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ABSTRACT. The main aim of the paper is to suggest some algorithms to approximately solve
the initial value problem for scalar nonlinear Caputo fractional differential equations with non-
instantaneous impulses. The impulses start abruptly at some points and their action continue on
given finite intervals. We study the case when the right hand side of the equations are monotonic
functions. Several types of mild lower and mild upper solutions to the problem are defined and used
in the algorithms. The convergence of the successive approximations is established. A generalization

of the logistic equation is given to illustrate the results.
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1. Introduction

In the real world there are many processes and phenomena that are characterized
by rapid changes in their state and these changes are adequately modeled by impulses.

In the literature there are two popular types of impulses:

- instantaneous impulses — the duration of these changes is relatively short com-
pared to the overall duration of the whole process. The model is given by
impulsive differential equations (see, for example, the monograph [20] and the
cited references therein);

- non-instantaneous impulses — an impulsive action, which starts at an arbitrary
fixed point and remains active on a finite time interval (see, for example, [13],
[16], [22], [28]).

This paper considers an initial value problem for a nonlinear scalar non-instantaneous

impulsive Caputo fractional differential equation on a closed interval. The monotone
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iterative technique combined with the method of lower and upper solutions is applied
to approximately find the solution of the given problem. Several types of lower and
upper solutions are presented. We study the case when the right hand side of the
equations are monotone. Several procedures for constructing two monotone func-
tional sequences are given. The elements of these sequences are solutions of suitably
chosen initial value problems for scalar linear non-instantaneous impulsive fractional
differential equations (for which there are explicit formulas). We prove that both
sequences converge and their limits are minimal and maximal solutions of the prob-
lem. A non-instantaneous impulsive fractional generalization of the logistic equation

is given to illustrate the procedure.

We note that iterative techniques combined with lower and upper solutions are ap-
plied in the literature to approximately solve various problems in ordinary differential
equations [19], for second order periodic boundary value problems [10], for differential
equations with maxima [3], [14], for difference equations with maxima [7], for impul-
sive differential equations [9], [12], for impulsive integro-differential equations [15],
for impulsive differential equations with supremum [17], for differential equations of
mixed type [18], for Riemann-Liouville fractional differential equations [8], [25], [27],
for Caputo impulsive fractional differential equations [11] and for non-instantaneous

impulsive differential equation [6].

2. Preliminary and auxiliary results

In this paper we will assume two increasing finite sequences of points {¢;}7_, and
{s:}'_, are given such that to = 0 < s; < ti41 < $i11,0=0,1,2,...,p—1, and T = s,

p is a natural number.

Remark 1. The intervals (sg,txy1], £ =0,1,2,...,p — 1 are called intervals of non-

instantaneous impulses.

Consider the initial value problem (IVP) for the nonlinear non-instantaneous

impulsive Caputo-type fractional differential equation (NIFrDE)
“Dg x(t) = F(t,z) for t € (ty,s], k=0,1,...,p,
z(t) = x(sg — 0) + P (t, z(t), x(sr — 0)),
for t € (sg,tga], k=0,1,....,p—1,
z(0) = o,
where ¢ € (0,1), z,z9 € R, F(t,z) = f(t,z) + g(t, ), f, 9 : Ui_o[tr, sk] x R — R,

(I)(tu xvy> = ¢k(t,$, y)—i_wk(t? $7y)7 ¢k7¢k : [Skvtk—l-l] XRxR — Rv (k = 07 17 27 SRRy 2
1), and the fractional derivative ©Di m(t) = ﬁ fot (t—s)"9m/(s)ds, t > 0.

(2.1)

Note the functions f(¢,x) and g(¢, z) will have different properties, which will be

defined later. The same can be said concerning the functions ¢ (¢, , y) and ¥ (t, z, ).
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Remark 2. If t411 = s;, K =0,1,2,...,p, then the IVP for NIFrDE (2.1) reduces to

an [VP for impulsive fractional differential equations.

Consider the corresponding IVP for FrDE
(2.2) “Dix(t) = F(t,x) fort e [r,s] with z(r) = o,
where T € [t,sk), k=0,1,2,...,p.
The IVP for FrDE (2.2) is equivalent to the following Volterra integral equation

1 -
>/T(t—s) F(s,x(s))ds fort e [r,sg].

Also consider the special case of a fractional differential equation where the right

side does not depend on the unknown function, i.e.
“Dix(t) = G(t) for t € (ty,sx], k=0,1,...,p,
(2.4) z(t) = x(sg — 0) + gi(t), for t € (s, tp1], k=0,1,....,p—1,
z(0) = xo,
where ¢ € (0,1), z,z0 € R, G : U _o[tx,sx] — R, gi(t) : [sg,ter1] — R, (K =
0,1,2,....,p—1).
We introduce the following classes of functions
NPC([0,T]) = {u:[0,T] = R:u € C'(U_,ltr, sx), R) :
u(s

k) = u(sp —0) —hmu(t) < 00,
W' (sg) = limu/(t) < oo, k=0,1,2,....,p+ 1},
)

tTSk

u(sk +0) =limu(t) < 0, k=0,1,2,...,p},

tlsg

PCO([0,T)) = {u: [0,T] = R:u e NPC([0,T]), u € C(U"L (1, trpa] R)}.

There are two points of view of the interpretation of the solutions to (2.1).

A. Some authors emphasize the presence of Caputo fractional derivative © Dz (t)
in (2.1) and the memory property of the fractional derivative. They assume the
function F(¢, x) is defined on the whole interval of consideration [0, 7] including
the intervals without non-instantaneous impulses (sg,tx41], £ = 0,1,...,p — 1,
and provide an integral presentation to (2.1) with the integral f(f(t —8)I7 1P (s,
x(s))ds for t € (tg, sk], k=0,1,...,p. In [29] a formula for the solution of IVP
for NIFrDE (2.4) is given in the case when the impulsive condition is given by
x(t) = gr(t), t € (sk,tgs1], k=0,1,...,p—1:

gk(t), te (Sk,tk+1], k’zo,l,...,p—l
(25)  a(t) = € gelts) + w7 Jo (t = )7 G(8)ds — w5 [o* (b — 8)77'G(s)ds
te(tk,sk], k=0,1,2,...p.
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The function given by (2.5) has a Caputo fractional derivative ©D{z(¢) but the
function G(t) has to be at least integrable on the whole interval [0,7]. Note
formula (2.5) defines a solution depending on the initial value xy only on the
interval [0, so]. To obtain a solution depending on the initial value z on the
whole interval [0, 7] and following the above approach we obtain the solution of
the IVP for NIFrDE (2.4) as

(2.6)

x(sk_o)—i_gk(t)? te(skvtk—l-l]v k:0717"'7p_17

w(t) = § @(sk — 0) + gi(tx) + mg Jo (t = 8)77 G (s)ds — w1 [o" (s — 5)77 G (s)ds,

tG(tk,Sk], k=0,1,2,...p.

B. Some authors base it on the differential equation in (2.1) which is satisfied only

on the intervals (t, sx) without non-instantaneous impulses. Note the right hand
side F'(t,x) does not have to be defined on the intervals of non-instantaneous
impulses. Note there is a fractional derivative “ D¢ z(t) which has a memory
(i.e. the integral [ (t—s)?~'a’(s)ds has to exist for any ¢ > 0). The solution z(t)
is defined on the intervals of non-instantaneous impulses by the second equation
of (2.1) and in the general case it need not be differentiable on (s, tx1]. To
avoid the above some authors consider the fractional derivative “D{ x(t) of
the unknown solution only on the intervals (¢, six) by changing the lower limit
of the Caputo derivative at 0 to t; (see, for example, [1], [2], [4], [5]).

In applications approach A (and (2.6)) and the definition of the function F(t)

on the intervals (s, tg11] of non-instantaneous impulses has a huge influence on the

formula (2.6) (in spite of the fact that it is not given in the statement of problem

(2.4)).
Example 1. Let ¢ =0.5,t0=0,s =1,t; = 2,51, =3=1T.

Case 1. Let G(t) =1, t € [0,3], and go(t) =t for t € [1,2].
Consider the scalar IVP for the NIFrDE (2.4). According to Eq. (2.6) we obtain

the solution

(2.7)

t _
20+t Jo (t = 8)™"%ds = wo + ¥, 1€ (0,1],

t _ 2 _
:L’O—l—ﬁ—l—Q—l—ﬁfo(t—s)q 1ds—ﬁf0(2—s)q Yds, te(2,3].

Case 2. Let G(t) = 1 only on the intervals without non-instantaneous impulses,

i.e. on (0,1] U (2,3], and go(t) =t for t € [1,2].
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Define two continuous functions G1(t) = 1, t € [0, 3] and

1, te0,1uU (23],

Go(t) =
At—15)2 te (1,2

Note G(t) = G1(t) = Ga(t) for t € [0,1] U [2,3]. Therefore, both functions G; and
Go could be used in the IVP for NIFrDE (2.4). Apply Eq. (2.6) and we obtain two

functions

x0+ fot—s )705ds = xo + (\[) t €[0,1],

08 5 xo + (15)+t € (1,2],

(28)  @i(t) = RS s
x0+—m5) +1+—F(0.5) Jot—s) (2 — 5)7%%ds
. =0+ 1+ \/Eljag)\/i> te (2a3]a

(2.9)

xo + (\[) t €[0,1],
IZ(t) =9 T+ (1 5) + 1+ ( 5) fol((t _ S)_0‘5 _ (2 . 3)_0'5)d8

4 _ . -
r(0.5) fl ((t—s)7%5 —(2—5)79)(s — 1.5)%ds + ﬁ it = 5)702ds

te(2,3].

Note z;(t) = xo(t) for t € [0, 2], but z1(t) # x2(t) for t € (2, 3].
Therefore to use approach A (and Eq. (2.6)) for the solution the right hand side

of the fractional differential equation has to be defined initially on the whole interval

of consideration. O

Note approach A is used to derive formula (19) in [30] for the solution of (2.1)

which depends on an arbitrary constant and it does not guarantee the uniqueness.

To avoid the misunderstanding mentioned in Example 4 we will define a special
type of solution of (2.1) combining the equivalent integral presentation (2.3) of the
fractional differential equation (2.2) with the requirement concerning the domain
of the right side part F(t,z) of the differential equation in the IVP for NIFrDE
(2.1). We will assume this function is not necessarily defined on the intervals of

non-instantaneous impulses.

Following approach B and the integral presentation (2.3) of the solution of the
FRDE (2.2) we present the following definition.

Definition 1. A function z(t) € PC([0,7],R) is called a mild solution of the IVP
for NIFrDE (2.1) if
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- for any t € [tg, sk], K =0,1,2,...,p the integral equality

(2.10)
z(t) = xo+
k—1 1 s -
+ ;) T /tj (sj — ) (F(s, 2(5))ds + ®;(t; 1, 2(t;41), 2(s; — 0))>
+ g ), 6= s
holds;

- for any t € (sg, tgy1), K =0,1,2,...,p — 1 the equality
x(t) = x(sg — 0) + P (t, z(t), x(sr, — 0))

holds.

Then from (2.10) we get

k=1 s,
z(sg—1 —0) = x¢ + ﬁ Z /t (s; — 8)7 ' F(s,2(s))ds
£ 3701y, (t511), (s — 0).

J=0

Remark 3. For any ¢t € (tg,sx], £ = 0,1,2,...,p the mild solution satisfies the

Caputo fractional differential equation (2.2) with 7 = ¢; and

o=+ 3 g (5= 9 (Flosaods + y50,0(t50), 205, ~ )
= ZL’(Sk_l - O) + q)k(tk, l’(tk),l’(sk_l — O))

The mild solution given in Definition 1 generalizes many known cases.

1. Let ¢ = 1, i.e. consider the non-instantaneous impulsive differential equation
with an ordinary first order derivative. Then from (2.10) we obtain the following

formula for the solution

(2.11)
k-1
x(t) = 20 + Z D (tjs1, 2(tjr), v(s; — 0))

S5 t
/ F(s,z(s))ds —i—/ F(s,z(s))ds, te& (tg,s], k=0,1,2,...,p.
tj

tg
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2. Let g =1and ty4 1 = sk, k=0,1,2,...,p, i.e. consider the impulsive differential
equation with an ordinary first order derivative. Then from (2.10) we obtain the
following formula for the solution

k—1

(2.12) o(t) =20+ /to F(s,z(s))ds + j; ®;(s5,z(s; +0),2(s; — 0)),

tG(Sk_l,Sk], k=0,1,2,...,p
where s_; = t.
3. Let ¢ € (0,1) and tx1 = sk, K = 0,1,2,...,p, i.e. consider the impulsive
fractional differential equation with a Caputo fractional derivative. Then from

(2.10) we obtain the following formula for the solution

x(t) = xo + i ®;(sj,2(s; +0),2(s; — 0))
(2.13) 1 S ) t
! e I'(q) / Fls,wls))ds + T'(q) / F(s,z(s))ds,

te(sj-1,86), k=0,1,2,...,p.

where s_; = t.

Note in both Case 1 and Case 3 for any t € (sg,tg41], £ =0,1,2,...,p — 1 the
equality

x(t) = x(sp — 0) + Pr(t, x(t), z(sp — 0))

holds.

We will apply Definition 1 to find the solution in Example 1.
Example 2. Let ¢ =0.5,t=0,s0=1,t1 =2, =3="T. Let G(t) = 1 only on
the intervals without non-impulses, i.e. let G(¢) = 1 on (0,1] U (2, 3], and go(t) = ¢
for t € [1,2].

Consider the scalar IVP for the NIFrDE (2.4). According to Definition 1 the mild

solution is given by

(20 + L, telo,1],

T(1.5)
(2.14)  z(t) = { To + ﬁ +t, te(l,2],
To + ﬁ +1+ ﬁ fol(t — 5)705ds + F(é.s) f;(t — 5)=05ds
L =x0+ 1+ p(11.5) + \/ﬁ;’)\/{ + F(tl_‘;, te (2,3

Note here the function G(t) is not necessarily defined on the interval [1,2] of non-
instantaneous impulse. ]
Example 3. Let ¢ = 0.5, 60 =0, so =1, t; =2, sy =3 =T and G(t) = —,
t € (0,1]U(2,3], and go(t) =t for t € [1,2]. Consider the scalar IVP for the NIFrDE
2.4.
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The function G(t) is not defined on the whole interval [0,3] and the integral
fot(t — 5)7%—L_ds is not convergent on [0,3]. Therefore, formula (2.6) could not be
applied and the IVP for NIFrDE (2.4) has no solution using approach A.

The mild solution presented in Definition 1 exists and it is given by

(20 + s Jy(t — s)—05 ods, telo1],
1 1 —05_1
o(t) = xo—l——r(o_s)fo(l—s ——=ds+t, te(l,2],
1
To+ 1+ —F(Olﬁ) Jo (1 —s)700—L=ds

t _
\ +r(é_5) Lt =)0 —=ds, te (23]

U
Consider the IVP for the NIFrDE (2.4). The mild solution of (2.4) is given by

(k_0)+gk() t€<8k,tk+1] ]{?:0,1,2’...’])—17
(215) #(t) = { w0+ X gity) + X2 r [t — 5)71Gls)ds
Fq)ftkt—squ( )ds, t € (ty,sk), k=0,1,2,...,p.

For any pair of functions v, w € PCY0,T1]) such that v(¢t) < w(t) for t € [0,T7], we
define the sets

S(v,w) ={ue PC":v(t) < (t)gw(t), t € 10,711},
fort € [tg,sk]}, k=0,1,...,p,
x for t € (sg,tps1]}, k=0,1,...,p—1,
={reR:v(sy —0) <z <w(s—0)}), k=0,1,2...,p—1.

3. Mild lower and mild upper solutions of NIFrDE

Following the ideas in [23] we present various type of lower/upper solutions of
the NIFrDE.

Definition 2. We say that the function v(t) € PC(]0,7]) is a mild minimal (mild
maximal) solution of the IVP for NIFrDE (2.1) if it is a mild solution of (2.1) and for
any mild solution u(t) € PC([0,T]) of (2.1) the inequality v(¢) < u(t) (v(t) > u(t))
holds on [0, 7.
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For any functions &, n € PC([0,T]) and vector a € RP, a = (a1, a9, ...,a,) we
define the operator A : R? x PC([0,T]) x PC([0,T]) — PC([0,T]) by the equalities

(@0 + Z?;ol ¢j(tjt1, (1), &(s; — 0))
el S [ (55 — )1 (s, ()
gy Jo (6= 5)17 f(5,6(s))ds,
+ 300 Wit n(tia) . m(s; — 0))
1) Ala,&n)(t) = it g0 Jo (55— 8)7 g (s, m(s))ds
ek [t — )1 g (s, nls)ds,
t e (tg,sk), k=0,1,2,...,p,
ap—1+ ¢x(t, (1), E(sk — 0)) + Ul n(t), n(sk — 0)),
t€ (Sgytrs1], k=0,1,2,...,p— 1.

\

Remark 4. Any mild solution u(t) of the IVP for NIFrDE (2.1) satisfies the equality
u(t) = Au,u)(t) on [0,T].

Apply Definition 1 and similar to Definition 2.7 [23] we present the following

definition.

Definition 3. We say that the function v(t) € PC([0,77) is a mild lower (mild upper)
solution of the IVP for NIFrDE (2.1) if v(¢) < (>)A(v,v)(t) on [0, 7.

Definition 4. We say that the functions v,w € PC([0,T]) form a couple of mild
solutions of the IVP for NIFrDE (2.1) if

v(t) = Ala,v,w)(t), w(t) = A(b,w,v)(t) fortel0,T],

where a = (a1, as,...,a,), ap = v(sp_1—0),k =1,2,...,pand b = (b1, ba, ..., b,), by =
w(sg—1—0), k=1,2,...,p.

Definition 5. We say that the functions v,w € PC([0,T]) form a couple of mild
minimal and maximal solutions of the IVP for NIFrDE (2.1) if v, w form a couple
of mild solutions and for any couple of mild solutions &,n € PC([0,77]) of (2.1) the
inequalities v(t) < &(t) < w(t), v(t) < n(t) < w(t) hold on [0, 7.

Definition 6. We say that the functions v(t),w(t) € PC([0,T]) form a couple of
mild lower and upper solutions of type I of the IVP for NIFrDE (2.1) if

v(t) < Aa,v,w)(t), w(t) > A(b,w,v)(t), fortel0,T],

where a = (a1,a9,...,ap), ar = v(sp_1 —0), k =1,2,...,pand b = (by,bs,...,b,),
by =w(sg—1—0), k=1,2,...,p.

Definition 7. We say that the functions v(t),w(t) € PC([0,T]) form a couple of
mild lower and upper solutions of type II of the IVP for NIFrDE (2.1) if

v(t) < Ala,w,v)(t), w(t) > A(b,v,w)(t), fortel0,T],
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where a = (a1, as,...,a,), ax = v(sg—1 —0),k = 1,2,...,p and b = (by,bs,...,b,),
bk:w(sk_l—O), ]{3:1,2,...,]9.

4. Main result

In the case when the right hand side of the NIFrDE are monotonic we present

several algorithms for constructing successive approximations to mild solutions of the
IVP for NIFrDE (2.1).

4.1. Couple of mild lower and upper solution of type I.

Theorem 4.1 (first iteration scheme). Let the following conditions be fulfilled:

1. The functions v,w € PC([0,T]) form a couple of mild lower and upper solutions
of type I of the IVP for NIFrDE (2.1) and v(t) < w(t) fort € [0,T].
2. The functions f,g € C(U_y[tk, sk], R) and for any z,y € Qx(t,v,w) : x <y and
any fived t € [ty, si| the inequalities f(t,x) < f(t,y) and g(t,z) > g(t,y) hold.
3. The functions ¢y, € C([sg,tkr1] X RX R/R), k=0,1,2,...,p— 1, and for any
fized t € [sg,trs1] and x1, 29 € Ap(t,v,w) 1 21 < g, Y1,y2 € (v, w) 1 1 < Yo
the inequality ¢p(t, z1,y1) < ¢r(t, x2,y2) holds.
4. The functions @) € C([sg, trs1] X Rx R R), k=0,1,2,...,p— 1, are such that
(i) for any y € Ti(v,w), t € [sk,trs1] there exists exactly one function u €
C([sk, tks1], R) such that u(t) = y + ®x(t, u(t),y)
(ii) for any x1,29 € Ap(t,v,w) @ 21 < 29, Y1,y2 € Tr(v,w) : y1 < yo the
inequalities ¢y (t, x1,y1) < Qr(t, T2, y2) and Yi(t, x1,y1) > Vi(t, 2, y2) hold.

Then there exist two sequences of functions {v™ ()}s° and {w™ (¢)} such that:

a. The sequences are defined by v\ (t) = v(t), wO(t) = w(t) and for n > 1

[ 20+ >0 63t v (ty4), 0 (55— 0))
ot o S (55— 8)17 f (5,0 (5))ds
i Jo (E = )77 f (5,007 (s) ) ds,
+ 3200 W (1, w D (), w55 — 0)
R R LT N
iy Ji, (= 5)7 (s, 0V (s))ds,
for t € (tg,sk], k=10,1,2,...,p,
0™ (s, — 0) + ¢p(t, v D (1), v~V (s, — 0))
+ g (t, wm D (), w Y (s, — 0)),
fort e (sp,tpr1], k=0,1,2,...,p—1,
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and
(@0 + >80 6t w D (t ), w D (s; — 0))
ity g i (85— 8)7 (s, w0 (s))ds
e Ji (= 5)7 (s, w0 (s)ds,
+ 30 (i, v (E40), 0D (55— 0))
(4.2) w™(t) = +rg > 0o L (55— s)17 g (s, 0" D(s))ds

e [ ) gl o0 s))ds,
for t € (tg,s], k=0,1,2,...,p,
w™ (s, — 0) + dp(t, w™ (), w" (s, — 0))
+hr (£, vV (2), 0D (54, — 0)),
fort € (sk,tpra], k=0,1,2,...,p—1.

b. The sequence {v™(t)} is increasing on [0, T] and the sequence {w™(t)} is de-
creasing on [0,T] and

U(n) (t) < ,U(n-l-l)(t)
(4.3) < <w™V ) <w™(t) forte[0,T]), n=0,1,2,....

c. Both sequences converge on [0,T] and V(t) = 1}520 v (t), W(t) = khig w™ (t)
on [0,T7].

d. The limit functions (V(t), W(t)) form a couple of mild minimal and mazximal
solution of IVP for NIFrDE (2.1) in S(v,w).

Proof. We use induction to prove properties of the sequences of successive approxi-

mations.

Let n = 1. Define u(t) = v (t) — oW (¢t) for t € [0,T]. For any t € (t, s,
k=0,1,...,p, from Eq. (4.1), Condition 1, and the monotonicity of the functions
f, 9, dr, ¥ we obtain p(t) < 0. Therefore pu(s, —0) <0, k=0,1,...,p.

For any t € (sg,trs1], k=0,1,2,...,p—1, from Eq. (4.1) and the monotonicity
of the functions ¢, ¥, we get the inequality

(4.4)  pu(t) <vO®sp —0) =W (s, —0) <0, te (sptpp], k=0,1,2,...,p—1.

Therefore v© () < oW (t), t € [0, T).

Similarly, we prove w® () > w™M(t), t € [0, T).
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Define p(t) = vW () —wM(¢) for t € [0, T]. From Eq. (4.1) and Eq. (4.2) for any
t € (tg,sr], k=0,1,...,p, we obtain

(4.5)
k—1

ut) =2 <¢j(tj+17 VO (t521), 0 (55 = 0)) = d5(t1, 0O (t11), w0 (s — 0)))

Jj=0
k—1

£ 30 (0t 0O (t0), 00 (55 = 0) = (00,00 (110). 0O (5, — 0)

j=0

i@ Z [ s (#0055 s

1 [ = () = fs () ).

i@ Z [ o= (s, w6) = g, 05D ) s

w17 | = (st w6 = gl 0V s <0

For any t € (sk,tgr1], K =0,1,...,p—1, from Eq. (4.1) and Eq. (4.2), inequalities
v (s, — 0) < wW (s, —0), k =0,1,2,...,p, and the monotonicity of the functions
Ok, Y1, We obtain

p(t) = v (s — 0) —w (s, — 0)
(4.6) + ¢ (t, v (1), vO (s — 0)) — P (t, w (1), 0wV (51, — 0))
+ P (t, w0 (1), W (s, — 0)) — Yy (¢, v O (t), v (s, — 0)) < 0.

Inequalities (4.5) and (4.6) prove v (¢) < wM(t), t € [0, 7).
We proved v (¢) < oW () < wW(t) < wO(t), t €[0,T).

Let n = 1. Define u(t) = v (t) — v@(¢t) for t € [0,T]. For any t € (t,s],
k=0,1,...,p, from Eq. (4.1), Condition 1 and the monotonicity of the functions
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f, g, dr, ¥ we obtain
(4.7)

k—1
pt)=>" <¢j(tj+1a VO (t541), 0 (55 = 0)) = ¢(tj41, vV (E541), 01 (55 — 0)))
j=
k-1

+ Z% (510, 0O (112), 00 (55— 0) = Wt 0D (t550), w5, — 0)))
* ﬁ Z / sy — s (£(5.09()) = F(s5,0(5)) ) ds

g /t:@ =) (5,00 (5) = S (s, 00(s)) ) s,

* ﬁ Z / RORRT (905, 0(s)) = g5, w(s)) ) ds

+ ﬁ /t:(t - S)‘H(g(s, w®(s)) — g(s, w(”(s))>ds <0.

Inequality (4.7) proves vV (s —0) < v® (s, —0), k =0,1,...,p.

For any t € (sk,tgs1], £ =0,1,...,p — 1, from Eq. (4.1) and Eq. (4.2) and the
monotonicity of the functions ¢y, 1, we obtain

u(t) = v (s, — 0) — v (s, — 0)
(4.8) + (1,010 (), 09 (s, = 0)) = (1, 0V (2), 0 (51 — 0))
+ n(t w® (), w (s = 0)) = it w (), w (51, - 0)) < 0.
Inequalities (4.7) and (4.8) prove vV (t) < v@(t), t € [0,T).
By induction we note
(4.9) vO) <oW(t) <o <o) <w™ () < <wB () <wO(), telo,T)

hold.

We will prove the convergence of the sequences of functions {v(™(¢)}$° and
{w™(t)}s° on [0, T).

Let ¢t € [0, so]. Then from definition (3.1) of the operator A any element of the
sequences v w™ € CY([0, s, R) and

(4.10) v (t) = 2o + ﬁ /0 (t—s)1! <f(s, ™V (8)) 4 g(s, w("_l)(s))>ds

and

(A1) w®(t) =0 + 1) /0 (1 — 57" (Fls. w0 D) 4 g5, 00D (s) ) ds.

I(q)
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The sequences of functions {v™(¢)}3 and {w™ (¢)}5° being monotonic and bounded
are uniformly convergent on [0, sg]. Let V}(t) = lim,, o, v™ (), Wi (t) = lim,,_ w™ (),
t €0, so]. According to (4.9) the inequalities

(4.12) v(t) < Vi(t) < Wi(t) <w(t), tel0,sg

hold. Take the limit in (4.10) and (4.11) and we obtain the Volterra fractional integral

equations

Vlt) = 20+ o [ (6= 97 (P i)+ a5 WiGs)) s, 1€ (0,50

Wl(t)::coJrﬁ/o (t = )7 (. Wa(s)) + g5, Va(s)) ) ds. 1 € [0, 5]

Let t € (so,t1]. Then according to definition (3.1) of the operator A note
v™ w™ € C((so,t1],R) and we have

(4.14)
V() = 0™ (59 — 0) + dolt, V™D (E), 0™ D (59 — 0)) + o (t, w D (), w ™D (55 — 0))

w(t) = w™ (5o — 0) + o(t, w™ (), W™D (s — 0)) + o (t, ™V (2), ™V (50 — 0)).

(4.13)

From v™ (¢), w™(t) € PC([0,T)) it follows that v(™ (s,+0) < oo and w™ (sy+0) < 0o

exist. For any n = 1,2,... we define the functions
(n) — (n) _
v (sg +0) fort = sg, w\™(sg+0) fort = s,
5 (t) = (50+0) 0 B () = (50 +0) °
v () for t € (so,t]. w™(t) fort € (so,t].

Then o™, @™ € O([sg, 1], R). The sequences of functions {7 (¢)}5° and {@(™ ()}
being monotonic and bounded are uniformly convergent on [so,t;]. Let Va(t) =
lim,, oo 9™ (t), Wa(t) = lim,, oo 0™ (t), t € [s0,%1]. According to (4.9) the inequality
(4.15) v(t) < Va(t) < Wa(t) <w(t), te (so,t]
holds. Take the limit in (4.14) and obtain for ¢ € [sg, 1],

Va(t) = Vi(so = 0) + @o(t, Va(t), Vi(so — 0)) + tho(t, Wa(t), Wi(so — 0)),

(4.16)
Wa(t) = Wi(so — 0) + ¢o(t, Wa(t), Wi(so — 0)) + 2o(t, Va(t), Vi(so — 0)).

Let t € [t1,s1]. Then according to definition (3.1) of the operator A note
v™ w™ e CY([t, s1], R) and

(4.17)
’U(n) (t) = X0+ ¢0(t1, ’U(n_l)(tl), U(n_l)(SO - 0)) + wo(tl, w(”_l)(tl), w(n_l)(SO - 0))

L ” Sop— S q-1 S U(”_l) S s L % Sa— S q—1 s w(n_l) S
+r<q>/o<° I <>>d+r(q)/o<o )" g (s, w0 V(1))
1

— t —5)77 1 f(s,0™V(s))ds 1 t —8)7 (s, w™ Y (s))ds
50 | = O s+ s [ = gt e
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and
(4.18)
w™(t) =z + golty, w™V(t1), w" (5o — 0)) + o (tr, vV (t1), v V(s — 0))
L sos—sq_l s, w™ Y (s))ds L sos—sq_l s, v s
i [ o= w6+ s [ = 9 gt o)
L t — 8) (s, w™ D (s))ds L t — 8)9 (s, vV (s))ds
t i | €= 9 e s+ s [ = 9 tg(e o)

The sequences of functions {v™(¢)}¢° and {w™ (¢)}$° being monotonic and bounded
are uniformly convergent on [, s1]. Let Va(t) = lim,, oo v™(¢), W5(t) = lim,, o, w™(2),
t € [t1,s1]. According to (4.9) the inequality

(4.19) v(t) < Vs(t) < Ws(t) <wl(t), t€ [ty s]
holds. Take the limit in (4.17) and (4.18) and obtain

(4.20)
Va(t) = o + do(t1, Va(tr), Vi(so — 0)) + o (t1, Wa(t1), Wi(so — 0))
1

% q—1 1 K so— ) Lg(s s
+@/0 (50 — 8) f(s,%(s))ds—l—r(q)/o (so— )" g(s, Wa(t))d

1 ! q—1 L t — 35 (s s))ds
+@/t1 (t—s) f(s,%(s))ds+r(q) /t (t—s)""g(s, Wa(s))ds,

Wi(t) = xo + do(ts, Walts), Wi(so — 0)) + 9o (t1, Va(ti), Vi(so — 0))
1

0 q—1 L ” so—s)7tg(s S
+@/0 (s0 — 8) f(s,Wg(s))ds+F(q>/0 (s0—5)"g(s, Va(t))d

1 ' q-—1 L t —5)9 (s s))ds
+@/tl(t—s) f(s,WQ(s))ds+F(q>[1(t )1 g(s, Va(s))d

for ¢ c [tl,Sl].

By induction we can construct limit functions Vayi2(t), Wari2(t) € C([sk, tit1], R),
k= 0, 1, 2, .o D, and ‘/ék+1(t), W2k+1(t) S Cl([tk, Sk],R), k= 0, 1, 2, oD+ 1, which
similar to (4.16) satisfy the equations

Vor+2(t) = Varr1 (s — 0) 4+ du(t, Vawra(t), Varra (sy — 0))
+ Ui (t, Wais2(t), Warga (sk — 0)),
(4.21) Worta(t) = Wapr1(sk — 0) + ¢r(t, War42(t), Wagi1(si — 0))
+ Vi(t, Varra(t), Voria (se — 0)),
for t € [sg,tgy1], £=0,1,2,...,p—1,
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and similar to (4.13), (4.20) we have

(4.22)
k-1
Va1 (t) = 20+ Y _ 6(tjs1, Vajealtinr), Vajua(s; — 0))
=0
k-1
+ Z +1;(tj11, Wajpa(tizn), Wajra(s; — 0))
=0
i J;O <@/t] (55— 8)T71f (5, Vajia(s))ds
1 5
i [ = e Wasiale) )
i ﬁ / (t = 5)7" £ (s, Va(s))ds + ﬁ / (t — 5) g5, War(s))ds
for t € [te,sul, k=0,1,2,....p,
and
(4.23)

k—1

Wop1(t) = zo + Z G;(tjr1, Wajpa(tjzr), Wajsi(s; —0))
=0
k-1
+ Z Vi(tj41, Vajra(tjen), Vajra(s; — 0))
0

+ g <ﬁ /t:j(sj — 5)7 1 f(5, Waja(s))ds

+ ﬁ /:j(sj —5)"g(s, V2j+2($)))d$
1 t g1 L t e o
+ @/tk (t — )7L f (s, Wap(s))ds + X /tk (t — 8)172g(s, Var(s))d

fort € [tg,sk], k=0,1,2,...,p.
Define the functions V(¢), W(t) € PC([0,T],R) by

V() = Vopao(t) fort e (sg,tera], k=0,1,2,...,p—1,
Vaps1(t) fort € [ty,si], k=0,1,2,...,p,

and

W(t) . W2k+2(t) for t € (Skatk-‘rl]v ]{7:0,1,2,...,]9—1,
W2k+1(t) for ¢ € [tkv Sk]? k= 07 1727 Ry
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Similar to (4.12), (4.15), (4.19) it follows that V(¢) € S(v,w). From Eq. (4.21), (4.22)
and (4.23) and Definition 4 it follows that the functions V' (t), W (t) form a couple of
mild solutions of IVP for NIFrDE (2.1).

We now prove that the functions V' (t) and W (t) form a couple of mild minimal
and maximal solutions of IVP for NIFrDE (2.1) in S(v, w).

Let (&¢,71) € S(v,w) x S(v,w) be a couple of mild solutions of IVP for NIFrDE
(2.1). From inequality (4.9) it follows that there exists a natural number N such
that v (t) < €(t) < w™ (), v () < () < w™N(t) for t € [0,T]. Denote
p(t) = oW () — £(8), v(t) = n(t) — w™N () for t € [0,T).

Let t € (t, sk}, K =0,1,...,p. Then applying the monotonicity property of the
functions f, g, ¢;, ¥; 7 =0,1,...,m and the choice of N we obtain

ult) = A™, w™)(t) — Ag,n)(2)

k—1
<¢y 1 0N (t540), 0™ (55 = 0)) = (81, E(tj11), € (s — 0)))
=0
] k—1
37 (st 0™ t30), 0™ (55 = 0)) = w5t 1,0t 41), (s — 0)) )
7=0

+ﬁ%§?[ﬂ%—w*wwwm®%ﬁ@£®0“

b [ =9 (s (6) = (o806

+ﬁ%§i[ﬂ%—w*@@wmm%w@W®D“

+ i [ =9 (o, w6 (e ) s <0
F(Q) n
Similarly, we prove &(t) < w™N+D(t), vWVFI () < n(t) < wNF(t) t € (ty, 51
For any t € (sg,tg11], K =0,1,2,...,p—1, from the monotonicity of the functions
9,05, %5, 5 =0, 1, ...,p— 1 and the choice of N we get the inequality

plt) = v (s, = 0) — (s, = 0)
+ (1, 0™ (), 0 (s, — 0)) — it £(1), (s — 0))
+ e (t, W™ (1), 0N w(sy — 0)) — i (t,n(1), m(si — 0)) <
Similarly, we prove &(t) < w™ D (¢), oW (1) < n(t) < wNTD () t € (81, tesa]-
The inequalities v™ () < £(t) < w™(t), v™(t) < n(t) < wM(t) for t € [0,T]
and n = N, N+ 1,... prove Vor1(t) < &(t) < Worr1(t), Vara1(t) < n(t) < Worpa(t)

for t € [tkaskL k= 0>1a2>' Ry 2 and ‘/ék+2(t) S g(t) S W2k+2(t)> ‘/2k+2( ) S n(t) S
W2k+2(t) for t € [Sk,tk+1], k=0,1,2,...,p—1.
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Therefore, according to Definition 5 the functions V(¢) and W (t) form a couple
of mild minimal and maximal solutions of IVP for NIFrDE (2.1) in S(v, w). O

Theorem 4.2 (second iteration scheme). Let the conditions of Theorem 4.1 be sat-
1sfied.

Then there exist two sequences of functions {v™(t)}s° and {w™ (t)} such that:
a. The sequences are defined by v\ (t) = v(t), wO(t) = w(t) and for n > 1

[ 2o+ >80 bt T (t ), w D (s, — 0))
it g0 Ji (55— 8)77 1 f (s, w1 (s))ds
+5 i (t = )T f (s, w =D (s))ds,
+ Z;:é ;i (tj1, 0" (1), 0" (s = 0))
e T L oA
i Ji (= 8)7 g(s, 00 (s))ds,
for t € (tg,sk], k=0,1,2,...,p,
0™ (51, — 0) 4 ¢p(t, w ™V (t), w" V(s — 0))
g (t, 0D (2), v (s, — 0)),
for t € (sg,tgya],k=0,1,2,....,p—1,

and

[ 20+ >0 63t v (1), v (s; — 0))
it g Ji (85— 8)77 f (s, 007 (s))ds
+1 Jo (8= 8)77 (5,007 (s))ds,
+ 300 Uy (g, w T (4), w55 — 0))
) = Tl o el s TN
g i (= 5)7 g(s, w D (s))ds,
for t € (tg,sk], k=0,1,2,...,p,
w™ (s, — 0) 4 ¢p(t, v (2), vV (s, — 0))
g (t, w D (t), w™ V(s — 0)),
for t € (sg,tpsa],k=0,1,2,....,p— 1.

b. The sequence {v™(t)} is increasing on [0, T] and the sequence {w™(t)} is de-
creasing on [0,T] and the inequalities
0 (t) < w(l)(t) <® (t)--- < w(2n—1)(t) < (t)
(4.26) << w®(E) < 0PrTh()
< <w®@) <o) <wO(), telo,T)

hold.
c. Both sequences converge on [0, T] and V (t) = limp_oo 0™ (), W (t) = limg_oo w™ (t)
on [0,T7].
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d. The limit functions (V(t), W(t)) form a couple of mild minimal and mazximal
solution of IVP for NIFrDE (2.1) in S(v,w).

Proof. The proof is similar to that in Theorem 4.1 so we omit it. O

Theorem 4.3 (Existence of a mild solution). Let:

1. The conditions of Theorem 4.1 are satisfied.
2. There exist positive constants L¢, L, such that for x,y € Qi(t,v,w) : x <y the

inequalities

f(tvy) - f(t,$) < Lf(y - ZL’), te UZ:O[tkv Sk]v

g(tay) - g(t,l’) 2 _Lg(y - $)a t e Ui:o[tkask]
hold.

3. There exist positive constants M,‘f and M,j’ : M;f + MZ <1, k=0,1,...,p—1,
such that for x1,1y1 € Ag(t,v,w) : 1 < y; and u € T'x(v,w) the inequalities

¢k(taylau) - ¢k(t7x17u) S M]?(yl - $1)a t e [Skatk-i-l]?

Ur(t, y1,u) — Yp(t, 21, u) > —Mﬁ(yl —x1), t €[Sk, tgs]
hold.

Then V(t) = W(t) on [0,T] and the function V(t) is a mild solution of IVP for
NIFrDE (2.1) on the set S(v,w) (the limit functions V (t) and W (t) are defined in
Theorem 4.1).

Proof. Define u(t) = W(t)=V (t),t € [0,T]. According to the proof of Theorem 4.1 we
have V(t) < W(t) on [0, T] and the functions V (t), W (t) form a couple of mild minimal
and maximal solution of type I of the IVP for NIFrDE (2.1), i.e. V(t) = A(a, V, W)(?),
W(t) = Ab,W,V)(t) and p(t) > 0, t € [0,7] where a = (a1,0a2,...,0a,), a =
V(sk—1—0), k=1,2,...,pand b= (by,ba,...,by), by = W(sp—1—0), k=1,2,...,p.

Let t € [0, sg]. Then from condition 2 we obtain

u(t) = ﬁ / (= s (W) F(s. V() )ds
(4.27) +ﬁ /0 O(t—s)q_1<g(s,V(s))—g(s,W(s)))ds
Lyt Ly [ —$)7u(s)ds
= / (t — )7 u(s)ds.

The inequality (4.27) proves u(t) <0, t € [0, sql.
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Let t € (so,t1]. Then applying the monotonicity property of the function ¢y, 1y,
the inequality p(sp — 0) < 0 and Condition 3 with k£ = 0 we get

(4.28)
p(t) = Wiso — 0) = V(so — 0) + ¢o(t, W(¢), W(so — 0)) — do(t, V(t),V(so — 0))
+ ¢o(t, V (1), V(so — 0)) — ¢o(t, W(t), W(so — 0))
< do(t, W(t), V(so—0)) — ¢o(t, V(t), V(so — 0))
+ ¥o(t, V(t), W(so — 0)) — tho(t, W(¢), W(so — 0))
< (Mg + Mg )p(t).

Since M + MY < 1 inequality (4.28) proves pu(t) <0, t € (so, ).
Assume p(t) < 0 for ¢ € [0,t,,], m < p is a natural number.

Let t € (tm, Sm). Then applying the monotonicity property of the functions ¢, ¥,
the inequality p(s; —0)) <0, p(tj+1)) <0,5=0,1,...,m —1 and Conditions 2 and

3 we obtain

u(t) = mz (3050, W (152), W (55 = 0)) = 5t530, V(E0), Vs = 0)))
' mz (1 1. V). V(55— 0)) = 5t W (1), W s, — 0)
¥ Z g o (W) = s, v s
" Z g a9 oo V) gt W) s
- i [ (o) = v s
i 6= 9 (506, Vo) = s 6D s

<7 (@3t W(t0), Vs = 00) = 6t V(E2), V(s = 0)

+ Z_ (%’(tjﬂ, V(tig1), W(sj —0)) — b (tjer, W(tje1), W(s; — O)))
k_li A C— 8)1 7 u(s)ds S Ly Sjg-_gq—l s)ds

+;F(q)/tj (s; = 8)* pls)d +§T(Q)/tj (s; — 8)7 " p(s)d
T D R LR

+F(Q) [k(t )" n(s)d +p(q) /tk(t )" u(s)d
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or

m—1 .
Ly+ L, [%
E M(;5 + Md’ (tj41) + Ji:L ! / (s;—8)7 ' u(s)ds
=0 (Q) tj

Lfr(*qu / (55 — )7 u(s)ds.
Inequality (4.29) proves pu(t) <0 ont € (tm, Sm).
Let (Sm, tm1]. Then
w(t) = Wi(sy, —0) — V(s —0)
+ Om(t, W(E), W(sm = 0)) = om(t, V(2), V(sm — 0))
+ Y,V (E), Vsm = 0)) — ¢ (t, W(E), W (s = 0))
< (Mg + My)u(t).

(4.30)

(4.31)

Since M? + MY < 1 inequality (4.31) proves u(t) <0, t € (Sm, tmi1]-
Therefore, pu(t) <0, t € [0,7]. The proof is complete. O

4.2. Couple of mild lower and upper solution of type II. In the case when the
IVP for NIFrDE (2.1) has a couple of mild lower and upper solutions of type II we

present two iteration schemes for approximately obtaining the solution.

Theorem 4.4 (first iteration scheme). Let the following conditions be fulfilled:

1. The functions v,w € PC*([0,T]) form a couple of mild lower and upper solutions
of type II of the IVP for NIFrDE (2.1) and v(t) < w(t) for t € [0,T].

2. The conditions 2, 3, 4 of Theorem 4.1 are satisfied.

3. The inequalities v(t) < vV (t) and w(t) > wW(t) hold on [0,T) where the func-
tions v () and wM (t) are obtained from the first iteration scheme (4.1) and
(4.2) with n = 1.

Then the claim of Theorem 4.1 is true.

Remark 5. Note the case without impulses and fractional differential equations is
studied in [23] and the ordinary case when ¢ = 1 is studied in [26]. A brief overview
of the application of the monotone method in the case without impulses is given in
27].

Remark 6. Note that if the functions f(t,z), ¢x(t,x,y) are increasing w.r.t. their
arguments = and z, y respectively, and the functions g(t, z), ¥y (¢, z,y) are decreasing

w.r.t. their arguments x and x, y respectively, then

- if the inequality v < w holds and (v, w) form a couple of mild solutions of type I,
then the functions (v,w) form a couple of mild solutions of type II and v < v,
w > wM hold;
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- the inequalities v < v(l), w > wW are not enough to guarantee the functions

(v, w) form a couple of mild solutions of type II.

Theorem 4.5 (second iteration scheme). Let:

1. The conditions 2,3,4 of Theorem 4.1 are satisfied.

2. The functions v,w € PCY([0,T]) form a couple of mild lower and upper solutions
of type II of the IVP for NIFrDE (2.1) and v(t) < w(t) for t € [0,T].

3. The inequalities v(t) < vV (t) and w(t) > wW(t) hold on [0,T) where the func-
tions v (t) and wM(t) are obtained from the second iteration scheme (4.24)
and (4.25) with n = 1.

Then the claim of Theorem 4.2 is true.

The proofs of Theorem 4.4 and Theorem 4.5 are similar to the ones in Theorem 4.1

and Theorem 4.2 respectively, so we omit them.

4.3. Mild lower and mild upper solutions. For the case g(t,z) =0 for ¢t € [0, 7],
x € R the IVP for NIFrDE (2.1) is reduced to
(4.32)
“D x(t) = f(t,x) for t € (g, 5], k=0,1,...,p,
x(t) = x(sg — 0) + o (t,x(t), x(sy — 0)), t € (Sp,tps1], E=0,1,...,p—1,
z(0) = xo,
For any function ¢ € PC([0,T]) we define the operator = : PC([0,7]) x PC([0,T]) —
PC([0,T]) by the equalities
r _
Zo + Z?ZS Gj(tj1, E(tj41),8(s5 — 0))
+ﬁ S (s — )11 f (5, €(5))ds
i Jo (t = 8)17 (5,6 (s5))ds
tE (tk,sk], ]{?—0,1,2,...,]9,

E(sk — 0) + du(t,&(t),E(sk — 0)),
t e (Sk,tk+1],]{3: 0,1,2,...,p—1.

(4.33) 2(&,m)(t) =

\

In this case as a special case of Theorem 4.1 we obtain the following result:

Theorem 4.6. Let the following conditions be fulfilled:

1. The functions v,w € PCY([0,T]) are a mild lower and a mild upper solutions of
the IVP for NIFrDE (4.32), respectively, and v(t) < w(t) fort € [0,T].

2. The function f € C(Up+1[tk,sk] R) and for any z,y € Q(t,v,w) : = <y and
any fived t € [ty, si| the inequality f(t,z) < f(t,y) holds.

3. The functions ¢y, € C([sg, trr1] X RX R/R), k =0,1,2,...,p— 1, and for any
fized t € [sg,trs1] and x1, 29 € Ap(t,v,w) 1 21 < 2o, Y1,y2 € (v, w) 1 1 < Yo
the inequality ¢y (t, x1,11) < Or(t, 2,y2) holds.
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4. For any y € T'p(v,w), t € [sk,trs1] there exists exactly one function u €
C([sk, trr1], R) such that u(t) =y + ¢r(t, u(t),y).

Then there exist two sequences of functions {v™ (t)}s° and {w™ (t)}§° such that:

a. The sequences are defined by v\ (t) = v(t), wO(t) = w(t) and for n > 1
V() =E"D)(@), W™ () =E@")(E),  forte[0,T).

b. The sequence {v™(t)} is increasing on [0,T] and the sequence {w™(t)} is de-

creasing on [0,T] i.e.
v () <o) < - <wI () <w™ () fort€[0,T), n=0,1,2,....

c. Both sequences converge on [0,T] and V(t) = kh_)nolo v (t), W(t) = Ifll—>rl;lo w™ (t)
on [0,T].

d. The limit functions V(t) and W (t)) are a mild minimal solution and a mild
mazimal solution of IVP for NIFrDE (2.1) in S(v,w), respectively.

5. Applications

Consider the non-instantaneous impulsive fractional generalization of a special
case of the logistic model
‘DyPx(t) = 0.42(1 — 2z) for t € [0,0.45] U (0.5, 1],
(5.1) x(t) = x(sp — 0) + (t — 0.5)x(¢) for t € (0.45,0.5],
z(0) = 0.5,

where f(t,z) = 0.4z, g(t,x) = —0.82%, ¢g = tz, 1y = —0.5z.
The IVP for NIFrDE (5.1) has an exact constant solution z(t) = 0.5.
The functions v(t) = 0.49, w(t) = 0.51, t € [0,4] form a couple of mild lower and

upper solutions of type II for (5.1) because the following inequalities

(0.5 + 05 Jy(t = s)75(0.4(0.51) — 0.8(0.49)2)ds
— 05— 2(0.01192)\/; t € [0,0.45],

0.49 + 1.1¢(0.51) — 0.5(0.49) = 0.245 + 0.567¢, ¢ € (0.45,0.5],

u(t) = 0.49 < 0.5 —2(0.01192) /25 1 1.1(0.5)(0.51) — 0.5(0.49)
+57 Jos(t = $)7?(0.4(0.51) — 0.8(0.49)2)ds

=0.5— 2(0.01192)\/@ +1.1(0.5)(0.51) — 0.5(0.49)
—2(0.01192)\/@ = 0.526477 — 0.02384, /295 ¢ € (0.5, 1],
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and
(0.5 + w57 Jo (= 9)709(0.4(0.49) — 0.8(0.51)?)ds
— 05— 2(0.01208)\/%, t e [0,0.45],
0.51 + 1.1£(0.49) — 0.5(0.51) = 0.255 + 0.539¢, t € (0.45,0.5],
w(t) = 0.51 > { 0.5 — 2(0.01192), /%2 4 1.1(0.5)(0.49) — 0.5(0.51)
+105 Jos(t — 9)7°(0.4(0.49) — 0.8(0.51)?)ds
= 0.5 —2(0.01192), /%% 4+ 1.1(0.5)(0.49) — 0.5(0.51)
—2(0.01192) /=25 = 0526477 — 002384, /=22, ¢ € [0.5,1).

hold.
Applying the first iteration scheme we obtain the first approximations to the mild
solution of (5.1):
(0.5 + s Jo(t— 5)709(0.4(0.49) — 0.8(0.51)?)ds = 0.5 — 0.02416\/;
t €[0,0.45],
0.5 — 2(0.01208) /%22 + 1.1¢(0.49) — 0.5(0.51) = 0.235856 + 0.539¢,
v (t) = t € (0.45,0.5],
0.5 — 2(0.01208), /22 4+ 1.1(0.5)(0.49) — 0.5(0.51)
+157 Jos(t — 8)72(0.4(0.49) — 0.8(0.51)%)ds
= 0505356 — 0.02416, /L, t € [0.5,1].

\

and
0.5+ s Ji(t = $)707(0.4(0.51) — 0.8(0.49)%)ds = 0.5 — 0.02384, /%,
t €0,0.45],
W |09~ 2001192 015 11 14(0.51) — 0.5(0.49) = 0.245977 + 0.561¢,
t € (0.45,0.5]

0.5 — 2(0.01192) /%45 +1.1(0.5)(0.51) — 0.5(0.49)
| trom (= 5)705(0.4(0.51) — 0.8(0.49)%)ds, ¢ € [1,1].

The inequalities v(t) < vM(¢) and w(t) < wM(t) for t € [0,T], hold. All condi-
tions of Theorem 4.4 are satisfied and the algorithm (first iteration scheme) could be
applied to obtain approximately the solution of the IVP for NIFrDE (5.1). O

6. Conclusions

This paper considers initial value problem for a nonlinear scalar Caputo fractional
differential equation with non-instantaneous impulses. The mild solution for the non-

instantaneous impulsive fractional equation is defined. This definition is based on
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the values of the right hand side of the fractional differential equation only over the
intervals without non-instantaneous impulses. We show this definition generalizes
the case of instantaneous impulses as well as the case without impulses. Several
types of lower and upper solutions to the initial value problem of the equation are
presented. Several iterative techniques combined with the method of lower and upper
solutions are applied to construct approximately the solution of the problem. In all
of these schemes the elements of the sequences of successive approximations are mild
solutions of suitably chosen initial value problems for scalar linear non-instantaneous
impulsive Caputo fractional differential equations (whose solutions can be obtained
in an explicit form). The convergence is proved. A non-instantaneous impulsive

fractional generalization of the logistic model is given to illustrate the procedure.

Acknowledgements

Research was partially supported by Fund MU17-FMI-007, Fund Scientific Re-

search, University of Plovdiv Paisii Hilendarski.

REFERENCES

[1] S. Abbas, Mouffak Benchohra, J. J. Trujillo, Upper and lower solutions method for partial
fractional differential inclusions with not instantaneous impulses, Progr. Fract. Differ. Appl.,
1, 1, (2015), 11-22.

[2] R. Agarwal, S. Hristova, D. O’Regan, p-Moment exponential stability of Caputo fractional dif-
ferential equations with noninstantaneous random impulses, J. Appl. Math. Comput., (2016),
1-26.

[3] R. P. Agarwal, S. Hristova, Quasilinearization for initial value problems involving differential
equations with “maxima”, Math. Comput. Modell., 55, 9-10, (2012), 2096—2105.

[4] R. Agarwal, S. Hristova, D. O’Regan, Noninstantaneous impulses in Caputo fractional differ-
ential equations and practical stability via Lyapunov functions, J. Franklin Institute, 354, 7,
(2017), 3097-3119.

[5] R. Agarwal, D. O’Regan, S. Hristova, Stability by Lyapunov like functions of nonlinear differ-
ential equations with non-instantaneous impulses, J. Appl. Math. Comput., 53, 1, (2017),147—
168.

[6] R. Agarwal, D. O’Regan, S Hristova, Monotone iterative technique for the initial value problem
for differential equations with non-instantaneous impulses, Appl. Math. Comput., 298, (2017),
45-56.

[7] R. P. Agarwal, S. Hristova, A. Golev, K. Stefanova, Monotone-iterative method for mixed
boundary value problems for generalized difference equations with “maxima”, J. Appl. Math.
Comput., 43, 1, (2013), 213-233.

[8] Z. Bai, S. Zhang, S. Sun, C. Yin, Monotone iterative method for fractional differential equa-
tions, Electr. J. Diff. Eq., 2016, 06, (2016), 1-8.

[9] D. D. Bainov, S. G. Hristova, The method of quasilinearization for the periodic boundary
value problem for systems of impulsive differential equations, Appl. Math. Comput. 117, 1,
(2001), 73-85.



236 R. AGARWAL, D. O’'REGAN, AND S. HRISTOVA

[10] A. Cabada, J. Nieto, A generalization of the monotone iterative technique for nonlinear second
order periodic boundary value problems, J. Math. Anal. Appl., 151, 1, (1990), 181-189.

[11] J. Cao, H. Chen, Impulsive fractional differential equations with nonlinear boundary condi-
tions, Math. Comput. Modell. 55, (2012) 303-311.

[12] P. W. Eloe, S. G. Hristova, Method of the quasilinearization for nonlinear impulsive differential
equations with linear boundary conditions, FElectron. J. Qual. Theory Differ. Equ. 10, (2002),
1-14.

[13] M. Feckan, J. R. Wang, Y. Zhou, Periodic solutions for nonlinear evolution equations with
non-instantaneous impulses, Nonauton. Dyn. Syst., 1, (2014), 93-101.

[14] A. Golev, S. Hristova, A. Rahnev, An algorithm for approximate solving of differential equa-
tions with “maxima”, Comput. Math. Appl. 60, 10, (2010), 2771-2778.

[15] Z. M. He, X. M. He, Monotone Iterative Technique for Impulsive Integro-Differential Equations
with Periodic Boundary Conditions, Comput. Math. Appl., 48, (2004) 73-84.

[16] E. Hernandez, D. O’Regan, On a new class of abstract impulsive differential equations, Proc.
Amer. Math. Soc., 141, (2013), 1641-1649.

[17] S. G. Hristova, D. D. Bainov, Monotone-Iterative Techniques of V. Lakshmikantham for a
Boundary Value Problem for Systems of Impulsive Differential Equations with Supremum, J.
Math. Anal. Appl., 172, (1993), 339-352.

[18] T. Jankowski, Boundary value problems for first order differential equations of mixed type,
Nonl. Anal.: Theory, Methods, Appl. 64, 9, (2006), 1984-1997.

[19] G. S. Ladde, V. Lakshmikantham, A. S. Vatsala, Monotone iterative techniques for nonlinear
differential equations, Pitman Advanced Publishing Program, 1985.

[20] V. Lakshmikantham, D. D. Bainov, P. S. Simeonov, Theory of Impulsive Differential Equations,
World Scientific, Singapore, 1989.

[21] V. Lakshmikantham, S. Leela, Differential and Integral Inequalities, Theory and Applications,
vol I, Academic Press, New York, 1969.

[22] P. Li, Ch. Xu, Boundary value problems of fractional order differential equation with integral
boundary conditions and not instantaneous impulses, J. Function Spaces 2015, (2015), Article
1D 954925.

[23] Th. T. Pham, J. D. Ramrez, A. S. Vatsala, Generalized Monotone Method for Caputo Frac-
tional Differential Equation with Applications to Population Models, Neural, Parallel, and
Sci. Comput., 20, (2012), 119-132.

[24] M. Pierri, D. O’Regan, V. Rolnik, Existence of solutions for semi-linear abstract differential
equations with not instantaneous impulses, Appl. Math. Comput., 219, (2013), 6743-6749.

[25] F. A. McRae, Monotone iterative technique and existence results for fractional differential
equations, Nonl. Anal. 71 (2009) 6093-6096.

[26] M. Sowmya, A. S. Vatsala, Noel C, Sheila H, Zenia N, Dayonna P, Jasmine W, Numerical
Application of Generalized Monotone Method for Population Models, Neural, Parallel, and
Sci. Comput., 20, (2012), 359-372.

[27] A. Vatsala, M. Sowmya,, D. S. Stutson, Generalized monotone method for ordinary and Caputo
fractional differential equation, Dyn. Sys. Appl., 24, (2015), 429-438.

[28] J. R. Wang, X. Li, Periodic BVP for integer/fractional order nonlinear differential equations
with non-instantaneous impulses, J. Appl. Math. Comput., 46, 1-2, (2014), 321-334.

[29] J. R. Wang, Y. Zhou, Z. Lin, On a new class of impulsive fractional differential equations,
Appl. Math. Comput., 242 (2014) 649-657.

[30] X. Zhang, X. Zhang, H. Cao, On General Solution for Fractional Differential Equations with
Not Instantaneous Impulses, Fundamenta Informaticae, 151 (2017) 355-369.



