly continuous, and coercive and Ψ is sequentially weakly upper semi-

continuous. For every r > infX Φ, let us put

ϕ(r) := inf
u∈Φ−1(−∞,r)

supv∈Φ−1(−∞,r) Ψ(v) − Ψ(u)

r − Φ(u)

and

γ := lim inf
r→+∞

ϕ(r), δ := lim inf
r→(infX Φ)+

ϕ(r).

Then, one has

(a) for every r > infX Φ and every λ ∈]0, 1
ϕ(r)

[, the restriction of the functional

Iλ = Φ − λΨ to Φ−1(−∞, r) admits a global minimum, which is a critical point

(local minimum) of Iλ in X.

(b) If γ < +∞ then, for each λ ∈]0, 1
γ
[, the following alternative holds:

either

(b1) Iλ possesses a global minimum,

or

(b2) there is a sequence {un} of critical points (local minima) of Iλ such that

lim
n→+∞

Φ(un) = +∞.

(c) If δ < +∞ then, for each λ ∈]0, 1
δ
[, the following alternative holds:

either

(c1) there is a global minimum of Φ which is a local minimum of Iλ,

or

(c2) there is a sequence of pairwise distinct critical points (local minima) of Iλ

which weakly converges to a global minimum of Φ.

Assume that

max

{
A

π2
,−B

π4
,

A

π2
− B

π4

}
< 1.

Set

σ := max

{
A

π2
,−B

π4
,

A

π2
− B

π4
, 0

}

and

δ :=
√

1 − σ.
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Let X := H2([0, 1]) ∩ H1
0 ([0, 1]) be the Sobolev space endowed with the norm

||u|| =

(∫ 1

0

(|u′′(x)|2 − A|u′(x)|2 + B|u(x)|2)dx

)1/2

which is equivalent to the usual one and, in particular, one has

(2.1) ||u||∞ ≤ 1

2πδ
||u||,

(see [4, Proposition 2.1]).

We suppose that the Lipschitz constant L > 0 of the function h satisfies

min{1, m0} >
L

4π2δ2
.

A function u : [0, 1] → R is a generalized solution to the problem (1.1) if

u ∈ C3([0, 1]), u′′′ ∈ AC([0, 1]), u(0) = u(1) = 0, u′′(0) = u′′(1) = 0, and uiυ +

K
(∫ 1

0
(−A|u′(x)|2 + B|u(x)|2)dx

)
(Au′′ + Bu) = λf(x, u(x)) + µg(x, u(x)) + h(u(x))

for almost every x ∈ [0, 1], and it is a weak solution to the problem (1.1) if u ∈ X

and

∫ 1

0

u′′(x)v′′(x)dx + K

(∫ 1

0

(−A|u′(x)|2 + B|u(x)|2)dx

)

×
∫ 1

0

(−Au′(x)v′(x) + Bu(x)v(x))dx − λ

∫ 1

0

f(x, u(x))v(x)dx

− µ

∫ 1

0

g(x, u(x))v(x)dx −
∫ 1

0

h(u(x))v(x)dx = 0

for every v ∈ X. Each weak solution to the problem (1.1) is a generalized one (see

[4, Proposition 2.2]). If f, g are continuous, then each generalized solution u of the

problem (1.1) is a classical solution.

A special case of our main result is the following theorem.

Theorem 2.2. Let f : R → R be a nonnegative continuous function such that

lim inf
ξ→+∞

∫ ξ

0
f(t)dt

ξ2
= 0 and lim sup

ξ→+∞

∫ ξ

0
f(t)dt

ξ2
= +∞.

Then, the problem

{
T (u) = f(u) + h(u), x ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0

has an unbounded sequence of classical solutions.
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3. Main Results

Let

F (x, t) =

∫ t

0

f(x, ξ)dξ for all (x, t) ∈ [0, 1] × R,

K̃(t) =

∫ t

0

K(ξ)dξ for all t > 0

and

H(t) =

∫ t

0

h(ξ)dξ for all t ∈ R.

Moreover, set

k = 2δ2π2

(
2048

27
− 32

9
A +

13

40
B

)−1

.

Then, 0 < k < 1/2 (see [4] page 1168).

Put

τ :=
min{1, m0} − L

4π2δ2

max{1, m1} + L
4π2δ2

,

C := lim inf
ξ→+∞

∫ 1

0
sup|t|≤ξ F (x, t)dx

ξ2

and

D := lim sup
ξ→+∞

∫ 5

8
3

8

F (x, ξ)dx

ξ2

We formulate our main result as follows.

Theorem 3.1. Assume that

(A1) F (x, ξ) ≥ 0 for all (x, ξ) ∈ ([0, 3
8
] ∪ [5

8
, 1]) × R;

(A2) C < kτD.

Then, setting

λ1 =
2π2δ2

kD

(
max{1, m1} +

L

4π2δ2

)
and λ2 =

2π2δ2

C

(
min{1, m0} −

L

4π2δ2

)

for each λ ∈ (λ1, λ2), for every arbitrary L2-Carathéodory function g : [0, 1]×R → R

whose potential G(x, t) =
∫ t

0
g(x, ξ)dξ for all (x, t) ∈ [0, 1] × R, is a nonnegative

function satisfying the condition

(3.1) G∞ :=
1

2π2δ2(min{1, m0} − L
4π2δ2 )

lim
ξ→+∞

∫ 1

0
sup|t|≤ξ G(x, t)dx

ξ2
< +∞

and for every µ ∈ [0, µg,λ[ where µg,λ = 1
G∞

(1− λ
λ2

), the problem (1.1) has unbounded

sequence of generalized solution in X.
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Proof. In order to apply Theorem 2.1, fix λ̄ ∈ (λ1, λ2) and let g be a function satisfies

the condition (3.1). Since λ̄ < λ2, we have µg,λ̄ = 1
G∞

(1− λ̄
λ2

) > 0. Now fix µ̄ ∈ (0, µg,λ̄)

and put z1 = λ1 and z2 = λ2

1+ µ̄

λ̄
λ2G∞

. If G∞ = 0, clearly, z1 = λ1, z2 = λ2 and

λ̄ ∈]z1, z2[. If G∞ 6= 0, since µ̄ < µg,λ̄, we obtain λ̄
λ2

+ µ̄G∞ < 1, and so λ2

1+ µ̄

λ̄
λ2G∞

> λ̄,

namely, λ̄ < z2. Hence, since λ̄ > λ1 = z1, one has λ̄ ∈]z1, z2[. For each u ∈ X, we let

the functionals Φ, Ψ : X → R be defined

Φ(u) =
1

2

∫ 1

0

|u′′(x)|2dx +
1

2
K̃

(∫ 1

0

(−A|u′(x)|2 + B|u(x)|2)dx

)
−
∫ 1

0

H(u(x))dx,

Ψ(u) =

∫ 1

0

F (x, u(x))dx +
µ̄

λ̄

∫ 1

0

G(x, u(x))dx

and put

Iλ̄(u) = Φ(u) − λ̄Ψ(u).

It is well known Φ is a differentiable functional whose differential at the point u ∈ X

is the functional Φ′(u) ∈ X∗, given by

Φ′(u)(v) =

∫ 1

0

u′′(x)v′′(x)dx + K

(∫ 1

0

(−A|u′(x)|2 + B|u(x)|2)dx

)

×
∫ 1

0

(−Au′(x)v′(x) + Bu(x)v(x))dx −
∫ 1

0

h(u(x))v(x)dx

for every v ∈ X. Moreover, Φ is a weakly sequentially weakly lower semicontinuous

on X. Indeed, consider an arbitrary u ∈ X and {un}∞n=1 ⊂ X such that un ⇀ u in X.

Due to the compact embedding X into C([0, 1]), we have that un → u in C([0, 1]).

This implies

(3.2) K̃

(∫ 1

0

(−A|u′
n(x)|2 + B|un(x)|2)dx

)
→ K̃

(∫ 1

0

(−A|u′(x)|2 + B|u(x)|2)dx

)

and

(3.3)

∫ 1

0

H(un(x))dx →
∫ 1

0

H(u(x))dx.

Moreover,the weakly sequentially lower semicontinuous property of the ‖.‖ implies

(3.4) lim inf
n→+∞

‖un‖2 ≥ ‖u‖2.

From (3.2)–(3.4) we have

lim inf
n→+∞

Φ(un) ≥ Φ(u).
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Since

Φ(u) =
1

2

∫ 1

0

|u′′(x)|2dx +
1

2
K̃

(∫ 1

0

(−A|u′(x)|2 + B|u(x)|2)dx

)
−
∫ 1

0

H(u(x))dx

≥ 1

2
min{1, m0}‖u‖2 − L

∫ 1

0

|u(x)|2dx

≥ 1

2

(
min{1, m0} −

L

4π2δ2

)
‖u‖2,

taking the condition min{1, m0} > L
4π2δ2 into account we observe Φ is coercive. More-

over, Φ is strongly continuous. The functional Ψ is also a differentiable functional

whose differential at the point u ∈ X is the functional Ψ′(u) ∈ X∗, given by

Ψ′(u)(v) =

∫ 1

0

f(x, u(x))v(x)dx +
µ̄

λ̄

∫ 1

0

g(x, u(x))v(x)dx,

for every v ∈ X. On the other hand, the fact that X is compact embedding X

into C[0, 1] implies that the functional Ψ is continuously differentiable with compact

derivative. Hence Ψ sequentially weakly (upper) continuous (see [31, Corollary 41.9]).

Now set

Q(x, ξ) = F (x, ξ) +
µ̄

λ̄
G(x, ξ)

for all (x, ξ) ∈ [0, 1] × R. Let {ξn} be a sequence of positive numbers such that

ξn → +∞ as n → ∞ and

(3.5) lim
n→∞

∫ 1

0
sup|t|≤ξn

Q(x, t)dx

ξ2
n

= lim
ξ→+∞

∫ 1

0
sup|t|≤ξ Q(x, t)dx

ξ2
.

For all n ∈ N, put rn = 2π2δ2(min{1, m0} − L
4π2δ2 )ξ

2
n. Since

1

2

(
min{1, m0} −

L

4π2δ2

)
‖u‖2 ≤ Φ(u)

for each u ∈ X and bearing (2.1) in mind, we see that

Φ−1(−∞, rn) = {u ∈ X; Φ(u) < rn}

=

{
u ∈ X;

1

2

(
min{1, m0} −

L

4π2δ2

)
‖u‖2 < rn

}

⊆ {u ∈ X; |u(x)| ≤ ξn for each x ∈ [0, 1]} .
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Note that Φ(0) = Ψ(0) = 0. Hence, for all n ∈ N, one has

ϕ(rn) = inf
u∈Φ−1(−∞,rn)

supv∈Φ−1(−∞,rn) Ψ(v) − Ψ(u)

rn − Φ(u)

≤
supv∈Φ−1(−∞,rn) Ψ(v)

rn

≤ 1

2π2δ2(min{1, m0} − L
4π2δ2 )

∫ 1

0
sup|t|≤ξn

Q(x, t)dx

ξ2
n

≤ 1

2π2δ2(min{1, m0} − L
4π2δ2 )

[∫ 1

0
sup|t|≤ξn

F (x, t)dx

ξ2
n

+
µ̄

λ̄

∫ 1

0
sup|t|≤ξn

G(x, t)dx

ξ2
n

]

Moreover, Assumption (A2) follows that

lim inf
ξ→+∞

∫ 1

0

max
|t|≤ξ

F (x, t)dx

ξ2
< +∞,

so we have

(3.6) lim
n→∞

∫ 1

0

max
|t|≤ξn

F (x, t)dx

ξ2
n

< +∞.

Then, (3.1) together with (3.6) ensures

lim
n→∞

∫ 1

0
max|t|≤ξn F (x, t)dx

ξ2
n

+ lim
n→∞

µ̄

λ̄

∫ 1

0
max|t|≤ξn G(x, t)dx

ξ2
n

< +∞,

which follows

lim
n→∞

∫ 1

0
max|t|≤ξn [F (x, t) + µ̄

λ̄
G(x, t)]dx

ξ2
n

< +∞.

Therefore,

(3.7) γ ≤ lim inf
n→+∞

ϕ(rn) ≤ lim
n→∞

∫ 1

0
max|t|≤ξn

[F (x, t) + µ̄
λ̄
G(x, t)]dx

2π2δ2(min{1, m0} − L
4π2δ2 )

< +∞.

Since
∫ 1

0
max|t|≤ξn[F (x, t) + µ̄

λ̄
G(x, t)]dx

ξ2
n

≤
∫ 1

0
max|t|≤ξn

F (x, t)dx

ξ2
n

+
µ̄

λ̄

∫ 1

0
max|t|≤ξn

G(x, t)dx

ξ2
n

,

bearing (3.1) in mind, one has

lim inf
ξ→+∞

∫ 1

0
max|t|≤ξ Q(x, t)dx

2π2δ2(min{1, m0} − L
4π2δ2 )ξ2

≤ lim inf
ξ→+∞

∫ 1

0
max|t|≤ξ F (x, t)dx

2π2δ2(min{1, m0} − L
4π2δ2 )ξ2

+
µ̄

λ̄
G∞.(3.8)
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Moreover, since G is non-negative, we have

(3.9) lim sup
ξ→+∞

∫ 5

8
3

8

Q(x, ξ)dx

ξ2
≥ lim sup

ξ→+∞

∫ 5

8
3

8

F (x, ξ)dx

ξ2
.

Therefore, from (3.8) and (3.9), and from Assumption (A2) and (3.7) we have

λ̄ ∈]z1, z2[⊆
] 2π2δ2

k
(max{1, m1} + L

4π2δ2 )

lim supξ→+∞

R

5
8
3
8

Q(x,ξ)dx

ξ2

,
2π2δ2(min{1, m0} − L

4π2δ2 )

lim infξ→+∞

R

1

0
sup|t|≤ξ Q(x,t)dx

ξ2

[
⊆
]
0,

1

γ

[
.

For the fixed λ, the inequality (3.7) concludes that the condition (b) of Theorem 2.1

can be applied and either Iλ has a global minimum or there exists a sequence {un}
of weak solutions of the problem (1.1) such that limn→+∞ ‖u‖ = +∞.

The other step is to prove that for the fixed λ the functional Iλ has no global minimum.

Let us show that the functional Iλ is unbounded from below. Since

1

λ̄
<

1
2π2δ2

k
(max{1, m1} + L

4π2δ2 )
lim sup
ξ→+∞

∫ 5

8
3

8

F (x, ξ)dx

ξ2

there exists a sequence {ηn} of positive numbers and a constant θ such that ηn → ∞
as n → ∞ and

(3.10)
1

λ̄
< θ ≤ 1

2π2δ2

k
(max{1, m1} + L

4π2δ2 )

∫ 5

8
3

8

F (x, ηn)dx

η2
n

for each n ∈ N large enough. For all n ∈ N define

wn(x) :=






−64ηn

9
(x2 − 3

4
x) if x ∈ [0, 3

8
]

ηn if x ∈]3
8
, 5

8
]

−64ηn

9
(x2 − 5

4
x + 1

4
) if x ∈]5

8
, 1].

We clearly observe that wn ∈ X and ‖wn‖2 = 4δ2π2

k
η2

n and so

(3.11) Φ(wn) ≤ 2π2δ2

k

(
max{1, m1} +

L

4π2δ2

)
η2

n.

On the other hand, bearing (A1) in mind and since G is nonnegative, we have

(3.12) Ψ(wn) ≥
∫ 5

8

3

8

F (x, ηn)dx.

It follows from (3.10)–(3.12) that

Iλ̄(wn) = Φ(wn) − λ̄Ψ(wn)

≤ 2π2δ2

k

(
max{1, m1} +

L

4π2δ2

)
η2

n − λ̄

∫ 5

8

3

8

F (x, ηn)dx

<
2π2δ2

k

(
max{1, m1} +

L

4π2δ2

)
η2

n(1 − λ̄θ)
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for every n ∈ N large enough. Since λ̄θ > 1 and ηn → ∞ as n → ∞, we have

lim
n→∞

Iλ̄(wn) = −∞

and it follows that Iλ̄ has no global minimum. Therefore, taking the fact

Φ(u) ≤ 1

2

(
max{1, m1} +

L

4π2δ2

)
‖u‖2

into account, by Theorem 2.1 (b), there exist a sequence {un} of critical points of

Iλ̄ such that limn→∞ ‖un‖ = +∞. Since the weak solutions of the problem (1.1) are

exactly the solutions of the equation I ′
λ
(u) = 0 and they are also generalized solutions,

the conclusion is achieved.

Now we present the following example to illustrate the result.

Example 3.2. Let K(t) = 2 + sin t for all t ∈ [0, +∞),

f(x, t) =

{
ex2

(5t4(1 − cos( et

t
)) + t3(t − 1)et sin( et

t
)) if (x, t) ∈ [0, 1] × (R − {0})

0 if (x, t) ∈ [0, 1] × {0}

g(x, t) = g(t) = t + 1 for all x ∈ [0, 1] and t ∈ R, and h(t) = arctan t for all t ∈ R and

A = B = 1. Clearly, m0 = 1, m1 = 3, δ =
√

1 − 1
π2 and L = 1. A simple calculation

shows that

F (x, t) :=

{
ex2

t5(1 − cos( et

t
)) if (x, t) ∈ [0, 1] × (R − {0})

0 if (x, t) ∈ [0, 1] × {0}.

It is clear that

C := lim inf
ξ→+∞

∫ 1

0
sup|t|≤ξ F (x, t)dx

ξ2
= 0,

D := lim sup
ξ→+∞

∫ 5

8
3

8

F (x, ξ)dx

ξ2
= +∞

and

G∞ =
1

2π2δ2(min{1, m0} − L
4π2δ2 )

lim
ξ→+∞

∫ 1

0
sup|t|≤ξ G(x, t)dx

ξ2
=

1

4π2 − 5
.

Hence, by Theorem 3.1, for every λ ∈ (0, +∞) and µ ∈ [0, 4π2 − 5) the problem




uiυ + (2 + sin
(∫ 1

0
(−|u′(x)|2 + |u(x)|2)dx

)
(u′′ + u))

= λf(x, u) + µ(u + 1) + arctanu, x ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0

has a sequence of generalized solutions which is unbounded in X.
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Remark 3.3. In Theorem 3.1, if we assume that the function f is nonnegative, the

assumption (A2) can be written as

lim inf
ξ→+∞

∫ 1

0
F (x, ξ)dx

ξ2
< kτ lim sup

ξ→+∞

∫ 5

8
3

8

F (x, ξ)dx

ξ2

as well as µg,λ = 1
G∞

(1 − λ
2π2δ2(min{1,m0}−

L

4π2δ2
)
lim infξ→+∞

R 1

0
F (x,ξ)dx

ξ2 ). Moreover, in

the autonomous case, putting F (t) =
∫ t

0
f(ξ)dξ for all t ∈ R, the assumption (A2)

assumes the form

lim inf
ξ→+∞

F (ξ)

ξ2
<

kτ

4
lim sup
ξ→+∞

F (ξ)

ξ2
,

and in this case, we have

λ1 =
8π2δ2(max{1, m1} + L

4π2δ2 )

k lim supξ→+∞
F (ξ)
ξ2

and λ2 =
2π2δ2(min{1, m0} − L

4π2δ2 )

lim infξ→+∞
F (ξ)
ξ2

and µg,λ = 1
G∞

(1 − λ
2π2δ2(min{1,m0}−

L

4π2δ2
)
lim infξ→+∞

F (ξ)
ξ2 ).

Here we point out the following consequence of Theorem 3.1 with µ = 0.

Corollary 3.4. Assume that Assumption (A1) in Theorem 3.1 holds and

D >
2π2δ2

k

(
max{1, m1} +

L

4π2δ2

)

and

C < 2π2δ2

(
min{1, m0} −

L

4π2δ2

)
.

Then, the problem

{
T (u) = f(x, u) + h(u), x ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0

has an unbounded sequence of generalized solution in X.

Remark 3.5. Theorem 2.2 is an immediately consequence of Corollary 3.4.

Now, we give the following consequence of the main result.

Corollary 3.6. Let f1 : [0, 1] → R be a nonnegative continuous function, and put

F1(t) =
∫ t

0
f1(s)ds for all t ∈ R. Assume that

(B1) lim infξ→+∞
F1(ξ)

ξ2 < +∞,

(B2) lim supξ→+∞
F1(ξ)

ξ2 = +∞.
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Then for every α, β ∈ L2([0, 1]) with minx∈[0,1]{α(x), β(x)} ≥ 0 and α 6= 0, and for

every nonnegative continuous function f2 : R → R satisfying supξ∈R
F2(ξ) ≥ 0 and

lim infξ→+∞
F2(ξ)

ξ2 > −∞ where F2(t) =
∫ t

0
f2(ξ)dξ for all t ∈ R, for each

λ ∈
(

0,
2π2δ2(min{1, m0} − L

4π2δ2 )

(
∫ 1

0
β(x)dx) lim infξ→+∞

F1(ξ)
ξ2

)

the problem
{

T (u) = λ(α(x)f1(u) + β(x)f2(u)) + h(u), x ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0

has an unbounded sequence of generalized solution in X.

Proof. Put f(x, t) = α(x)f1(u) + β(x)f2(u) for all (x, t) ∈ [0, 1] × R. From the

assumption (B2) and the condition lim infξ→+∞
F2(ξ)

ξ2 > −∞ we have

lim sup
ξ→+∞

∫ 5

8
3

8

F (x, ξ)dx

ξ2
= lim sup

ξ→+∞

F1(ξ)
∫ 5

8
3

8

α(x)dx + F2(ξ)
∫ 5

8
3

8

β(x)dx

ξ2
= +∞.

Moreover, from the assumption (B1) and the condition supξ∈R
F2(ξ) ≥ 0 we obtain

lim inf
ξ→+∞

∫ 1

0
sup|t|≤ξ F (x, t)dx

ξ2
≤
(∫ 1

0

α(x)dx

)
lim inf
ξ→+∞

F1(ξ)

ξ2
< +∞.

Hence, the conclusion follows from Theorem 3.1 with µ = 0.

Remark 3.7. We point out that the same statements of the above given results can

be obtained by considering

K(t) = a1t + a2 for t ∈ [α, β]

where a1, a2, α and β are positive numbers. In fact, in this special case we have

K̃(t) =

∫ t

0

[a1s + a2] ds =
(a1t + a2)

2

2a1
− a2

2

2a1
for t ≥ 0,

m0 = a1α + a2 and m1 = a1β + a2.

Remark 3.8. Replacing ξ → +∞ with ξ → 0+ in Theorem 3.1, by the same way as

in the proof of Theorem 3.1 but using conclusion (c) of Theorem 3.1 instead of (b),

we can obtain a sequence of pairwise distinct generalized solutions to the problem

(1.1) which converges uniformly to zero.

We finally present the following example to illustrate the result.

Example 3.9. Let K(t) = 2 + cos t for all t ∈ [0,∞),

f(t) =

{
2t + 2αt sin2(ln t) + 2αt cos(ln t) sin(ln t) if t ∈]0, +∞[

0 if t ∈] −∞, 0].
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where α > 51 is a real number, h(t) =
√

t2 + 1 − 1 for all t ∈ R, A = B = 1, µ = 0.

In this case, we have δ =
√

1 − 1
π2 , L = 1, τ = 4π2−5

12π2−11
, k = (2π2 − 2) 1080

78431
. Putting

F (t) =
∫ t

0
f(ξ)dξ for all t ∈ R, we have

F (t) =

{
t2(1 + α sin2(ln t)) if t ∈]0, +∞[

0 if t ∈] −∞, 0].

Setting an = e−nπ, bn = e−( 2n+1

2
)π for every n ∈ N, one has

(3.13) C := lim inf
ξ→0+

F (ξ)

ξ2
≤ lim

n→∞

F (an)

a2
n

= 1

and

(3.14) D := lim sup
ξ→0+

F (ξ)

ξ2
> lim

n→∞

F (bn)

b2
n

= α + 1.

By (3.13) and (3.14) we obtain

lim inf
ξ→0+

F (ξ)

ξ2
<

kτ

4
lim sup

ξ→0+

F (ξ)

ξ2
,

as well as
(

2(12π2 − 11)

(α + 1)k
,
4π2 − 5

2

)

⊂
(

8π2δ2(max{1, m1} + L
4π2δ2 )

k lim supξ→0+

F (ξ)
ξ2

,
2π2δ2(min{1, m0} − L

4π2δ2 )

lim infξ→0+
F (ξ)
ξ2

)
.

Therefore, by applying Remark 3.3 and Remark 3.8, for every λ ∈
(

2(12π2−11)
(α+1)k

, 4π2−5
2

)

the problem




uiυ + (2 + cos
(∫ 1

0
(−|u′(x)|2 + |u(x)|2)dx

)
(u′′ + u)

= λf(u) +
√

u2 + 1 − 1, x ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0

has a sequence of pairwise distinct generalized solutions which converges uniformly

to zero.

Remark 3.10. If f, g are non-negative functions, arguing as given in the proof of

[17, Lemma 3.4.] one has, the generalized solutions ensured by the previous theorems

are non-negative. In addition, if either f(x, 0) 6= 0 for all x ∈ (0, 1) or g(x, 0) 6= 0 for

all x ∈ (0, 1), or both are true, the solutions are positive.
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