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ABSTRACT. In this work, we investigate the existence of multiple solutions for a class of non-

homogeneous nonlocal systems via variational methods and critical point theory. We give a new

criteria for guaranteeing that the nonhomogeneous nonlocal systems with a perturbed term have

at least three solutions in an appropriate Orlicz-Sobolev space. By presenting two examples we

illustrate the results.
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1. INTRODUCTION

Let Ω be a bounded domain in R
N (N ≥ 3) with smooth boundary ∂Ω, ν be the

outer unit normal to ∂Ω, Mi : R
+ → R be nondecreasing continuous functions for

i = 1, . . . , n, αi : (0,∞) → R be such that the mappings ϕi : R → R defined by

ϕi(t) =

{
αi(|t|)t for t 6= 0,

0 for t = 0

are odd and strictly increasing homeomorphisms from R onto R, and

Φi(t) =

∫ t

0

ϕi(s)ds for all t ∈ R

for i = 1, . . . , n, on which will be imposed some suitable assumptions later.
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In this paper, we study the nonhomogeneous nonlocal system

(Nλ,µ)






Mi

(∫
Ω

Φi(|∇ui|) + Φi(|ui|)dx
)

× (− div(αi(|∇ui|)∇ui) + αi(|ui|)ui)

= λFui
(x, u1, . . . , un) + µGui

(x, u1, . . . , un) in Ω,
∂ui

∂ν
= 0 on ∂Ω

for i = 1, . . . , n, where F, G : Ω × R
N → R are measurable with respect to x, for

all ξ ∈ R
N , continuously differentiable in ξ, for almost every x ∈ Ω and satisfy the

standard summability condition

(1.1) sup
|ξ|≤̺1

(max{|F (·, ξ)|, |G(·, ξ)|, |Fξi
(·, ξ)|, |Gξi

(·, ξ)|, i = 1, . . . , n}) ∈ L1(Ω)

for any ̺1 > 0 with ξ = (ξ1, . . . , ξn) and |ξ| =
√∑n

i=1 ξ2
i , and

(1.2) F (x, 0, . . . , 0) = G(x, 0, . . . , 0) = 0 for a.e. x ∈ Ω,

Fui
and Gui

denote the partial derivatives of F and G with respect to ui, respectively,

λ > 0 and µ ≥ 0 are two parameters.

It should be mentioned that if ϕi(t) = pi|t|pi−2t for i = 1, . . . , n, then (Nλ,µ)

becomes the well-known (p1, . . . , pn)-Kirchhoff-type Neumann system

(1.3)






Mi

( ∫
Ω
(|∇ui|pi + |ui|pi)dx

)(
− ∆pi

ui + |ui|pi−2ui

)

= λFui
(x, u1, . . . , un) + µGui

(x, u1, . . . , un) inΩ,
∂ui

∂ν
= 0 on ∂Ω

for i = 1, . . . , n.

System (1.3) is related to the stationary problem

ρ
∂2u

∂t2
−
(ρ0

h
+

E

2L

∫ L

0

∣∣∣∣
∂u

∂x

∣∣∣∣
2

dx
)∂2u

∂x2
= 0,

for 0 < x < L, t ≥ 0, where u = u(x, t) is the lateral displacement at the space

coordinate x and the time t, E the Young modulus, ρ the mass density, h the cross-

section area, L the length and ρ0 the initial axial tension, proposed by Kirchhoff [16]

as an extension of the classical d’Alembert wave equation for free vibrations of elastic

strings. Since the equations including the functions Mi depend on integrals over Ω

in (1.3), they are no longer pointwise identities, and therefore they are often called

nonlocal systems.

Kirchhoff’s model takes into account the length changes of the string produced

by transverse vibrations. Some interesting results can be found, for example in [2,7].

On the other hand, Kirchhoff-type boundary value problems model several physical

and biological systems, where u describes a process which depends on the average of

itself, as for example, the population density. They received great attention only after
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Lions [20] proposed an abstract framework for the problem. Solvability of Kirchhoff-

type problems was extensively studied by various authors. Some early classical inves-

tigations of Kirchhoff equations can be seen in the papers [12, 25] and the references

therein.

We point out the fact that if n = 1 and M1(t) = 1 for all t ∈ R
+, then (Nλ,µ)

becomes the nonhomogeneous Neumann problem

(1.4)

{
− div(α(|∇u|)∇u) + α(|u|)u = λf(x, u) + µg(x, u) in Ω,
∂u
∂ν

= 0 on ∂Ω,

where f, g : Ω × R → R are two L1-Carathéodory functions.

It is well known that quasilinear elliptic partial differential equations involving

nonhomogeneous differential operators are important in applications in many fields,

such as elasticity, fluid dynamics, calculus of variations, nonlinear potential theory, the

theory of quasi-conformal mappings, differential geometry, geometric function theory,

probability theory and image processing (for instance, see [13, 22, 26]). The study of

nonlinear elliptic equations involving quasilinear homogeneous-type operators is based

on the theory of Sobolev spaces Wm,p(Ω) in order to find weak solutions. In the case

of nonhomogeneous differential operators, the natural setting for this approach is

the use of Orlicz-Sobolev spaces. These spaces consist of functions that have weak

derivatives and satisfy certain integrability conditions. Many properties of Orlicz-

Sobolev spaces are given in [1]. Existence of solutions for problems associated to

nonhomogeneous differential operators in Orlicz-Sobolev space has been studied by

means of variational techniques, monotone operator methods, fixed point theory and

degree theory (see [3–6,8,9,11,14,15,18,23,28]). Clément et al., in [11], discussed the

existence of weak solutions in an Orlicz-Sobolev space to the Dirichlet problem

(1.5)

{
− div(α(|∇u(x)|)∇u(x)) = g(x, u(x)) in Ω,

u = 0 on ∂Ω,

where Ω is a bounded domain in R
N , g ∈ C(Ω×R, R), and the function ϕ(s) = sa(|s|)

is an increasing homeomorphism from R onto R. Under appropriate conditions on

ϕ, g and the Orlicz-Sobolev conjugate Φ∗ of Φ(s) =
∫ s

0
ϕ(t)dt, they investigated the

existence of nontrivial solutions of mountain pass type. Kristály et al., in [18], by

using a recent variational principle of Ricceri, ensured the existence of at least two

nontrivial solutions for (1.4) in the case µ = 0 in the Orlicz-Sobolev space W1LΦ(Ω).

In [3–5], Bonanno et al., based on variational methods, discussed the existence of

multiple solutions in the Orlicz-Sobolev space W1LΦ(Ω) for (1.4) in the case µ = 0.

In [6], Cammaroto and Vilasi continued within the framework of Orlicz-Sobolev spaces

and guaranteed through variational arguments the existence of three weak solutions
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to the nonhomogeneous boundary value problem
{

div(α(|∇u|)∇u) = λf(x, u) + µg(x, u) in Ω,

u = 0 on ∂Ω,

where Ω is a bounded domain in R
N with smooth boundary ∂Ω, f, g : Ω×R → R are

Carathéodory functions, λ and µ are two positive parameters and the function t →
α(|t|)t is an odd and increasing homeomorphism from R onto R. They also presented

applications and comparisons. Yang, in [28], by using variational methods and three

critical point theorems due to Ricceri, investigated the existence of multiple solutions

for (1.4) in an appropriate Orlicz-Sobolev space. Chung, in [8], using variational

methods, studied the existence of multiple solutions for nonhomogeneous nonlocal

problems. In [15], based on variational methods for smooth functionals defined on

Orlicz-Sobolev spaces, the existence of three distinct weak solutions for perturbed

Kirchhoff-type nonhomogeneous Neumann problems was established under suitable

assumptions on the nonlinear terms.

To the best of our knowledge, for nonhomogeneous Neumann problems, there has

so far been few papers concerning their multiple solutions.

Motivated by the above facts, in this paper, we establish a new criterion for

guaranteeing that the nonhomogeneous nonlocal system (Nλ,µ) has at least three

weak solutions in an Orlicz-Sobolev space for appropriate values of the parameters

λ and µ belonging to real intervals. It is clear that this is a natural extension of

the earlier studies on Kirchhoff-type problems in classical Sobolev spaces and on

nonlinear nonhomogeneous problems in Orlicz-Sobolev spaces. Our approach is based

on variational methods and a three critical points theorem due to Ricceri [24].

2. PRELIMINARIES

We first recall some basic facts about Orlicz-Sobolev spaces. Let ϕi and Φi for

i = 1, . . . , n be as introduced at the beginning of the paper. Set

Φ⋆
i (t) =

∫ t

0

ϕ−1
i (s)ds for all t ∈ R, i = 1, . . . , n.

We note that Φi is a Young function, that is, Φi(0) = 0, Φi is convex, and

lim
t→∞

Φi(t) = ∞

for i = 1, . . . , n. Furthermore, since Φi(t) = 0 if and only if t = 0,

lim
t→0

Φi(t)

t
= 0 and lim

t→∞

Φi(t)

t
= ∞,

and Φi is called an N -function for i = 1, . . . , n. The function Φ⋆
i is called the comple-

mentary function of Φi, and it satisfies

Φ⋆
i (t) = sup{st − Φi(s) : s ≥ 0} for all t ≥ 0, i = 1, . . . , n.
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We see that Φ⋆
i is also an N -function satisfying the Young inequality

st ≤ Φi(s) + Φ⋆
i (t) for all s, t ≥ 0, i = 1, . . . , n.

Throughout this article, we assume

(Φ0) 1 < lim inf
t→∞

tϕi(t)

Φi(t)
≤ (pi)

0 := sup
t>0

tϕi(t)

Φi(t)
< ∞,

and

(Φ1) N < (pi)0 := inf
t>0

tϕi(t)

Φi(t)
< lim inf

t→∞

log(Φi(t))

log(t)

for i = 1, . . . , n.

The Orlicz space LΦi
(Ω) defined by the N -function Φi (see for instance [1,17]) is

the space of measurable functions u : Ω → R such that

‖u‖LΦi
:= sup

{∫

Ω

u(x)v(x)dx :

∫

Ω

Φ⋆
i (|v(x)|)dx ≤ 1

}
< ∞

for i = 1, . . . , n. Then (LΦi
(Ω), ‖ · ‖LΦi

) is a Banach space whose norm is equivalent

to the Luxemburg norm

‖u‖Φi
:= inf

{
k > 0 :

∫

Ω

Φi

(
u(x)

k

)
dx ≤ 1

}

for i = 1, . . . , n.

The Orlicz-Sobolev space W1LΦi
(Ω) building upon the Orlicz space LΦi

(Ω) is the

space defined by

W1LΦi
(Ω) =

{
u ∈ LΦi

(Ω) :
∂u

∂xj
∈ LΦi

(Ω), j = 1, . . . , N

}

for i = 1, . . . , n, and it is a Banach space with respect to the norm

‖u‖1,Φi
= ‖|∇u|‖Φi

+ ‖u‖Φi
, i = 1, . . . , n

(see [1, 11]).

Hypothesis (Φ0) is equivalent to the fact that Φi and Φ∗
i both satisfy the ∆2-

condition (at infinity), i.e.,

(2.1) Φi(2t) ≤ KΦi(t) for all t ≥ 0, i = 1, . . . , n,

where K is a positive constant (see [1, page 232] and [23, Proposition 2.3]). In partic-

ular, (Φi, Ω) and (Φ∗
i , Ω) for i = 1, . . . , n are ∆-regular [1, page 232]. Consequently,

the spaces LΦi
(Ω) and W1LΦi

(Ω) for i = 1, . . . , n are separable and reflexive Banach

spaces [1, pages 241, 247].

Furthermore, we assume that Φi satisfies the condition

(Φ2) the function [0,∞) ∋ t → Φi(
√

t) is convex

for i = 1, . . . , n.
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Remark 2.1. Using [11, Lemma D.2], it follows that W1LΦi
(Ω) is continuously em-

bedded in W1,(pi)0(Ω) for i = 1, . . . , n. On the other hand, since we assume that

(pi)0 > N , we deduce that W1,(pi)0(Ω) is compactly embedded in C(Ω) for i = 1, . . . , n.

Thus, we deduce that there exist constants ci > 0 such that

(2.2) ‖u‖∞ ≤ ci ‖u‖1,Φi
for all u ∈ W1LΦi

(Ω),

where ‖u‖∞ := supx∈Ω |u(x)| for i = 1, . . . , n. A concrete estimation of a concrete

upper bound for the constants ci remains an open question.

We recall the following useful properties regarding the norms on Orlicz-Sobolev

spaces.

Lemma 2.2 (See [18, Lemma 2.2]). On W1LΦi
(Ω), the norms

‖u‖1,Φi
= ‖|∇u|‖Φi

+ ‖u‖Φi
,

‖u‖2,Φi
= max{‖|∇u|‖Φi

, ‖u‖Φi
},

‖u‖i = inf

{
µ > 0 :

∫

Ω

[
Φi

( |u(x)|
µ

)
+ Φi

( |∇u(x)|
µ

)]
dx ≤ 1

}

are equivalent. More precisely, for every u ∈ W1LΦi
(Ω), we have

(2.3) ‖u‖i ≤ 2‖u‖2,Φi
≤ 2‖u‖1,Φi

≤ 4‖u‖i.

Lemma 2.3 (See [18, Lemma 2.3] and [15, Lemma 2.4]). If u ∈ W1LΦi
(Ω), then

∫

Ω

[Φi(|u(x)|) + Φi(|∇u(x)|)]dx ≥ ‖u‖(pi)0

i if ‖u‖i < 1, i = 1, . . . , n,

∫

Ω

[Φi(|u(x)|) + Φi(|∇u(x)|)]dx ≥ ‖u‖(pi)0
i if ‖u‖i > 1, i = 1, . . . , n,

∫

Ω

[Φi(|u(x)|) + Φi(|∇u(x)|)]dx ≤ ‖u‖(pi)0
i if ‖u‖i < 1, i = 1, . . . , n,

∫

Ω

[Φi(|u(x)|) + Φi(|∇u(x)|)]dx ≤ ‖u‖(pi)
0

i if ‖u‖i > 1, i = 1, . . . , n.

Lemma 2.4 (See [3, Lemma 2.2]). Let u ∈ W1LΦi
(Ω). If

∫

Ω

[Φi(|u(x)|) + Φi(|∇u(x)|)]dx ≤ r

for some 0 < r < 1, then ‖u‖i < 1.

Lemma 2.5 (See [15, Lemma 2.6]). Let u ∈ W1LΦi
(Ω). If ‖u‖i = 1, then

∫

Ω

[Φi(|u(x)|) + Φi(|∇u(x)|)]dx = 1.
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In what follows, E will denote the Cartesian product of the Orlicz-Sobolev spaces

W1LΦ1(Ω), . . ., W1LΦn
(Ω), i.e., E =

∏n
i=1 W1LΦi

(Ω), endowed with the norm

‖u‖ =

n∑

i=1

‖ui‖i,

where u = (u1, . . . , un) and ‖ui‖i is the norm of W1LΦi
(Ω) for i = 1, . . . , n.

Now we assume that Mi satisfies the condition

(M0) there exist mi > 0 and 1 < ai < ∞ with Mi(t) ≥ mit
ai−1 for all t ≥ 0

for i = 1, . . . , n.

In the sequel, we set

m := min{mi, i = 1, . . . , n}, m := max{mi, i = 1, . . . , n},
a = min{ai, i = 1, . . . , n}, a := max{ai, i = 1, . . . , n}

and

p0 := min{(pi)0, i = 1, . . . , n}, p0 := max{(pi)0, i = 1, . . . , n}.

For a real Banach space X, denote by WX the class of all functionals J : X → R

possessing the following property: If {un} is a sequence in X converging weakly to

u ∈ X and lim infn→∞ J(un) ≤ J(u), then {un} has a subsequence converging strongly

to u.

For example, if X is uniformly convex and h : [0,∞) → R is a continuous and

strictly increasing function, then, by a classical result, the functional u → h(‖u‖)
belongs to the class WX .

Our main tool is the following result obtained by Ricceri (see [24, Theorem 2]).

Theorem 2.6. Let X be a separable and reflexive real Banach space, J : X → R

be a coercive, sequentially weakly lower semicontinuous C1-functional, belonging to

WX , bounded on each bounded subset of X and whose derivative admits a continuous

inverse on X∗, I : X → R be a C1-functional with compact derivative. Assume that

J has a strict local minimum u0 with J(u0) = I(u0) = 0. Finally, setting

ρ = max

{
0, lim sup

‖u‖→∞

I(u)

J(u)
, lim sup

u→u0

I(u)

J(u)

}
,

σ = sup
u∈J−1((0,∞[)

I(u)

J(u)
,

assume that ρ < σ. Then for each compact interval [c, d] ⊂ ( 1
σ
, 1

ρ
) (with the conven-

tions 1
0

= +∞, 1
+∞

= 0), there exists Λ > 0 with the following property: For every
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λ ∈ [c, d] and every C1-functional Ψ : X → R with compact derivative, there exists

γ > 0 such that, for each µ ∈ [0, γ],

J ′(u) = λI ′(u) + µΨ′(u)

has at least three solutions in X whose norms are less than Λ.

We refer the reader to the papers [6,27,28] in which Theorem 2.6 was successfully

employed to ensure the existence of at least three solutions for nonhomogeneous

problems.

Put

(2.4) M̂i(t) =

∫ t

0

Mi(s)ds, t ≥ 0, i = 1, . . . , n.

For every u = (u1, . . . , un) ∈ E, we define the functionals ωi, J, I, Ψ : E → R by

ωi(ui) =

∫

Ω

[Φi(|ui(x)|) + Φi(|∇ui(x)|)] dx, i = 1, . . . , n,(2.5)

J(u) =

n∑

i=1

M̂i (ωi(ui)) ,(2.6)

I(u) =

∫

Ω

F (x, u1(x), . . . , un(x))dx(2.7)

and

Ψ(u) =

∫

Ω

G(x, u1(x), . . . , un(x))dx.(2.8)

For every u ∈ E, set

Γλ,µ(u) := J(u) − λI(u) − µΨ(u).

Standard arguments show that Γλ ∈ C1(E, R). In fact, one has

Γ′
λ,µ(u)(v) = lim

h→0

Γλ,µ(u + hv) − Γλ,µ(u)

h

=

n∑

i=1

Mi (ωi(ui))

∫

Ω

(αi(|∇ui(x)|)∇ui(x) · ∇vi(x) + αi(|ui(x)|)ui(x)vi(x)) dx

−λ

n∑

i=1

∫

Ω

Fui
(x, u1(x), . . . , un(x))vi(x)dx

−µ

n∑

i=1

∫

Ω

Gui
(x, u1(x), . . . , un(x))vi(x)dx

for all u, v ∈ E (see [18] for more details).
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A function u = (u1, . . . , un) ∈ E is a weak solution for (Nλ,µ) if

n∑

i=1

Mi

(∫

Ω

[Φi(|ui(x)|) + Φi(|∇ui(x)|)] dx

)

×
∫

Ω

(αi(|∇ui(x)|)∇ui(x) · ∇vi(x) + αi(|ui(x)|)ui(x)vi(x)) dx

= λ

n∑

i=1

∫

Ω

Fui
(x, u1(x), . . . , un(x))vi(x)dx

+ µ

n∑

i=1

∫

Ω

Gui
(x, u1(x), . . . , un(x))vi(x)dx

for every v = (v1, . . . , vn) ∈ E.

We use the following proposition in the proof of our main result.

Proposition 2.7. Let S : E → E∗ be the operator defined by

S(u)(v) =
n∑

i=1

Mi (ωi(ui))

∫

Ω

(αi(|∇ui(x)|)∇ui(x) · ∇vi(x) + αi(|ui(x)|)ui(x)vi(x)) dx

for every u, v ∈ E. Then, S admits a continuous inverse on E∗.

Proof. For any u = (u1, . . . , un) ∈ E with ‖ui‖i > 1, i = 1, . . . , n, by (M0) and

Lemma 2.3, one has

S(u)(u) =

n∑

i=1

Mi (ωi(ui))ωi(ui) ≥
n∑

i=1

mi ωi(ui)
ai

≥
n∑

i=1

mi‖ui‖(pi)0ai

i ≥ m

n∑

i=1

‖ui‖(pi)0ai

i .

It follows that S is coercive. Now let u, v ∈ E with u 6= v and t1, t2 ∈ [0, 1] with

t1 + t2 = 1. Note that, since the function ϕi is increasing in R, we have

(ϕi(|ξ|) − ϕi(|η|))(|ξ| − |η|) ≥ 0 for all ξ, η ∈ R,

with equality if and only if ξ = η for i = 1, . . . , n. Thus, for all ξ, η ∈ R,

(αi(|ξ|)|ξ| − αi(|η|)|η|)(|ξ| − |η|) ≥ 0 for all ξ, η ∈ R,

with equality if and only if ξ = η for i = 1, . . . , n. On the other hand, simple

calculations show that for all ξ, η ∈ R,

(αi(|ξ|)|ξ| − αi(|η|)|η|) · (ξ − η) ≥ (αi(|ξ|)|ξ| − αi(|η|)|η|)(|ξ| − |η|)

for i = 1, . . . , n. Consequently, we conclude that for all ξ, η ∈ R,

(αi(|ξ|)|ξ| − αi(|η|)|η|) · (ξ − η) ≥ 0
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with equality if and only if ξ = η for i = 1, . . . , n. This shows that the operator

ω′
i : W1LΦi

(Ω) → (W1LΦi
(Ω))∗ given by

ω′
i(ui)vi =

∫

Ω

(αi(|∇ui(x)|)∇ui(x) · ∇vi(x) + αi(|ui(x)|)ui(x)vi(x)) dx

is strictly monotone, so by [29, Proposition 25.10], ωi is strictly convex for i = 1, . . . , n.

Moreover, since Mi is nondecreasing, the function M̂i is convex in [0,∞) for i =

1, . . . , n. Thus, we have

M̂i(ωi(t1ui + t2vi)) < M̂i(t1ωi(ui) + t2ωi(ui)) ≤ t1M̂i(ωi(ui)) + t2M̂i(ωi(ui))

for i = 1, . . . , n. This shows that the operator Si : W1LΦi
(Ω) → (W1LΦi

(Ω))∗ defined

by

Si(ui) = M̂i (ωi(ui))

is strictly convex and so S ′
i is strictly monotone for i = 1, . . . , n. Thus, since S(u) =∑n

i=1 S ′
i(ui), S is strictly monotone. Moreover, since E is reflexive, for un → u

strongly in E as n → ∞, one has S(un) → S(u) weakly in E∗ as n → ∞. Hence,

S is hemicontinuous, so by [29, Theorem 26.A(d)], the inverse operator S−1 of S

exists and it is bounded. Now we prove that S−1 is continuous by showing that it

is sequentially continuous. Let {em} be a sequence in E∗ such that em → e strongly

in E∗ as n → ∞. Let {um} = {(u1m, . . . , unm)} and u = (u1, . . . , un) in E such that

S−1(em) = um and S−1(e) = u. Taking into account that S is coercive, one has that

the sequence {um} is bounded in the reflexive space E. For a suitable subsequence,

we have um → û = (û1, . . . , ûn) weakly in E as m → ∞, which yields

lim
m→∞

S(um)(um − û) = lim
m→∞

em(um − û) = 0,

so

(2.9) lim
m→∞

n∑

i=1

Mi (ωi(uim))

∫

Ω

(
αi(|∇uim|)∇uim · (∇uim −∇ûi)

+ αi(|uim|)uim(uim − ûi)
)
dx = 0.

Using Lemma 2.3, since {um} is bounded in E, by passing to a subsequence if neces-

sary, we may assume that

ωi(uim) → si ≥ 0 as m → ∞, i = 1, . . . , n.

If si = 0, i = 1, . . . , n, then, by Lemma 2.3, {um} converges strongly to û = (0, . . . , 0)

in E. Hence, taking into account that S is a continuous injection, we have u =

(0, . . . , 0), and the proof is finished. If there exists i ∈ {1, . . . , n} such that si > 0,

then, by continuity of the functions Mi, i = 1, . . . , n, we have

n∑

i=1

Mi (ωi(uim)) →
n∑

i=1

Mi (si) as m → ∞.
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Thus, by (M0), there exists a constant D such that

(2.10)
n∑

i=1

Mi (ωi(uim)) ≥ D > 0.

From (2.9) and (2.10), it follows that

(2.11) lim
m→∞

n∑

i=1

∫

Ω

(
αi(|∇uim|)∇uim · (∇uim −∇ûi)

+ αi(|uim|)uim(uim − ûi)
)
dx = 0.

From (2.11) and the fact that {um} converges weakly to û in E, we can apply [21,

Lemma 5] in order to infer that {um} converges strongly to û in E. Hence, taking

into account that S is a continuous injection, we have u = û.

3. MAIN RESULTS

In this section, we formulate our main results. Let us denote by F the class of

all functions F : Ω × R
N → R that are measurable with respect to x, for all ξ ∈ R

N ,

continuously differentiable in ξ, for almost every x ∈ Ω, and satisfy (1.1) and (1.2).

Put

λ1 = inf

{∑n
i=1 M̂i (ωi(ui))

2
∫
Ω

F (x, u(x))dx
: u ∈ E,

∫

Ω

F (x, u(x))dx > 0

}

and

λ2 =

(
max

{
0, lim sup

|u|→0

2
∫
Ω

F (x, u(x))dx
∑n

i=1 M̂i (ωi(ui))
, lim sup

‖u‖→∞

2
∫
Ω

F (x, u(x))dx
∑n

i=1 M̂i (ωi(ui))

})−1

,

where u = (u1, . . . , un).

Theorem 3.1. Suppose that F ∈ F . Assume that the following conditions hold:

(A1) There exists a constant ε > 0 such that

max

{
lim sup
ξ→(0,...,0)

supx∈Ω F (x, ξ)∑n
i=1 |ξi|ai (pi)0

, lim sup
|ξ|→∞

supx∈Ω F (x, ξ)∑n
i=1 |ξi|ai (pi)0

}
< ε,

where ξ = (ξ1, . . . , ξn) with |ξ| =
√∑n

i=1 ξ2
i .

(A2) There exists a function w = (w1, . . . , wn) ∈ E such that
∑n

i=1 M̂i (ωi(wi)) 6= 0

and

2aε max{ca1(p1)0
1 , . . . , can(pn)0

n } <
m
∫
Ω

F (x, w(x))dx

meas(Ω)
∑n

i=1 M̂i (ωi(wi))
.

Then, for each compact interval [c, d] ⊂ (λ1, λ2), there exists Λ > 0 with the following

property: For every λ ∈ [c, d] and every G ∈ F , there exists γ > 0 such that, for each

µ ∈ [0, γ], the system (Nλ,µ) has at least three weak solutions whose norms in E are

less than Λ.
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Proof. Take X = E. Clearly, X is a separable and reflexive Banach space. Let

the functionals J , I and Ψ be as given in (2.6), (2.7) and (2.8), respectively. The

functional J is C1, and due to Proposition 2.7, its derivative admits a continuous

inverse on X∗. Moreover, J is sequentially weakly lower semicontinuous in X. Indeed,

let {um} = {(u1m, . . . , unm)} ⊂ X be a sequence that converges weakly to u =

(u1, . . . , un) in X. By [23, Lemma 4.3], we conclude that the functionals

ui → ωi(ui) =

∫

Ω

[Φi(|ui(x)|) + Φi(|∇ui(x)|)]dx, i = 1, . . . , n

are weakly lower semi-continuous, i.e.,

(3.1)

∫

Ω

[Φi(|ui(x)|) + Φi(|∇ui(x)|)]dx

≤ lim inf
m→∞

∫

Ω

[Φi(|uim(x)|) + Φi(|∇uim(x)|)]dx, i = 1, . . . , n.

Thus, by (3.1) and continuity and monotonicity of the functions t 7→ M̂i(t), i =

1, . . . , n, we get

lim inf
m→∞

J(um) = lim inf
m→∞

n∑

i=1

M̂i

(∫

Ω

[Φi(|uim(x)|) + Φi(|∇uim(x)|)]dx

)

≥
n∑

i=1

lim inf
m→∞

M̂i

(∫

Ω

[Φi(|uim(x)|) + Φi(|∇uim(x)|)]dx

)

≥
n∑

i=1

M̂i

(
lim inf
m→∞

∫

Ω

[Φi(|uim(x)|) + Φi(|∇uim(x)|)]dx

)

≥
n∑

i=1

M̂i

(∫

Ω

[Φi(|ui(x)|) + Φi(|∇ui(x)|)]dx

)

= J(u).

Thus, the functional J is sequentially weakly lower semicontinuous. On the other

hand, if u ∈ X and ‖ui‖i > 1, i = 1, . . . , n, then, by Lemma 2.3 and (M0), we have

(3.2)

J(u) =

n∑

i=1

M̂i

(∫

Ω

[Φi(|ui(x)|) + Φi(|∇ui(x)|)]dx

)

≥
n∑

i=1

mi

ai

(∫

Ω

[Φi(|ui(x)|) + Φi(|∇ui(x)|)]dx

)ai

≥
n∑

i=1

mi

ai
‖ui‖ai(pi)0

i ≥ m

a

n∑

i=1

‖ui‖ai(pi)0
i .

Hence, J is coercive. Moreover, let A be a bounded subset of X. That is, there exists

a constant li > 0 such that ‖u‖i ≤ li for each u ∈ A for i = 1, . . . , n. Then, we have

|J(u)| =

∣∣∣∣
n∑

i=1

M̂i (ωi(u))

∣∣∣∣ ≤
n∑

i=1

{
|M̂i

(
l
(pi)0
i

)
| if ‖u‖i ≤ 1,

|M̂i

(
l
(pi)

0

i

)
| if ‖u‖i > 1.
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Hence, J is bounded on each bounded subset of X. Furthermore, J ∈ WX . Indeed,

since
n∑

i=1

lim inf
m→∞

M̂i(ωi(uim)) ≤ lim inf
m→∞

n∑

i=1

M̂i(ωi(uim)),

M̂i is continuous and strictly increasing, so it suffices to show that ωi ∈ WX for

i = 1, . . . , n. So, let {um} = {(u1m, . . . , unm)} be a sequence weakly converging to

u = (u1, . . . , un) in X and let lim infm→∞ ωi(uim) ≤ ωi(ui) for i = 1, . . . , n. Since the

functional ωi is sequentially weakly lower semicontinuous, there exists a subsequence

of {uim}, still denoted by {uim}, such that

(3.3) lim
m→∞

ωi(uim) = ωi(ui)

for i = 1, . . . , n. Since {um} converges weakly to u, also
{

um+u
2

}
converges weakly

to u in X. Since the functionals wi are sequentially weakly lower semicontinuous, we

have

(3.4) lim inf
m→∞

ωi

(
uim + ui

2

)
≥ ωi(ui)

for i = 1, . . . , n. Now we assume by contradiction that {um} does not converge to u in

X. Hence, there exist εi > 0, i = 1, . . . , n, such that ‖uim−ui‖i ≥ εi, so |uim−ui

2
| ≥ εi

2
.

By Lemma 2.3, we have

ωi

(uim − ui

2

)
≥ max

{
ε
(pi)0
i , ε

(pi)0

i

}

for i = 1, . . . , n. On the other hand, by (2.1) and (Φ2), we can apply [19, Lemma 2.1]

in order to obtain

(3.5)
1

2
ωi(uim) +

1

2
ωi(ui) − ωi

(
uim + ui

2

)
≥ ωi

(
uim − ui

2

)
≥ max

{
ε
(pi)0
i , ε

(pi)0

i

}

for i = 1, . . . , n. From (3.3) and (3.5), we get

(3.6) ωi(ui) − max
{
ε
(pi)0
i , ε

(pi)
0

i

}
≥ lim sup

m→∞
ωi

(
uim + ui

2

)

for i = 1, . . . , n. From (3.4) and (3.6), we obtain a contradiction. This shows that

{um} converges strongly to u and the functional J belongs to the class WX . The

functionals I and Ψ are C1 with compact derivatives. Moreover, J has a strict local

minimum 0 with J(0) = I(0) = 0. In view of (A1), there exist two constants τ1, τ2

with 0 < τ1 < τ2 such that

(3.7) F (x, ξ) ≤ ε

n∑

i=1

|ξi|ai (pi)0

for every x ∈ Ω and every ξ = (ξ1, . . . , ξn) with |ξ| ∈ [0, τ1)∪(τ2,∞). By (1.1), F (x, ξ)

is bounded on x ∈ Ω and |ξ| ∈ [τ1, τ2]. So we can choose δ > 0 and υi > ai (pi)0,
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i = 1, . . . , n, in such a manner that

F (x, ξ) ≤ ε

n∑

i=1

|ξi|ai (pi)0 + δ

n∑

i=1

|ξi|υi

for all (x, ξ) ∈ Ω × R
n. So, by (2.2) and (2.3), we have

(3.8)

I(u) ≤ 2 meas(Ω)ε
n∑

i=1

c
ai (pi)0
i ‖ui‖ai (pi)0

i + 2 meas(Ω)δ
n∑

i=1

cυi

i ‖ui‖υi

i

≤ 2 meas(Ω)ε max{ca1(p1)0
1 , . . . , can(pn)0

n }
n∑

i=1

‖ui‖ai (pi)0
i

+ 2 meas(Ω)δ max{cυ1
1 , . . . , cυn

n }
n∑

i=1

‖ui‖υi

i

for all u ∈ X. Hence, from (3.2) and (3.8), we have

(3.9) lim sup
u→(0,...,0)

I(u)

J(u)
≤ 2ameas(Ω)ε max{ca1(p1)0

1 , . . . , c
an(pn)0
n }

m
.

Moreover, by using (3.7), for each u ∈ X \ {0}, we obtain

I(u)

J(u)
=

∫
|u|≤τ2

F (x, u)dx

J(u)
+

∫
|u|>τ2

F (x, u)dx

J(u)

≤
meas(Ω) supx∈Ω,|u|∈[0,τ2] F (x, u)

J(u)

+
2 meas(Ω)ε max{ca1(p1)0

1 , . . . , c
an(pn)0
n }

∑n
i=1 ‖ui‖ai (pi)0

i

J(u)

≤
a meas(Ω) supx∈Ω,|u|∈[0,τ2] F (x, u)

m
∑n

i=1 ‖ui‖ai(pi)0
i

+
2a meas(Ω)ε max{ca1(p1)0

1 , . . . , c
an(pn)0
n }

m
.

So, we get

(3.10) lim sup
‖u‖→∞

I(u)

J(u)
≤ 2ameas(Ω)ε max{ca1(p1)0

1 , . . . , c
an(pn)0
n }

m
.

In view of (3.9) and (3.10), we have

(3.11)

ρ = max

{
0, lim sup

‖u‖→∞

I(u)

J(u)
, lim sup
u→(0,...,0)

I(u)

J(u)

}

≤ 2a meas(Ω)ε max{ca1(p1)0
1 , . . . , c

an(pn)0
n }

m
.
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Assumption (A2) in conjunction with (3.11) yields

σ = sup
u∈J−1(0,∞)

I(u)

J(u)
= sup

X\{0}

I(u)

J(u)

≥
∫
Ω

F (x, w(x))dx

J(w(x))
=

∫
Ω

F (x, w(x))dx
∑n

i=1 M̂i (ωi(w(x)))

>
2a meas(Ω)ε max{ca1(p1)0

1 , . . . , c
an(pn)0
n }

m
≥ ρ.

Thus, all the hypotheses of Theorem 2.6 are satisfied. Clearly, λ1 = 1
β

and λ2 = 1
α
.

Therefore, by using Theorem 2.6, for each compact interval [c, d] ⊂ (λ1, λ2), there

exists Λ > 0 with the following property: For every λ ∈ [c, d] and every G ∈ F , there

exists γ > 0 such that, for each µ ∈ [0, γ], the system (Nλ,µ) has at least three weak

solutions whose norms in E are less than Λ.

Another announced application of Theorem 2.6 is given next.

Theorem 3.2. Suppose that F ∈ F . Assume that

(3.12) max

{
lim sup
ξ→(0,...,0)

supx∈Ω F (x, ξ)∑n
i=1 |ξi|ai (pi)0

, lim sup
|ξ|→∞

supx∈Ω F (x, ξ)∑n
i=1 |ξi|ai (pi)0

}
≤ 0,

where ξ = (ξ1, . . . , ξn) with |ξ| =
√∑n

i=1 ξ2
i , and

(3.13) sup
u∈E

∫
Ω

F (x, u(x))dx
∑n

i=1 M̂i (ωi(ui))
> 0.

Then, for each compact interval [c, d] ⊂ (λ1,∞), there exists Λ > 0 with the following

property: For every λ ∈ [c, d] and every G ∈ F , there exists γ > 0 such that, for each

µ ∈ [0, γ], the system (Nλ,µ) has at least three weak solutions whose norms in E are

less than Λ.

Proof. In view of (3.12), there exist two constants τ1, τ2 with 0 < τ1 < τ2 such that

F (x, ξ) ≤ ε

n∑

i=1

|ξi|ai (pi)0

for every x ∈ Ω and every ξ = (ξ1, . . . , ξn) with |ξ| ∈ [0, τ1) ∪ (τ2,∞). Since F (x, ξ)

is bounded on x ∈ Ω and |ξ| ∈ [τ1, τ2], we can choose δ > 0 and υi > ai (pi)0 for

i = 1, . . . , n such that

F (x, ξ) ≤ ε

n∑

i=1

|ξi|ai (pi)0 + δ

n∑

i=1

|ξi|υi

for all (x, ξ) ∈ Ω × R
n. So, by the same process as in the proof of Theorem 3.1, we

have the relations (3.9) and (3.10). Since ε is arbitrary, (3.9) and (3.10) give

max

{
0, lim sup

‖u‖→∞

I(u)

J(u)
, lim sup
u→(0,...,0)

I(u)

J(u)

}
≤ 0.
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Then, with the notation of Theorem 2.6, we have ρ = 0. By (3.13), we also have

σ > 0. In this case, clearly λ1 = 1
σ

and λ2 = ∞. Thus, by using Theorem 2.6, the

result is achieved.

Remark 3.3. In Assumption (A2), if we choose

w(x) = w⋆(x) = (δ1, . . . , δn),

where δ1, . . . , δn are positive constants, then a direct calculation shows that

J(w⋆) =
n∑

i=1

M̂i

(∫

Ω

[Φi(|w⋆
i (x)|) + Φi(|∇w⋆

i (x)|)]dx

)

=
n∑

i=1

M̂i

(∫

Ω

Φi(δi)dx

)

= meas(Ω)
n∑

i=1

M̂i(Φi(δi)).

Then, Assumption (A2) can be restated as follows:

(Ã2) There exist positive constants δ1, . . . , δn such that
∑n

i=1 M̂i(Φi(δi)) 6= 0 and

max{ca1(p1)0
1 , . . . , can(pn)0

n } <
m‖θ‖L1(Ω)F (x, δ1, . . . , δn)

2aε meas(Ω)2
∑n

i=1 M̂i(Φi(δi))
.

4. APPLICATIONS AND EXAMPLES

Now, we point out some results in which the function F has separated variables.

To be precise, consider the system

(N θ
λ,µ)






Mi

(∫
Ω

Φi(|∇ui|) + Φi(|ui|)dx
)

× (− div(αi(|∇ui|)∇ui) + αi(|ui|)ui)

= λθ(x)Fui
(u1, . . . , un) + µGui

(x, u1, . . . , un) inΩ,
∂ui

∂ν
= 0 on ∂Ω

for i = 1, . . . , n, where θ : Ω → R is a nonzero function such that θ ∈ L1(Ω),

F : R
n → R is a C1-function with F (0, . . . , 0) = 0, and G is as given in (Nλ,µ).

Setting F (x, t1, . . . , tn) = θ(x)F (t1, . . . , tn) for every (x, t1, . . . , tn) ∈ Ω × R
n, the

following existence results are consequences of Theorem 3.1.

Theorem 4.1. Assume that the following conditions hold:

(A′
1) There exists a constant ε > 0 such that

(
sup
x∈Ω

θ(x)

)
· max

{
lim sup
ξ→(0,...,0)

F (ξ)∑n
i=1 |ξi|ai (pi)0

, lim sup
|ξ|→∞

F (ξ)∑n
i=1 |ξi|ai (pi)0

}
< ε,

where ξ = (ξ1, . . . , ξn) with |ξ| =
√∑n

i=1 ξ2
i .
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(A′
2) There exist positive constants δ1, . . . , δn such that

2aε max{ca1(p1)0
1 , . . . , can(pn)0

n } <
m‖θ‖L1(Ω)F (δ1, . . . , δn)

meas(Ω)2
∑n

i=1 M̂i(Φi(δi))
.

Then, for each compact interval [c, d] ⊂ (λ3, λ4), where λ3 and λ4 are λ1 and λ2 with∫
Ω

F (x, u(x))dx replaced by
∫
Ω

θ(x)F (u(x))dx, there exists Λ > 0 with the following

property: For every λ ∈ [c, d] and every G ∈ F , there exists γ > 0 such that, for each

µ ∈ [0, γ], the system (N θ
λ,µ) has at least three weak solutions whose norms in E are

less than Λ.

The next result immediately follows from Theorem 4.1 by setting n = 2, α1(|t|) =

|t|p1−2, α2(|t|) = |t|p2−2 for all t > 0 and Mi(t) = 1, i = 1, 2 for all t ∈ R.

Corollary 4.2. Let p1, p2 > N and F : R
2 → R be a C1-function with F (0, 0) = 0.

Assume that there exists a positive constant ε such that

max

{
lim sup

(ξ1,ξ2)→(0,0)

F (ξ1, ξ2)

|ξ1|p1 + |ξ2|p2
, lim sup
|(ξ1,ξ2)|→∞

F (ξ1, ξ2)

|ξ1|p1 + |ξ2|p2

}
< ε,

where |(ξ1, ξ2)| =
√

ξ2
1 + ξ2

2 and there exist two positive constants δ1, δ2 such that

2ε max{κp1

1 , κ
p2

2 } ≤ F (δ1, δ2)

meas(Ω)(|δ1|p1 + |δ2|p2)
,

where κi, i = 1, 2 are two constants such that

‖u‖∞ ≤ κi‖u‖W1,pi(Ω), i = 1, 2

for every u ∈ W1,pi(Ω) and

‖u‖W1,pi (Ω) :=

(∫

Ω

|∇u(x)|pidx +

∫

Ω

|u(x)|pidx

)1/pi

, i = 1, 2.

Then, for each compact interval [c, d] ⊂ (λ′
1, λ

′
2), where

λ′
1 = inf

{∑2
i=1

∫
Ω

(|∇ui(x)|pi + |ui(x)|pi) dx

2
∫
Ω

F (u1(x), u2(x))dx
:

u ∈ W1,p1(Ω) × W1,p2(Ω),

∫

Ω

F (u1(x), u2(x))dx > 0

}

and λ′
2 = (max{0, λ′

0, λ
′
∞})−1 with

λ′
0 = lim sup

|(u1,u2)|→(0,0)

2
∫
Ω

F (u1(x), u2(x))dx
∑2

i=1

∫
Ω

(|∇ui(x)|pi + |ui(x)|pi) dx

and

λ′
∞ = lim sup

P2
i=1 ‖ui‖W1,pi (Ω)

→∞

2
∫
Ω

F (u1(x), u2(x))dx
∑2

i=1

∫
Ω

(|∇ui(x)|pi + |ui(x)|pi) dx
,
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there exists Λ > 0 with the following property: For every λ ∈ [c, d] and for every

G ∈ C1(R2, R) satisfying G(0, 0) = 0, there exists γ > 0 such that, for each µ ∈ [0, γ],

the system





−∆p1u1 + |u1|p1−2u1 = λFu1(u1, u2) + λGu1(u1, u2) in Ω,

−∆p2u2 + |u2|p2−2u2 = λFu2(u1, u2) + λGu2(u1, u2) in Ω,
∂u1

∂ν
= ∂u2

∂ν
= 0 on ∂Ω

has at least three weak solutions whose norms in W1,p1(Ω) × W1,p2(Ω) are less than

Λ.

Theorem 4.3. Assume that there exist positive constants δ1, . . . , δn such that

(4.1)

n∑

i=1

M̂i(Φi(δi)) > 0 and F (δ1, . . . , δn) > 0.

Moreover, suppose that

(4.2) lim sup
ξ→(0,...,0)

F (ξ)∑n
i=1 |ξi|ai (pi)0

= lim sup
|ξ|→∞

F (ξ)∑n
i=1 |ξi|ai (pi)0

= 0,

where ξ = (ξ1, . . . , ξn) with |ξ| =
√∑n

i=1 ξ2
i . Then, for each compact interval [c, d] ⊂

(λ3,∞), where λ3 is λ1 with
∫
Ω

F (x, u(x))dx replaced by
∫

Ω
θ(x)F (u(x))dx, there

exists Λ > 0 with the following property: For every λ ∈ [c, d] and every G ∈ F , there

exists γ > 0 such that, for each µ ∈ [0, γ], the system (N θ
λ,µ) has at least three weak

solutions whose norms in E are less than Λ.

Proof. From (4.2), we easily observe that (A′
1) is satisfied for every ε > 0. More-

over, using (4.1), by choosing ε > 0 small enough, one can derive (A′
2). Hence, the

conclusion follows from Theorem 4.1.

Now, we exhibit an example in which the hypotheses of Theorem 4.3 are satisfied.

Example 4.4. Let Ω ⊂ R
N , M1(t) = 1 + t2 and M2(t) = et for all t > 0. Thus, the

assumption (M0) holds by choosing m1 = m2 = 1 and a1 = a2 = 2. Now let

ϕ1(t) = |t|p1−2t log(1 + η + |t|), t ∈ R

and

ϕ2(t) = |t|p2−2t, t ∈ R

with 3 ≤ N < p1 and 3 ≤ N < p2. We observe that

Φ1(t) =
|t|p1

p1
log(1 + η + |t|) − 1

p1

∫ |t|

0

sp1

1 + η + s
ds

and

Φ2(t) =
1

p2
|t|p2
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for all t ∈ R. It is easy to see that ϕ1, ϕ2 : R → R are odd and strictly increasing

homeomorphisms from R onto R such that the relations (Φ0), (Φ1) and (Φ2) are

satisfied, and we have

(p1)0 = p1 and (p1)
0 = sup

t>0

tϕ1(t)

Φ1(t)
< ∞

(see [23, Example III] for more details) and (p2)
0 = (p2)0 = p2 (see [23, Example I]

for more details). Let

F (ξ1, ξ2) =

{
(|ξ1|2p1 + |ξ2|2p2)2 if |ξ1|2p1 + |ξ2|2p2 < 1,

1 if |ξ1|2p1 + |ξ2|2p2 ≥ 1.

Thus, F is a C1-function. By choosing δ1 = δ2 = 1, we have

F (δ1, δ2) = 1 > 0 and M̂1(Φ1(δ1)) + M̂2(Φ2(δ2)) > 0.

Moreover, we have

lim
(ξ1,ξ2)→(0,0)

F (ξ1, ξ2)∑2
i=1 |ξi|ai (pi)0

= lim
(ξ1,ξ2)→(0,0)

(|ξ1|2p1 + |ξ2|2p2)2

|ξ1|2p1 + |ξ2|2p2

= lim
(ξ1,ξ2)→(0,0)

(|ξ1|2p1 + |ξ2|2p2) = 0

and

lim
|(ξ1,ξ2)|→∞

F (ξ1, ξ2)∑2
i=1 |ξi|ai (pi)0

= lim
|(ξ1,ξ2)|→∞

F (ξ1, ξ2)

|ξ1|2p1 + |ξ2|2p2

= lim
|(ξ1,ξ2)|→∞

1

|ξ1|2p1 + |ξ2|2p2
= 0,

where |(ξ1, ξ2)| =
√

ξ2
1 + ξ2

2. Hence, since all assumptions of Theorem 4.3 are satisfied,

it follows that for each compact interval [c, d] ⊂ (0,∞), there exists Λ > 0 with the

following property: For every λ ∈ [c, d] and every G ∈ C1(R2, R) with G(0, 0) = 0,

there exists γ > 0 such that, for each µ ∈ [0, γ], the system





(
1 +

(∫
Ω
(Φ1(|∇u1|) + Φ1(|u1|))dx

)2)
(− div(ϕ1(|∇u1|)) + ϕ1(|u1|))

= λFu1(u1, u2) + µGu1(u1, u2) in Ω,

e(
R

Ω
(Φ2(|∇u2|)+Φ2(|u2|))dx) (− div(ϕ2(|∇u2|)) + ϕ2(|u2|))

= λFu2(u1, u2) + µGu2(u1, u2) in Ω,
∂u1

∂ν
= ∂u2

∂ν
= 0 on ∂Ω

has at least three weak solutions whose norms in W1LΦ1(Ω)×W1LΦ2(Ω) are less than

Λ.

Let n = 1. As an application of the results, we consider the problem

(Nf,g
λ,µ)






M1

(∫
Ω

Φ1(|∇u|) + Φ1(|u|)dx
)
(− div(α1(|∇u|)∇u) + α1(|u|)u)

= λf(x, u) + µg(x, u) in Ω,
∂u
∂ν

= 0 on ∂Ω,
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where M1 : R
+ → R is a nondecreasing continuous function which satisfies the as-

sumption (M0) and f, g : Ω × R → R are two L1-Carathéodory functions.

Let M̂1 : W1LΦ1(Ω) → R and ω1 : W1LΦ1(Ω) → R be as in (2.4) and (2.5),

respectively. Put

F (x, ξ) =

∫ ξ

0

f(x, t)dt for all (x, ξ) ∈ Ω × R.

The following two corollaries are consequences of Theorems 3.1 and 3.2, respectively.

Corollary 4.5. Assume that the following conditions hold:

(B1) There exists a constant ε > 0 such that

max

{
lim sup

ξ→0

supx∈Ω F (x, ξ)

|ξ|a1p0
, lim sup

|ξ|→∞

supx∈Ω F (x, ξ)

|ξ|a1p0

}
< ε.

(B2) There exists a function w ∈ W1LΦ1(Ω) with M̂1 (ω1(w)) 6= 0 such that

2aεc
a1p0

1 <
m1

∫
Ω

F (x, w(x))dx

meas(Ω)M̂1 (ω1(w))
.

Then, for each compact interval [c, d] ⊂ (λ̄1, λ̄2), where

λ̄1 = inf

{
M̂1 (ω1(u))

2
∫
Ω

F (x, u(x))dx
: u ∈ W1LΦ1(Ω),

∫

Ω

F (x, u(x))dx > 0

}

and

λ̄2 =

(
max

{
0, lim sup

u→0

2
∫
Ω

F (x, u(x))dx

M̂1 (ω1(u))
, lim sup
‖u‖Φ→∞

2
∫
Ω

F (x, u(x))dx

M̂1 (ω1(u))

})−1

,

there exists Λ > 0 with the following property: For every λ ∈ [c, d] and for every L1-

Carathéodory function g : Ω×R → R, there exists γ > 0 such that, for each µ ∈ [0, γ],

the problem (Nf,g
λ,µ) has at least three weak solutions whose norms in W1LΦ1(Ω) are

less than Λ.

Corollary 4.6. Assume that

max

{
lim sup

ξ→0

supx∈Ω F (x, ξ)

|ξ|a1p0
, lim sup

|ξ|→∞

supx∈Ω F (x, ξ)

|ξ|a1p0

}
≤ 0

and

sup
u∈W1LΦ1

(Ω)

∫
Ω

F (x, u(x))dx

M̂1 (ω1(u))
> 0.

Then, for each compact interval [c, d] ⊂ (λ̄1,∞), where λ̄1 is given in Corollary 4.5,

there exists Λ > 0 with the following property: For every λ ∈ [c, d] and for every L1-

Carathéodory function g : Ω×R → R, there exists γ > 0 such that, for each µ ∈ [0, γ],

the problem (Nf,g
λ,µ) has at least three weak solutions whose norms in W1LΦ1(Ω) are

less than Λ.
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Remark 4.7. If f, g are nonnegative, as proved in [15], the weak solutions ensured

by Corollaries 4.5, 4.6, 4.8 and 4.9 are nonnegative. In addition, if either f(x, 0) 6= 0

for all x ∈ Ω or g(x, 0) 6= 0 for all x ∈ Ω, or both are true, then the solutions are

positive.

Now we present the following corollaries as immediate consequences of Theo-

rems 4.1 and 4.3, respectively, in which f has separated variables, i.e., f(x, t) =

θ(x)h(t) for each (x, t) ∈ Ω × R, where θ : Ω → R is a nonzero function such that

θ ∈ L1(Ω) and h : R → R is a continuous function.

Put H(ξ) =
∫ ξ

0
h(t)dt for all ξ ∈ R.

Corollary 4.8. Assume that the following conditions hold:

(B′
1) There exists a constant ε > 0 such that

(
sup
x∈Ω

θ(x)

)
· max

{
lim sup

ξ→0

H(ξ)

|ξ|a1p0
, lim sup

|ξ|→∞

H(ξ)

|ξ|a1p0

}
< ε.

(B′
2) There exists a positive constant δ such that

2ac
a1p0
1 ε <

m1‖θ‖L1(Ω)H(δ)

meas(Ω)2M̂1(Φ1(δ))
.

Then, for each compact interval [c, d] ⊂ (λ̄3, λ̄4), where λ̄3 and λ̄4 are λ̄1 and λ̄2 in

Corollary 4.5 with
∫
Ω

F (x, u(x))dx replaced by
∫
Ω

θ(x)H(u(x))dx, there exists Λ > 0

with the following property: For every λ ∈ [c, d] and every L1-Carathéodory function

g : Ω × R → R, there exists γ > 0 such that, for each µ ∈ [0, γ], the problem

(N θ,h,g
λ,µ )






M1

(∫
Ω

Φ1(|∇u|) + Φ1(|u|)dx
)

× (− div(α1(|∇u|)∇u) + α1(|u|)u)

= λθ(x)h(u) + µg(x, u) inΩ,
∂u
∂ν

= 0 on ∂Ω

has at least three weak solutions whose norms in W1LΦ1(Ω) are less than Λ.

Corollary 4.9. Let θ : Ω → R be a positive function such that θ ∈ L1(Ω). Assume

that there exists a positive constant δ such that

M̂1(Φ1(δ)) > 0 and H(δ) > 0.

Moreover, suppose that

lim sup
t→0

h(t)

|t|a1p0−1
= lim sup

|t|→∞

h(t)

|t|a1p0−1
= 0.

Then, for each compact interval [c, d] ⊂ (λ̄3,∞), where λ̄3 is λ̄1 in Corollary 4.5 with∫
Ω

F (x, u(x))dx replaced by
∫
Ω

θ(x)H(u(x))dx, there exists Λ > 0 with the following

property: For every λ ∈ [c, d] and every L1-Carathéodory function g : Ω × R → R,
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there exists γ > 0 such that, for each µ ∈ [0, γ], the problem (N θ,h,g
λ,µ ) has at least three

weak solutions whose norms in W1LΦ1(Ω) are less than Λ.

Finally, we present the following example in order to illustrate Corollary 4.9.

Example 4.10. Let Ω ⊂ R
N , M1(t) = t3 for all t > 0,

ϕ1(t) =

{
|t|p−2t

log(1+|t|)
if t 6= 0,

0 if t = 0

with 3 ≤ N < p, θ(x) = ex for all x ∈ Ω and

h(t) = t2pe−|t| for all t ∈ R.

By choosing m1 = 1 and a2 = 2, we observe that assumption (M0) is satisfied. It is

also easy to see that ϕ1 : R → R is an odd and strictly increasing homeomorphism

from R onto R, and by [10, Example 3], one has

(p1)0 = p − 1 < (p1)
0 = p = lim inf

t→∞

log(Φ1(t))

log(t)
,

where

Φ1(t) =

∫ t

0

ϕ1(s)ds.

By choosing δ = 1, Φ1(δ) = Φ1(1) > 0, we have

H(δ) = H(1) =

∫ 1

0

t2pe−t > 0,

M̂1(Φ1(δ)) =

∫ Φ1(1)

0

s3ds > 0

and

lim
t→0

h(t)

|t|2p−1
= lim

|t|→∞

h(t)

|t|2p−1
= 0.

Hence, since all assumptions of Corollary 4.9 are fulfilled, it follows that for each

compact interval [c, d] ⊂ (0,∞), there exists Λ > 0 with the following property: For

every λ ∈ [c, d] and every L1-Carathéodory function g : Ω×R → R, there exists γ > 0

such that, for each µ ∈ [0, γ], the problem





(∫
Ω

Φ1(|∇u1|) + Φ1(|u1|)dx
)3 (− div

(
|∇u|p−2∇u
log(1+|∇u|)

)
+ |∇u|p−2∇u

log(1+|∇u|)

)

= λexu2pe−|u| + µg(x, u) in Ω,
∂u
∂ν

= 0 on ∂Ω

has at least three weak solutions whose norms in W1LΦ1(Ω) are less than Λ.
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