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ABSTRACT. We consider an impulsive control problem governed by fractional differential equa-

tions for which we establish a set of necessary conditions. The results are applied to a model of an

HIV-immune system with memory. The fact that fractional differential equations possess memory

enhances their usefulness in the modeling effort. The objective of the control problem is to minimize

the infectious viral load and count of infected CD4+T cells while using optimal level of dosage of

anti-HIV drugs and optimal therapy. Simulation results are presented and discussed.

1. Introduction

There has been a continued effort in the mathematical modeling of the dynamics

and control of human immunodeficiency virus (HIV) by various authors ([7], [9], [11],

[14], [15], [24], [25], [33], [37], [39], [44], [48]). One of the earliest models dealing with

HIV is due to Perelson, Kirschner and De Boer [33]. They consider the interaction of

HIV with CD4+ T-cells where the CD4+ T-cells consist of four population groups:

uninfected T-cells, latently infected T cells, actively infected T cells, and free virus.

Much effort has been put toward the study of the global dynamics of the HIV dif-

ferential equation models. There have also been a number of studies where optimal

control techniques are employed [24], [6], [45], [15], [21]. Memory is an important

feature in immune response ([14], [38]). To include memory in the model fractional

differential equations have been used ([14], [15], [21]). Hou and Wong consider ([23])

an impulsive control problem with application to HIV treatment. The rational for

impulsive formulations is that while treatment by medication can suppress the virus

to a very low level, the cost of purchasing the drugs as well as the amount of damage

done to the body due to the intake of drugs can greatly offset the benefit of suppress-

ing the HIV virus. Thus, a treatment regime of taking medication and the amount of

medication at optimal instants may be more beneficial. Thus, in the current paper an

impulsive fractional models is considered. We have decision variables at the impulse
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times and between impulse times. We start with a general formulation useful for a

wider application besides the HIV modeling.

Besides applications in HIV modeling fractional differential equations have proved

to be valuable tools in the modeling of many phenomena in engineering, physics, and

economics ([18], [19], [20], [28], [29], [34], [43]). Fractional differential equations have

also been useful in biology, fluid mechanics, modeling of viscoelasticity. The most

fundamental characteristics in these models is their nonlocal characteristics. That is,

the future aspect of the model relates not only the present state, but also its historical

states.

Impulsive control problems have also been useful in engineering and in finance,

production control and inventory management. In production planning ([8], [16],[30],

[32]), a decision maker may have to decide the proper quantity of products being

produced at different times with the objective of maximizing profit over a planning

horizon. The goals that a decision maker has to accomplish are generally complex and

involve conflicting objectives. The decision maker must meet demands while adhering

to industry requirement needs, capabilities, limitations, and restrictions. Depending

on the particular application an appropriate model may be discrete or continuous

time optimization problem.

In [30] a production-planning model conducive to optimization is developed and

used with the preference-based optimization method: linear physical programming,

multiobjective programming. In [16] a continuous-time aggregate production-planning

is considered where the objective is to determine the total production-planning cost,

which involves various sets of costs like production cost, subcontracting cost, over-

time cost, hiring cost, firing cost, and inventory cost.

Mathematical aspects of impulsive hybrid control systems have been considered

by engineers and mathematicians. In addition to the references in production planning

above relevant references include [4], [5], [17], [35], [36], [42].

The organization of the paper is as follows. We first present preliminaries, then

the problem statement. Then, we establish necessary conditions for the control prob-

lem, and finally present computational results.

2. Preliminaries

For information on fractional differential equation we recommend the reference

[34]. Let f : [0,∞) −→ R. For −∞ < a < b < ∞ the fractional integral of order

α > 0 of f with lower limit zero is defined as

aI
α
t f(t) =

1

Γ(α)

∫ t

0

f(s)

(t − s)1−α
.
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The left Riemann-Liouville fractional derivative of order α of f is given as

L
a Dα

t f(t) =
1

Γ(n − α)

dn

dtn

∫ t

0

f(s)

(t − s)α+1−n
ds, t > 0, n − 1 < α < n.

The right Riemann-Liouville fractional derivative of order α of f is given as

L
t Dα

b f(t) =
1

Γ(n − α)

(

−
d

dt

)n ∫ b

t

f(s)

(s − t)α+1−n
ds, t > 0, n − 1 < α < n.

The right Caputo derivative of f of order α with lower limit zero is given as

C
0 Dα

t f(t) = L
0 Dα

t

[

f(t) −
n−1
∑

k=0

tk

k!
fk(0)

]

, t > 0, n − 1 < α < n.

The right and left Caputo derivatives, in integral form, are given as

C
a Dα

t f(t) =
1

Γ(n − α)

∫ t

a

f(s)

(t − s)α+1−n
ds,

C
a Dα

b f(t) =
1

Γ(n − α)

∫ b

t

f(s)

(s − t)α+1−n
ds.

The initial value problem

C
0 Dα

t f(t) = f(t, x(t)), 0 < α < 1

x(t0) = x0(2.1)

is equivalent to the nonlinear Volterra integral equation ([34]):

x(t) = x0 +
1

Γ(α)

∫ t

0

(t − s)α−1f(s, x(s))ds.

In this paper we take α = 0.9.

3. Problem Statement

Let 0 = t0 < t1 < t2 < · · · < tn−1 < tn = tf and, for i = 1, 2, . . . , n the functions

fi : [ti−1, ti] ×Rn × Rm −→ R be such that fi(·, x, u) is measurable for fixed (x, u).

For fixed t and u, the function fi is continuously differentiable in x. For fixed t,

fi(t, ·, ·) is continuous. We also assume that

‖∂xfi(t, x2, u2) − ∂xfi(t, x1, u1)‖ + ‖fi(t, x2, u2) − fi(t, x1, u1)‖

≤ K{‖x2 − x1‖ + ‖u2 − u1‖},

where K is a fixed constant.

Next let hi, i = 1, 2, . . . , n be an n × n matrix with continuously differentiable

entries. That is, if the (k, j) entry of hi(η) is ai
kj(η), then ai

kj is a continuously

differentiable of η.

Now, we consider the following fractional differential equation

C
0 D

q
t x1(t) = f1(t, x1(t), u1(t)), 0 < q < 1, 0 = t0 < t < t1
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x(t0) = h1 · c1(3.1)

and for i = 2, . . . , n

ti−1

CD
q

txi(t) = fi(t, xi(t), ui(t)), ti−1 < t < ti

xi(ti−1) = hi(xi(t
−

i−1))ci + xi(t
−

i−1)(3.2)

We consider the objective function

Tn(xn(tn)) +

n
∑

i=1

∫ ti

ti−1

Φi(s, xi(s), ui(s))ds.

The impulsive control problem we consider is

(P) min

{

J(x1, u1, . . . , xn, un) = Tn(xn(tn)) +
n
∑

i=1

∫ ti

ti−1

Φi(s, xi(s), ui(s))ds

}

subject to

C
0 D

q
t f(t) = f1(t, x1(t), u1(t)), 0 < q < 1, 0 = t0 < t < t1,

x(t0) = h1(c1),

ti−1

CD
q

txi(t) = fi(t, xi(t), ui(t)), ti−1 < t < ti,

xi(ti−1) = hi(xi(t
−

i−1))(ci) + xi(t
−

i−1).(3.3)

Assume that problem (P) has a solution (c̄1, . . . c̄n), (ū1, . . . ūn). We denote the

corresponding trajectories, x̄i, i = 1, . . . , n. Let U = U1 × · · · × Un be the control

set containing the controls ū1, . . . ūn. Assume that U is a convex set. We can put

constraints on the decision variables c1, . . . , cn.

In the interval (tn−1, tn) we have the fractional differential equation

tn−1

CD
q

t x̄n(t) = fn(t, x̄n(t), ūn(t)), tn−1 < t < tn

x̄n(tn−1) = hn(x̄n(t−n−1))(c̄n) + x̄n−1(t
−

n−1)(3.4)

Let v ∈ Un. Consider

tn−1

CD
q

txθn(t) = fn(t, xθn(t), ūn(t) + θv(t)), tn−1 < t < tn

xθn(tn−1) = hn(xθn(t−n−1))(c̄n) + xn−1(t
−

n−1)(3.5)

Then,

(3.6) xθn(t) = xθn(tn−1) +
1

Γ(q)

∫ t

tn−1

(t − s)q−1fn(s, xθn(s), ūn(s) + θv(s))ds

Set

δxn(t) =
1

Γ(q)

∫ t

tn−1

(t − s)q−1{∂xfn(s, x̄n(s), ūn(s)δxn(s))

+ ∂ufn(s, x̄n(s), ūn(s)v(s)}ds(3.7)
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Then

‖
xθn(t) − x̄n(t)

θ
− δxn(t)‖

∞
−→ 0 as θ −→ 0+.

Given u ∈ Un let

z(t) =
1

Γ(q)

∫ t

tn−1

(t − s)q−1{∂xfn(s, x̄n(s), ūn(s))z(s)

+ ∂ufn(s, x̄n(s), ūn(s)u(s)}ds(3.8)

Now, let pn ∈ L2([tn−1, tn]) such that

(3.9)

∫ tn

tn−1

pn(s)u(s)ds =

∫ tn

tn−1

∂xΦ(s, x̄n, ūn(s)z(s)ds + ∂xTn(xn(tn)) · z(tn)

Then,
∫ tn

tn−1

pn(s)∂ufn(s, x̄n(s), ūn(s))v(s)ds

=

∫ tn

tn−1

∂xΦ(s, x̄n, ūn(s)δxn(s)ds + ∂xTn(xn(tn)) · δxn(tn)(3.10)

For ease of notation let us write

fn(s) for fn(s, x̄n(s), ūn(s)),

∂xfn(s) for ∂xfn(s, x̄n(s), ūn(s)),

∂ufn(s) for ∂ufn(s, x̄n(s), ūn(s)).

Then, using (3.7) and (3.10)
∫ tn

tn−1

pn(s)[∂xfn(s)δxn(s) + ∂ufn(s)v(s)]ds

=
1

Γ(q)

∫ tn

tn−1

[
∫ tn

s

pn(ξ)∂xfn(ξ) + ∂xΦ(ξ)

]

· (ξ − s)q−1dξ[∂xfn(s)δxn(s) + ∂ufn(s)v(s)]ds(3.11)

We also have

∂xTn(x̄n(tn)) · δxn(tn) = ∂xTn(x̄n(tn))

·
1

Γ(q)

∫ tn

tn−1

(tn − s)q−1[∂xfn(s)δxn(s) + ∂ufn(s)v(s)]ds(3.12)

Thus,

pn(s) =
1

Γ(q)

∫ tn

s

(ξ − s)q−1[pn(ξ)∂xfn(ξ) + ∂xΦn(ξ)]dξ

+
1

Γ(q)
∂xTn(x̄n(tn − s))q−1.(3.13)

Let

(3.14) γn = ∂xTn(x̄n(tn)).
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Next, we move to the interval [tn−2, tn−1] and consider

tn−2

CD
q

tn−1
x̄n−1(t) = fn−1(t, x̄n−1(t), ūn−1(t)), tn−2 < t < tn−1

x̄n−1(tn−2) = hn−1(x̄n−2(t
−

n−2))cn−1 + x̄n−2(t
−

n−2)(3.15)

We have

x̄n−1(t) = hn−1(x̄n−2(t
−

n−2))cn−1 + x̄n−2(t
−

n−2)

+
1

Γ(q)

∫ t

tn−2

(t − s)q−1fn−1(s, x̄n−1(s), ūn−1(s))ds, tn−2 < t < tn−1.(3.16)

For v ∈ Un−1, 0 < θ < 1, let

xθ,n−1(t) = hn−1(x̄n−2(tn−2) · c̄n−1 + x̄n−2(tn−2)

+
1

Γ(q)

∫ t

tn−2

(t − s)q−1fn−1(s, xθ,n−1(s), ūn−1(s) + θv(s))ds

Proceeding as in (3.5–3.7) and taking limit as was done following (3.7) we arrive at

the following two equations which are the changes in the states xn−1, xn due to the

change in un−1 from un−1 to ūn−1 − θv while ūn is unchanged.

δxn−1(t) =
1

Γ(q)

∫ t

tn−2

(t − s)q−1{∂xfn−1(s, x̄n−1(s), ūn−1(s)δxn−1(s))

+ ∂ufn−1(s, x̄n−1(s), ūn−1(s)v(s)}ds,(3.17)

δxn(t) = ([hn(x̄n−1(tn−1)) · c̄n],x)δxn−1(tn−1)

+
1

Γ(q)

∫ t

tn−1

(t − s)q−1∂xfn(s, x̄n(s), ūn(s)δxn(s))ds.(3.18)

For k = 2, 3, . . . , n let Lk be the solution of the fractional differential equation

tk−1

CD
q

tLk(t) = ∂xfk(t, x̄k(t), ūk(t)), tk−1 < t < tk,

Lk(tk−1) = I.(3.19)

Next, for k = 2, 3, . . . , n set

(3.20) Qk(x̄k−1(tk−1), c̄k) = [hk(x̄k−1(tk−1)) · c̄k],x) + I.

Using (3.19) and (3.20) the solution of (3.18) is given by

(3.21) δxn(t) = Ln(t)Qn(x̄n−1(tn−1), c̄n)δxn−1(tn−1)

Next, we note that
∫ tn

tn−1

∂xΦn(s, x̄n(s), ūn(s)) · δxn(s)ds =

[
∫ tn

tn−1

∂xΦn(s, x̄n(s), ūn(s)) · Ln(s)ds

]

· Qn(x̄n−1(tn−1), c̄n)δxn−1(tn−1)(3.22)
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The variation in the total cost due to the variation in ūn−1 ∈ Un−1 involves the costs

in the intervals [tn−2, tn−1] and [tn−1, tn] and is given by

∫ tn−1

tn−2

∂xΦn−1(s, x̄n−1(s), ūn−1(s)) · δxn−1(s)ds +

[
∫ tn

tn−1

∂xΦ(s, x̄n(s), ūn(s)) · Ln(s)ds

]

· Qn(x̄n−1(tn−1), c̄n)δxn−1(tn−1)(3.23)

Similarly, the variation in the total cost due to the variation in ūn−2 ∈ Un−2 involves

the costs in the intervals [tn−3, tn−2], [tn−2, tn−1] and [tn−1, tn]. As in (3.8) given

u ∈ Un−1 let

z(t) =
1

Γ(q)

∫ t

tn−2

(t − s)q−1{∂xfn−1(s, x̄n−1(s), ūn−1(s))z(s)

+ ∂ufn−1(s, x̄n−1(s), ūn−1(s)u(s)}ds(3.24)

As in (3.9) define pn−1 ∈ L2([tn−2, tn−1]) by the equation

∫ tn−1

tn−2

pn−1(s)u(s)ds =

∫ tn−1

tn−2

∂xΦn−1(s, x̄n−1(s), ūn−1(s)) · z(s)ds

+

[
∫ tn

tn−1

∂xΦ(s, x̄n(s), ūn(s)) · Ln(s)ds

]

· Qn(x̄n−1(tn−1), c̄n)z(tn−1)

+ ∂xTn(xn(tn−1))Ln(tn)Qn(x̄n−1(tn−1), c̄n)z(tn−1)(3.25)

Following the steps that we used to get (3.13) we obtain

pn−1(s) =
1

Γ(q)

∫ tn−1

s

(ξ − s)q−1[pn−1(ξ)∂xfn−1(ξ, x̄n−1(ξ), ūn−1(ξ) + ∂xΦn−1(ξ)]dξ

+
1

Γ(q)

[

∫ tn

tn−1

∂xΦn(ξ, x̄n−1(ξ), ūn−1(ξ)Ln(ξ))dξ Qn(x̄n−1(tn−1), c̄n)

+ ∂xTn(xn(tn−1))Ln(tn)Qn(x̄n−1(tn−1), c̄n)

]

(tn−1 − s)q−1(3.26)

Set

γn−1 =

(
∫ tn

tn−1

∂xΦn(ξ, x̄n(ξ), ūn(ξ))Ln(ξ)

)

dξ Qn(x̄n−1(tn−1), c̄n)

+ γnLn(tn)Qn(x̄n−1(tn−1), c̄n)(3.27)

where γn is defined in (3.14). Then, we may rewrite (3.26) as

pn−1(s) =
1

Γ(q)

∫ tn−1

s

(ξ − s)q−1[pn−1(ξ)∂xfn−1(ξ, x̄n−1(ξ), ūn−1(ξ))

+ ∂xΦn−1(ξ, x̄n−1(ξ), ūn−1(ξ)]dξ

+ γn−1(tn−1 − s)q−1.(3.28)
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Setting

γn−2 =

(
∫ tn−1

tn−2

∂xΦn−1(ξ, x̄n−1(ξ), ūn−1)(ξ)

)

Ln−1(ξ)dξQn−1(x̄n−1(tn−1), c̄n−1)

+ γn−1Ln−1(tn−1)Qn−1(x̄n−2(tn−2), c̄n−1),(3.29)

the adjoint function in the interval [tn−3, tn−2] is given by

pn−2(s) =
1

Γ(q)

∫ tn−2

s

(ξ − s)q−1[pn−2(ξ)∂xfn−2(ξ, x̄n−2(ξ), ūn−2(ξ))

+ ∂xΦn−2((ξ, x̄n−2(ξ), ūn−2(ξ))]dξ

+ γn−2(tn−2 − s)q−1.(3.30)

Next we proceed to give a formula for the adjoint function in any interval [tn−(i+2), tn−(i+1)].

Let

γn−(i+1) =

(

∫ tn−i

tn−(i+1)

∂xΦn−i(ξ, x̄n−i(ξ), ūn−i)(ξ)

)

Ln−i(ξ)dξQn−i(x̄n−i(tn−i), c̄n−i)

+ γn−iLn−i(tn−i)Qn−i(x̄n−(i+1)(tn−(i+1)), c̄n−i),(3.31)

Then,

pn−(i+1)(s) =
1

Γ(q)

∫ tn−(i+1)

s

(ξ − s)q−1[pn−(i+1)(ξ)∂xfn−(i+1)(ξ, x̄n−(i+1)(ξ), ūn−(i+1)(ξ))

+ ∂xΦn−(i+1)((ξ, x̄n−(i+1)(ξ), ūn−(i+1)(ξ))]dξ

+ γn−(i+1)(tn−(i+1) − s)q−1.(3.32)

We now define the Hamiltonian in the interval [t(i−1), ti], i = 1, 2, . . . , n by

(3.33) Hi(t, xi(t), qi(t), ui(t)) = qi(t) · fi(t, xi(t), qi(t), ui(t)) + Φ(t, xi(t), qi(t), ui(t))

Then, for any v ∈ Ui,

(3.34) Hi(t, x̄i(t), qi(t), v(t)) ≥ Hi(t, x̄i(t), qi(t), ūi(t) a.e. t, i = 1, 2, . . . , n

To show the validity of (3.34) we will verify it in the last interval [t(n−1), tn]. When

we perturb the control ūn only the last term of the cost

(3.35) J(x1, u1, . . . , xn, un) = Tn(xn(tn)) +

n
∑

i=1

∫ ti

ti−1

Φi(s, xi(s), ui(s))ds,

which is,

(3.36) Tn(xn(tn)) +

∫ tn

tn−1

Φi(s, xn(s), un(s))ds

is affected. Thus, if we perturb ūn by adding θv, v ∈ Un to it, then

d

dθ
J(x̄1, u1, x̄2, u2, . . . , x̄n, ūn + θv)
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=
d

dθ

{

Tn(x̄n(tn)) +

∫ tn

tn−1

Φi(s, x̄n(s), ūn(s) + θv(s))ds

}

(3.37)

Thus,

d

dθ
J(x̄1, u1, x̄2, u2, . . . , x̄n, ūn + θv)|θ=0+ = ∂xTn(x̄n(tn))δxn(tn)

+

∫ tn

tn−1

{∂xΦi(s, x̄n(s), ūn(s))δxn(s)

+ ∂uΦi(s, x̄n(s), ūn(s))v(s)}ds(3.38)

Next, using (3.10), and writing

pn(s)∂ufnv(s) = pn(s)∂ufn(s, x̄n(s), ūn(s))v(s),

∂uΦv = ∂uΦn(s, x̄n(s), ūn(s))v(s),

∂xΦn = ∂xΦn(s, x̄n(s), ūn(s)),

J(ūn + θv) = J(x̄1, u1, x̄2, u2, . . . , x̄n, ūn + θv),

we have

d

dθ

∫ tn

tn−1

Hn(s, x̄n(s), pn(s), ūn(s) + θv(s))ds|θ=0+i

=

∫ tn

tn−1

{pn(s)∂ufnv(s) + ∂uΦnv(s))}ds

+ ∂xTn(x̄n(tn))δxn(tn) +

∫ tn

tn−1

{∂xΦnδxn(s) + ∂uΦnv(s)}ds

=
d

dθ
J(ūn + θv)|θ=0+

≥ 0(3.39)

Thus,

(3.40)

∫ tn

tn−1

Hn(t, x̄n(t), pn(t), v(t))dt ≥

∫ tn

tn−1

Hn(t, x̄n(t), pn(t), ūn(t))dt.

Now, from (3.40), making needle-like variation, we obtain

(3.41) Hn(t, x̄n(t), pn(t), v(t)) ≥ Hn(t, x̄n(t), pn(t), ūn(t)), a.e. t

So far we have perturbed only the controls between impulse times. That is, we

have assumed that problem (P) has a solution (c̄1, . . . c̄n), (ū1, . . . ūn), and perturbed

only the controls (ū1, . . . ūn) between the impulse times and obtained the minimum

principle (3.41) where the adjoint variables are as presented in (3.13), (3.26), and

in general, in the interval [tn−(i+2), tn−(i+1)], by (3.32). Next we perturb the decision
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variables (c̄1, . . . c̄n). First we perturb only the decision variable c̄n, while holding the

other decision variables (c̄1, . . . c̄n−2, c̄n−1), (ū1, . . . ūn) fixed. Only the last component

Tn(x̄n(tn)) +

∫ ti

tn−1

Φn(s, x̄n(s), ūn(s))ds

of the total cost

J(x̄1, u1, . . . , x̄n, ūn) = Tn(x̄n(tn)) +
n
∑

i=1

∫ ti

ti−1

Φi(s, x̄i(s), ūi(s))ds

is affected. Next, we perturb only c̄n−1 while holding the remaining decision variables

(c̄1, . . . c̄n−2, c̄n), (ū1, . . . ūn) fixed. Only,

Tn(x̄n(tn)) +

n
∑

i=n−1

∫ ti

ti−1

Φi(s, x̄i(s), ūi(s))ds

of the total cost J(x̄1, ū1, . . . , x̄n, ūn) is affected. Next we perturb c̄n−2 and continue

in this manner backwards. We obtain the following necessary conditions.

γnLn(tn)hn(x̄n−1(tn−1)) = 0,

γn−1Ln−1(tn−1)hn−1(x̄n−2(tn−2)) = 0,

γn−iLn−i(tn−i)hn−i(x̄n−(i+1)(tn−(i+1))) = 0, i = 0, . . . , n − 1(3.42)

4. Application

The following model of HIV-immune system with memory was considered in [21].

Here we extend this model to one where we consider impulsive model with added

constraints at the impulse times. This extension is appropriate as stated in the

introduction [23]. The model considered in [21] is given by the system

C
0 D

q
t x1(t) = −a1x1 + a2x1x2(1 − u2) + a3a4x4(1 − u1),

C
0 D

q
t x2(t) =

a5

1 + x1
− a2x1x2(1 − u2)(1 − u4) − a6x2

+ a7

(

1 −
1

a8
(x2 + x3 + x4)

)

x2(1 + u)

C
0 D

q
t x3(t) = a2x1x2(1 − u2)(1 − u4) − a9x3 − a6x3,

C
0 D

q
t x4(t) = a9x3 − a4x4, ,

x(0) = (x1(0), x2(0), x3(0), x4(0))T ,(4.1)

where x1 represents free virus, x2 uninfected CD4+ T cells, x3 lately infected CD4+

T cells, x4 actively infected CD4+ T cells. The control u1 is the concentration of

protease inhibitor, u2 fusion inhibitor, u3 CD4+ T cell enhancer, u4 reverse tran-

scription inhibitor. The parameters si, qi, i = 1, 2, 3, 4 and r are weight constants in

the objective functional below.

Further,
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a1 = death rate of free virus,

a2 = rate CD4+ T cells become infected with virus.

a3 = number of free virus produced by actively infected CD4+ T cells.

a4 = death rate of actively infected CD4+ T cell population.

a5 = source term of uninfected CD4+ T cells.

a6 = death rate of infected (latently infected) CD4+ T cell population.

a7 = growth rate of CD4+ T cell population.

a8 = maximum population level of CD4+ T cells.

a9 = rate of latently infected cells becoming active.

Rational for this model has been presented [14], [15], [21]. In [21] necessary conditions

for optimality were presented for a control problem with the dynamics given by the

above model where the cost

J(u) =
1

2
[s1x

2
1(tf) + s3x

2
3(tf) + s4x

2
4(tf)]

+
1

2

∫ tf

0

[q1x
2
1(t) + q3x

2
3(t) + q4x

2
4(t) + ru2

1(t)]dt(4.2)

is to be minimized.

The objective in this paper is to deal with the impulsive control version of this

control problem. We consider t0 < t1, . . . , tn = tf where t1, t2, . . . , tn−1 are the impulse

times, and constraints are imposed on the trajectories at these impulse times. We

can add constraints at the initial and final times t0 and tf . The material presented in

the previous sections applies to more general models than we are considering in this

section.

We now proceed to formulate the impulsion version of the above problem. First

we divide the interval [t0, tf ] into n intervals: [ti−1, ti], i = 1, 2, . . . , n. In the interval

[ti−1, ti], we consider

C
0 D

q
t xi1(t) = −a1xi1 + a2xi1xi2(1 − ui2) + a3a4xi4(1 − ui1),

C
0 D

q
t xi2(t) =

a5

1 + xi1
− a2xi1x2(1 − ui2)(1 − ui4) − a6xi2

+ a7

(

1 −
1

a8

(xi2 + xi3 + xi4)

)

x2(1 + ui3),

C
0 D

q
t xi3(t) = a2xi1xi2(1 − ui2)(1 − ui4) − a9xi3 − a6xi3,

C
0 D

q
t xi4(t) = a9xi3 − a4xi4,

xi(ti−1) = hi(xi−1(ti−1))ci + xi−1(ti−1),(4.3)

At the impulse times t1, t2, . . . , tn−1 we have

(4.4) xi(ti−1) = hi(xi−1(ti−1))ci + xi−1(ti−1).



48 N. G. MEDHIN AND M. SAMBANDHAM

At t = t0

(4.5) x1(t0) = h1(c1).

We remark that the hi, i = 1, 2, . . . , n are 4 × 4 matrices and ci = (ci1, ci2, ci3, ci4)
T .

The cost is given by

J(u1, u2, . . . , un)) =
1

2
[s1x

2
n1(tn) + s3x

2
n3(tn) + s4x

2
n4(tn)]

+
1

2

n
∑

i=1

∫ ti

ti−1

[q1x
2
i1(t) + q3x

2
i3(t) + q4x

2
i4(t) + ru2

i1(t)]dt(4.6)

We now proceed to write the adjoint system. In the time interval [ti−1, ti]

C
t D

q
ti
pi1(t) = −(a1 + a2xi2(1 − ui2))pi1

+

[

a5

(1 + xi1)2
+ a2xi2(1 − ui2)(1 − ui4)

]

pi2

− a2xi2(1 − ui2)(1 − ui4)pi3 + q1xi1,

C
t D

q
ti
pi2(t) = −a2xi1(1 − ui2)pi1 − [a2xi1(1 − ui2)(1 − ui4) + a6]pi2

+ a7

(

1 −
1

a8
xi2(1 + ui3)

)

pi2

+ a7

(

1 −
xi2 + xi3 + xi4

8

)

(1 + ui3)pi2 + a2xi1(1 − ui2)(1 − ui4)pi3,

C
t D

q
ti
pi3(t) =

a7

a8
xi2(1 + ui3)pi2 − a9pi3 − a6pi3 − a9pi4 − q3xi3,

C
t D

q
ti
pi4(t) = a3a4(1 − ui4)pi1 −

a7

a8
xi2(1 + ui3)pi2

− a9pi3 − a4pi4 + q4xi4,(4.7)

Writing fi = (fi1, fi2, fi3, fi4)
T for the right hand side of (4.3) and pi = (pi1, pi2, pi3, pi4)

T

the in [ti−1, ti] is given by

(4.8) Hi(t, xi(t), pi(t), ui(t)) = pi · fi +
1

2

[

q1x
2
i1(t) + q3x

2
i3(t) + q4x

2
i4(t) + ru2

i1(t)
]

If ui = (ui1, ui2, ui3, ui4)
T were an interior point of the control constraint Ui then,

using (3.34) we have

(4.9) ∂ui
Hi(t, xi(t), pi(t), ui(t)) = 0.

From (4.9) we get

∂ui1
Hi = −a3a4xi4 + rui1 = 0;

∂ui2
Hi = a2xi1xi2pi1 − a2xi1xi2(1 − ui4)pi3 = 0

∂ui3
Hi = a7

(

1 −
xi2 + xi3 + xi4

8

)

xi2pi2 = 0

∂ui4
Hi = a2xi1xi2(1 − ui2)pi2 − a2xi1xi2(1 − ui2)pi3 = 0(4.10)
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We remark that the optimal control may not be an interior point of Ui. In the next

section we take three intervals and carry out a numerical computation. Our numerical

procedure is going to based on the method of steepest descent.

5. Numerical Computation and Simulation

In this section we take three intervals [t0, t1], [t1, t2], [t2, t3], t3 = tf and carry out

a numerical simulation of the following impulsive control problem. For simplicity of

notation we use different symbols for the states and controls in different intervals. All

parameters will be given specific values later.

In the interval [t0, t1], we consider

C
0 D

q
t x1(t) = −a1x1 + a2x1x2(1 − u2) + a3a4x4(1 − ui1),

C
0 D

q
t x2(t) =

a5

1 + x1

− a2x1x2(1 − ui2)(1 − ui4) − a6x2

+ a7

(

1 −
1

a8
(xi2 + x3 + xi4)

)

x2(1 + u3),

C
0 D

q
t x3(t) = a2x1x2(1 − u2)(1 − u4) − a9x3 − a6x3,

C
0 D

q
t x4(t) = a9x3 − a4x4,

x1(t0) = c01,

x2(t0) = c02,

x3(t0) = c03,

x4(t0) = c04.(5.1)

In the interval [t1, t2], we consider

C
0 D

q
t y1(t) = −a1y1 + a2y1y2(1 − v2) + a3a4y4(1 − v1),

C
0 D

q
t y2(t) =

a5

1 + y1
− a2y1y2(1 − v2)(1 − vi4) − a6y2

+ a7

(

1 −
1

a8
(yi2 + y3 + yi4)

)

y2(1 + v3),

C
0 D

q
t y3(t) = a2y1y2(1 − v2)(1 − v4) − a9y3 − a6y3,

C
0 D

q
t y4(t) = a9y3 − a4y4,

y1(t) = dd1 + cc1 · x1(t1) + x1(t1),

y2(t) = dd1 + cc1 · x2(t1) + x2(t1),

y3(t) = dd1 + cc1 · x3(t1) + x3(t1),

y4(t) = dd1 + cc1 · x4(t1) + x4(t1).(5.2)

In the interval [t2, t3], we consider

C
0 D

q
t z1(t) = −a1z1 + a2z1z2(1 − w2) + a3a4z4(1 − w1),
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C
0 D

q
t z2(t) =

a5

1 + z1
− a2z1z2(1 − wi2)(1 − w4) − a6z2

+ a7

(

1 −
1

a8
(zi2 + z3 + zi4)

)

z2(1 + w3),

C
0 D

q
t z3(t) = a2z1z2(1 − w2)(1 − w4) − a9z3 − a6z3,

C
0 D

q
t z4(t) = a9z3 − a4z4,

z1(t) = DD1 + CC1 · y1(t2) + y1(t2),

z2(t) = DD1 + CC1 · y2(t2) + y2(t2),

z3(t) = DD1 + CC1 · y3(t2) + y3(t2),

z4(t) = DD1 + CC1 · y4(t2) + y4(t2).(5.3)

The cost is given by

J(u, v, w) =
1

2
[s1z

2
1(t3) + s3z

2
3(t3) + s4z

2
4(t3)]

+
1

2

∫ t1

t0

[q1x
2
1(t) + q3x

2
3(t) + q4x

2
4(t) + ru2

1(t)]dt

+
1

2

∫ t2

t1

[q1y
2
1(t) + q3y

2
3(t) + q4y

2
4(t) + rv2

1(t)]dt

+
1

2

∫ t3

t2

[q1z
2
1(t) + q3z

2
3(t) + q4z

2
4(t) + rw2

1(t)]dt(5.4)

Let f (3)(z, w) = (f
(3)
1 (z, w), f

(3)
2 (z, w), f

(3)
3 (z, w), f

(3)
4 (z, w)) where

f
(3)
1 (z, w) = −a1z1 + a2z1z2(1 − w2) + a3a4z4(1 − w1),

f
(3)
2 (z, w) =

a5

1 + z1
− a2z1z2(1 − wi2)(1 − w4) − a6z2

+ a7

(

1 −
1

a8
(zi2 + z3 + zi4)

)

z2(1 + w3)

f
(3)
3 (z, w) = a2z1z2(1 − w2)(1 − w4) − a9z3 − a6z3,

f
(3)
4 (z, w) = a9z3 − a4z4,(5.5)

Let f (2)(y, v) = (f
(2)
1 (y, v), f

(2)
2 (y, v), f

(2)
3 (y, v), f

(2)
4 (y, v)) where

f
(2)
1 (y, v) = −a1y1 + a2y1y2(1 − v2) + a3a4y4(1 − v1),

f
(2)
2 (y, v) =

a5

1 + y1
− a2y1y2(1 − vi2)(1 − v4) − a6y2

+ a7

(

1 −
1

a8
(yi2 + y3 + yi4)

)

y2(1 + v3)

f
(2)
3 (y, v) = a2y1y2(1 − v2)(1 − v4) − a9y3 − a6y3,

f
(2)
4 (y, v) = a9y3 − a4y4,(5.6)
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Let f (1)(x, u) = (f
(1)
1 (x, u), f

(1)
2 (x, u), f

(1)
3 (x, u), f

(1)
4 (x, u)) where

f
(1)
1 (x, u) = −a1x1 + a2x1x2(1 − u2) + a3a4x4(1 − u1),

f
(1)
2 (x, u) =

a5

1 + x1
− a2x1x2(1 − ui2)(1 − u4) − a6x2

+ a7

(

1 −
1

a8

(xi2 + x3 + xi4)

)

x2(1 + u3),

f
(1)
3 (x, u) = a2x1x2(1 − u2)(1 − u4) − a9x3 − a6x3,

f
(1)
4 (x, u) = a9x3 − a4x4,(5.7)

Let L(3) be defined by the equation

t2
CD

q

tL
(3)(t) = ∂zf

(3)(z(t), w(t)), t2 < t < t3,

L(3)(t2) = I.(5.8)

Let L(2) be defined by the equation

t1
CD

q

tL
(2)(t) = ∂yf

(2)(y(t), v(t)), t1 < t < t2,

L(2)(t1) = I.(5.9)

Let L(1) be defined by the equation

t0
CD

q

tL
(1)(t) = ∂xf

(1)(x(t), u(t)), t0 < t < t1,

L(1)(t0) = I.(5.10)

Let Q(3) be be the matrix defined by

(5.11) Q(3) = diag(CC1 + 1, CC2 + 1, CC3 + 1, CC4 + 1)

In (5.11) the notation “diag” means that matrix has all entries zero except the diag-

onal elements. Let Q(2) be be the matrix defined by

Q(2) = diag(cc1 + 1, cc2 + 1, cc3 + 1, CC4 + 1)

From the objective function in problem (P), (4.6), and (3.3)

γ3 = (s1z1(t3), 0, s3z3(t3), s4z4(t3))

γ2 =

[
∫ t1

t2

(q1y1, 0, q3y3, q4y4)L
(3)(s)ds

]

Q(3) + γ3L
(3)(t3)Q

(3)

γ1 =

[
∫ t2

t1

(q1x1, 0, q3x3, q4x4)L
(2)(s)ds

]

Q(2) + γ2L
(2)(t2)Q

(2)(5.12)

We now proceed to write the adjoint equations. We denote the adjoint variable by

p(3) in the third interval, by p(2) in the second interval, and by p(3) in the first interval.

In the third interval p(3) is the solution of the fractional differential equation

C
t D

q
t3
p

(3)
1 (t) = −(a1 + a2z2(1 − w2))p

(3)
1
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+

[

a5

(1 + z1)2
+ a2z2(1 − w2)(1 − w4)

]

p
(3)
2

− a2z2(1 − w2)(1 − w4)p
(3)
3 + q1z1

C
t D

q
t3
p

(3)
2 (t) = −a2z1(1 − w2)p

(3)
1 − [a2z1(1 − w2)(1 − w4) + a6]p

(3)
2

+ a7

(

1 −
1

a8
z2(1 + w3)

)

p
(3)
2

a7

(

1 −
z2 + z3 + z4

8

)

(1 + w3)p
(3)
2 + a2z1(1 − w2)(1 − w4)p

(3)
3

C
t D

q
t3
p

(3)
3 (t) =

a7

a8
z2(1 + w3)p

(3)
2 − a9p

(3)
3 − a6p

(3)
3 − a9p

(3)
4 − q3z3,

C
t D

q
t3
p

(3)
4 (t) = a3a4(1 − w4)p

(3)
1 −

a7

a8

z2(1 + w3)p
(3)
2 − a9p

(3)
3 − a4p

(3)
4 + q4z4,

C
t D

q
t3
p(3)(t3) = γ3(5.13)

In the interval [t1, t2] the adjoint is the solution of the fractional differential equation

C
t D

q
t2
p

(2)
1 (t) = −(a1 + a2y2(1 − v2))p

(2)
1

+

[

a5

(1 + y1)2
+ a2y2(1 − v2)(1 − v4)

]

p
(2)
2

− a2y2(1 − v2)(1 − v4)p
(2)
2 + q1y1

C
t D

q
t2
p

(2)
2 (t) = −a2y1(1 − v2)p

(2)
1 − [a2y1(1 − v2)(1 − v4) + a6]p

(2)
2

+ a7

(

1 −
1

a8

y2(1 + v2)

)

p
(2)
2

+ a7

(

1 −
y2 + y2 + y4

8

)

(1 + v2)p
(2)
2

+ a2y1(1 − v2)(1 − v4)p
(2)
2

C
t D

q
t2
p

(2)
2 (t) =

a7

a8
y2(1 + v3)p

(2)
2 − a9p

(2)
2 − a6p

(2)
2 − a9p

(2)
4 − q3y3,

C
t D

q
t2
p

(2)
4 (t) = a3a4(1 − v4)p

(2)
1 −

a7

a8
y2(1 + v2)p

(2)
2 − a9p

(2)
2 − a4p

(2)
4 + q4y4,

C
t D

q
t2
p(2)(t2) = γ2(5.14)

In the interval [t0, t1] the adjoint is the solution of the fractional differential equation

C
t D

q
t1
p

(1)
1 (t) = −(a1 + a2x2(1 − u2))p

(1)
1

+

[

a5

(1 + x1)2
+ a2x2(1 − u2)(1 − u4)

]

p
(1)
2

− a2x2(1 − u2)(1 − u4)p
(1)
2 + q1x1

C
t D

q
t1
p

(1)
2 (t) = −a2x1(1 − u2)p

(1)
1 − [a2x1(1 − u2)(1 − u4) + a6]p

(1)
2

+ a7

(

1 −
1

a8
x2(1 + u2)

)

p
(1)
2
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a7

(

1 −
x2 + x2 + x4

8

)

(1 + u2)p
(1)
2 + a2x1(1 − u2)(1 − u4)p

(1)
2

C
t D

q
t1
p

(1)
2 (t) =

a7

a8

x2(1 + u3)p
(1)
2 − a9p

(1)
2 − a6p

(1)
2 − a9p

(1)
4 − q3x3,

C
t D

q
t1
p

(1)
4 (t) = a3a4(1 − u4)p

(1)
1 −

a7

a8
x2(1 + u2)p

(1)
2 − a9p

(1)
2 − a4p

(1)
4 + q4x4,

C
t D

q
t1
p(1)(t1) = γ1(5.15)

Next we write the Hamiltonians in each of the intervals. In the interval [t2, t3] we

have

(5.16) H3(t, z3(t), p
(3)(t), ν) ≥ H3(t, z3(t), p

(3)(t), w(t)), a.e. t ∀ ν ∈ U3

The Hamiltonian in the interval [t1, t2] we have

(5.17) H2(t, y2(t), p
(2)(t), ν) ≥ H2(t, y2(t), p

(2)(t), v(t)), a.e. t ∀ ν ∈ U2

The Hamiltonian in the interval [t0, t1] we have

(5.18) H1(t, y1(t), p
(1)(t), ν) ≥ H1(t, y1(t), p

(1)(t), u(t)), a.e. t ∀ ν ∈ U1

To carry out the numerical simulation we use the state equations (5.1), (5.2), (5.3),

the adjoint equations (5.13), (5.14), (5.15) and the Hamiltonians (5.16), (5.17), (5.18).

Specific values for the parameters in the state equations, and the cost are given below.

The numerical procedure goes as follows. We start with the third interval, use the

Hamiltonian to improve on the control. Using the improved control we update the

state and the adjoint variables in the third interval. Then move to the second interval

and use the Hamiltonian in the second interval to improve the control in the second

interval. Then we use the improved control and update the states in the second

interval and the third interval. The states in the third interval get updated because

of the change in the state variables at t2. Finally move to the first interval and use

the Hamiltonian there to improve on the control. Using the improved control update

the states in the first interval. Due to the change in the states of the first interval at

t1 the states in the second interval, hence the states in the third interval are updated.

BEGIN pseudocode

Third interval:

Use Hamiltonian to improve control.

Using improved control update state, adjoint variables in

third interval.

Second interval:

Improve control in the second interval.

Update states in second and third interval.
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First interval: Improve control.

Update states in all intervals.

END pseudocode

This procedure is essentially dynamic programming procedure.

The values of the parameters in (4.1) are given in the following table.

Parameters Values

a1 = Death rate of free virus 2.5d−1

a2 = Rate CD4+ T cells become infected with virus 2.4 × 10−5
mm

3
d
−1

a3 = Number of free virus produced by actively infected

CD4+ T cells 1200

a4 = Death rate of actively infected CD4+ T cells population 0.24d−1

a5 = Source term for uninfected CD4+ T cells 10d−1
mm

−3

a6 = Death rate of uninfected (latently infected) CD4+ T

cells population 0.02d−1

a7 = Growth rate of CD4+ T cells population 0.02d−1

a8 = Maximal population level of CD4+ T cells 1500mm
−3

a9 = Rate latently infected cells become active 3 × 10−3
d
−1

In (5.4) the parameters in the cost are give the values

(5.19) s1 = s3 = s4 = q1 = q3 = q4 = 103

In (5.1) the parameters in the cost are give the values

x1(t0) = c01 = 0.049,

x2(t0) = c02 = 904,

x3(t0) = c03 = 0.034,

x4(t0) = c04 = 0.042,(5.20)

Next, we give particular values to the parameters in (5.2) and (5.3)

dd1 = dd2 = dd3 = dd4 = 0.002,

DDD1 = .0002, DDD2 = 0.002, DDD3 = DDD4 = 0.002

cc1 = −0.99, cc2 = −0.95, cc3 = cc4 = −0.99,

CCC1 = −.995, CCC2 = −0.35, CCC3 = CCC4 = −0.995.(5.21)

The control variables take the values in the following table (Table 1).

Next, we give particular values to the parameters in (5.2) and (5.3) when there

is no memory, that is the model is no more fractional differential equation. Thus, in

(4.1), the left hand sides are ordinary derivatives of the states. The control variables

in (5.2) and (5.3) are given in the following table (Table 1).

dd1 = dd2 = dd3 = dd4 = 0.002,



FRACTIONAL DIFFERENTIAL EQUATIONS 55

0 10 20 30
0

10

20

30

40

50

t

x
1

x1 trajectory

 

 

0 10 20 30
950

1000

1050

1100

1150

1200

1250

t

x
2

x2 trajectory

 

 

0 10 20 30
0

50

100

150

200

250

t

x
3

x3 trajectory

 

 

0 10 20 30
0

50

100

150

200

t

x
4

x4 trajectory

 

 

free virus uninfected CD4+

latently infected actively infected

Figure 1. States in Time Interval 1.

Table 1

Interval 1 Interval 2 Interval 3

u1 = 1.0 v1 = 1 w1 = 1

u2 = .95 v2 = 0 w2 = 1

u3 = 0.0 v3 = 1 w3 = 0.9

u4 = .95 v4 = 1 w4 = 1

DDD1 = .0002, DDD2 = 0.002, DDD3 = DDD4 = 0.002

cc1 = −0.95, cc2 = −0.95, cc3 = cc4 = −0.95,

CCC1 = −.95, CCC2 = −0.95, CCC3 = CCC4 = −0.95.(5.22)
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Figure 2. States in Time Interval 2.

Table 2

Interval 1 Interval 2 Interval 3

u1 = 0 v1 = 0 w1 = 0.0418538

u2 = 1 v2 = 1 w2 = 1

u3 = 0.0009521 v3 = 0.0009401 w3 = 0.0008798

u4 = 1.026987 v4 = 1.010854 w4 = 1

Then, we get the following graphs (Figure 4–Figure 6).
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Figure 3. States in Time Interval 3.

6. Discussion of the results of the numerical computation

The numerical computation shows that in the fractional differential equation

model that the virus at the intervention/impulse times should be killed 99%. The

same is true in latently and actively infected CD4+ cells. Although there is damage

to uninfected CD4+ cells the number rises to what is regarded as normal. The virus

level and the infected and latently infected CD4+ cells also increase. However their

number does not reach the number for uninfected CD4+ cells. In the differential

equation model if 95% of the virus and the CD4+ cells are killed at the time of the

intervention the number of uninfected CD4+ cells rises quickly to the normal number

while the virus level and the infected CD4+ cells remain low. What one observes in

these models is the importance of planned strong interventions .
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Figure 4. States in Time Interval 1.

7. Conclusion

We have considered an optimal control problem governed by fractional order

differential equations modeling an HIV-immune system. The rational for using frac-

tional differential equations is to account for the fact that the immune response in-

volves memory. The impulse system formulation is to account for the fact a treatment

regime of taking medication and the amount at optimal instants may be less dam-

aging to the body and also less expensive. Some medications may still have to be

taken regularly. Thus we have decision variables at impulse time and between impulse

times. We have constructed necessary conditions for optimality and carried out nu-

merical computation. Our results demonstrate that regardless of what we do between

impulse times strong interventions are needed at impulse times, and the controls in

between impulse times help increase the length of time between impulse times.
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