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ABSTRACT. Fixed point theory of convex-valued multimaps are closely related to the KKM

theory from the beginning. In the last twenty-five years, we introduced the acyclic multimap class,

the admissible multimap class Aκ
c , the better admissible class B, and the KKM admissible classes

KC, KO in the frame of the KKM theory. Our aim in this review is to collect the basic properties

of our multimap classes and some mutual relations among them in general topological spaces or our

abstract convex spaces. We add some new remarks and further comments to improve many of those

results, and introduce some recent applications of our multimap classes.
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1. INTRODUCTION

Since Kakutani obtained his celebrated fixed point theorem for convex-valued

u.s.c. multimaps in 1941 and Eilenberg and Montgomerry extended it for acyclic

maps in 1948, there have appeared many types of multimaps with applications in

various fields in mathematics, economics, game theory, natural sciences, engineering,

and others. In 1992, the author [24] obtained some coincidence theorems on acyclic

maps and their applications to the newly named KKM theory originated from the

celebrated intersection theorem of Knaster, Kuratowski and Mazurkiewitz in 1929.

Since then a large number of applications of some results in [24] have appeared; see

[43, 48, 53] and the references therein.

Moreover, in the last twenty-five years, we introduced several multimap classes

in the frame of the KKM theory; namely, the acyclic multimap class, the admissible

multimap class Aκ
c , the better admissible class B, and the KKM admissible classes

KC, KO. Each of these classes contains a large number of particular multimaps.

In our previous work [43], we reviewed applications of our fixed point theorems for

the multimap class of compact compositions of acyclic maps and, in [48], we collected
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most of fixed point theorems related to the KKM theory due to the author. Moreover,

applications of our versions of the Fan-Browder fixed point theorem were introduced

in [49]. Furthermore, in a later work [53], we reviewed applications of our fixed point

theorems and our multimap classes, appeared mainly in other authors’ works. Most

of them are not treated in [43, 48, 49].

Our aim in this review is to collect the basic properties of our multimap classes

and some mutual relations among them in general topological spaces or our abstract

convex spaces. We add some new remarks and further comments to improve some of

those results, and introduce some recent applications of our multimap classes. This

would be informative to peoples working in certain related fields.

This review article is organized as follows. Section 2 is a preliminary on abstract

convex spaces due to ourselves. Since 2007 such spaces became the main theme of

the KKM theory and many new results on them have appeared mainly by the present

author.

Section 3 deals with convex-valued multimaps in the KKM theory and analytical

fixed point theory, that is, one of the most important applications of the KKM theory.

Usually, a Kakutani map is a convex-valued u.s.c. multimap. The upper semiconti-

nuity related to topological vector spaces are extended to upper demicontinuity, to

upper hemicontinuity, and to generalized upper hemicontinuity. In Section 4, we deal

with a particular type of convex-valued multimaps called Fan-Browder maps whose

fibers are open. Section 5 concerns with acyclic maps which are u.s.c. and have

compact acyclic values. Recall that acyclic maps were introduced by Eilenberg and

Montgomerry and studied by ourselves first in the KKM theory.

In Section 6, we deal with our admissible multimap class Aκ
c , which has been

studied first by ourselves and followed by a large number of authors. Section 7 con-

cerns with basic facts on the better admissible multimap classes B and various fixed

point theorems on them. In Section 8, we recall the KKM admissible multimap classes

KC, KO and their properties. Finally, in Section 9, we introduce some basic theorems

related KC, KO, from which we can deduce several useful equivalent formulations in

the KKM theory of abstract convex spaces.

The present review may be regarded as a continuation of our previous work [53]

and an expanded version of our previous talk [59] given at a RIMS workshop, Kyoto

University, in August 30, 2017.

2. ABSTRACT CONVEX SPACES

For sets X and Y , a multimap (a multifunction or simply a map) F : X ⊸ Y is

a function F : X → 2Y to the power set of Y .

For the concepts on our abstract convex spaces, KKM spaces and the KKM

classes KC, KO, we follow [46] with some modifications and the references therein:
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Definition. Let E be a topological space, D a nonempty set, 〈D〉 the set of all

nonempty finite subsets of D, and Γ : 〈D〉 ⊸ E a multimap with nonempty values

ΓA := Γ(A) for A ∈ 〈D〉. The triple (E, D; Γ) is called an abstract convex space

whenever the Γ-convex hull of any D′ ⊂ D is denoted and defined by

coΓD′ :=
⋃

{ΓA | A ∈ 〈D′〉} ⊂ E.

A subset X of E is called a Γ-convex subset of (E, D; Γ) relative to some D′ ⊂ D

if, for any N ∈ 〈D′〉, we have ΓN ⊂ X, that is, coΓD′ ⊂ X.

When D ⊂ E, a subset X of E is said to be Γ-convex if coΓ(X∩D) ⊂ X; in other

words, X is Γ-convex relative to D′ := X∩D. In case E = D, let (E; Γ) := (E, E; Γ).

Definition. Let (E, D; Γ) be an abstract convex space and Z a topological space.

For a multimap F : E ⊸ Z with nonempty values, if a multimap G : D ⊸ Z satisfies

F (ΓA) ⊂ G(A) :=
⋃

y∈A

G(y) for all A ∈ 〈D〉,

then G is called a KKM map with respect to F . A KKM map G : D ⊸ E is a KKM

map with respect to the identity map 1E .

A multimap F : E ⊸ Z is called a KC-map [resp., a KO-map] if, for any closed-

valued [resp., open-valued] KKM map G : D ⊸ Z with respect to F , the family

{G(y)}y∈D has the finite intersection property. In this case, we denote F ∈ KC(E, Z)

[resp., F ∈ KO(E, Z)].

Definition. The partial KKM principle for an abstract convex space (E, D; Γ) is the

statement 1E ∈ KC(E, E); that is, for any closed-valued KKM map G : D ⊸ E,

the family {G(y)}y∈D has the finite intersection property. The KKM principle is the

statement 1E ∈ KC(E, E) ∩ KO(E, E); that is, the same property also holds for any

open-valued KKM map.

An abstract convex space is called a (partial) KKM space if it satisfies the (par-

tial) KKM principle, respectively.

Example. The following are typical examples of KKM spaces. Others can be seen

in [46, 51] and the references therein.

(1) A convex space (X, D) = (X, D; Γ) is a triple where X is a subset of a

vector space, D ⊂ X such that coD ⊂ X, and each ΓA is the convex hull of A ∈

〈D〉 equipped with the Euclidean topology. This concept generalizes the one due to

Lassonde for X = D.

(2) An abstract convex space (X, D; Γ) is called an H-space if Γ = {ΓA} is a family

of contractible (or, more generally, ω-connected) subsets of X indexed by A ∈ 〈D〉

such that ΓA ⊂ ΓB whenever A ⊂ B ∈ 〈D〉. If D = X, (X; Γ) is called a c-space by

Horvath.
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(3) A generalized convex space or a G-convex space (X, D; Γ) is an abstract convex

space such that for each A ∈ 〈D〉 with the cardinality |A| = n + 1, there exists a

continuous function φA : ∆n → Γ(A) such that J ∈ 〈A〉 implies φA(∆J) ⊂ Γ(J).

Here, ∆n is the standard n-simplex with vertices {ei}
n
i=0, and ∆J the face of ∆n

corresponding to J ∈ 〈A〉.

(4) A space having a family {φA}A∈〈D〉 or simply a φA-space

(X, D; {φA}A∈〈D〉)

consists of a topological space X, a nonempty set D, and a family of continuous

functions φA : ∆n → X (that is, singular n-simplices) for A ∈ 〈D〉 with the cardinality

|A| = n + 1.

Every φA-space (X, D; Γ) with ΓA := φA(∆n) for A ∈ 〈D〉 with the cardinality

|A| = n + 1 is a KKM space; see [48].

Recently, Kulpa and Szymanski [13] found some partial KKM spaces which are

not KKM spaces.

Note that each of the above examples has a large number of concrete examples.

Now we have the following diagram for triples (E, D; Γ):

Simplex =⇒ Convex subset of a t.v.s. =⇒ Convex space =⇒ H-space

=⇒ G-convex space =⇒ φA-space =⇒ KKM space

=⇒ Partial KKM space =⇒ Abstract convex space.

For a short history of the KKM theory, see [45].

In this paper, a t.v.s. means a topological vector space (not necessarily Hausdorff).

3. CONVEX-VALUED MAPS

In 1941, Kakutani obtained the following fixed point theorem:

Theorem 3.1. (Kakutani [11]) If x → Φ(x) is an upper semicontinuous point-to-set

mapping of an r-dimensional closed simplex S into the family of nonempty closed

convex subset of S, then there exists an x0 ∈ S such that x0 ∈ Φ(x0).

Motivated by this theorem, we define the Kakutani map as follows:

Definition. Let X be a subset of a t.v.s. A multimap T : X ⊸ X is called a

Kakutani map if T is u.s.c. and has nonempty compact convex values T (x) for each

x ∈ X.

Kakutani’s theorem is the beginning of the fixed point theory of multimaps having

a vital connection with the minimax theory in game theory and the equilibrium theory

in economics. One of the most important applications of the Kakutani theorem was

made by Nash in 1951. It was followed by several hundred applications in game
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theory, economic theory, mathematical programming, control theory, and theory of

differential equations.

There appeared also many generalizations of fixed point theorems for Kakutani

maps. For the literature, see [31]. The following is well-known:

Theorem 3.2 (Himmelberg [10]) Let X be a convex subset of a locally convex Haus-

dorff t.v.s. Then any compact Kakutani map T : X ⊸ X has a fixed point.

Motivated by Kakutani maps, convex-valued maps are further extended as fol-

lows:

Definition. Let X be a topological space, E a t.v.s., E∗ its topological dual, and

F : X ⊸ E a map. Then

(i) F is upper semi-continuous (u.s.c.) if for each x ∈ X and each open set U

in E containing F (x), there exists an open neighborhood N of x in X such that

F (N) ⊂ U ;

(ii) F is upper demi-continuous (u.d.c.) if for each x ∈ X and each open half-

space H in E containing F (x), there exists an open neighborhood N of x in X such

that F (N) ⊂ H ;

(iii) F is upper hemi-continuous (u.h.c.) if for each f ∈ E∗ and for any real α,

the set {x ∈ X | sup f(F (x)) < α} is open in X; and

(iv) F is generalized u.h.c. if for each p ∈ E∗, the set {x ∈ X | sup p(F (x)) ≥

p(x)} is closed in X.

For such class of convex-valued multimaps, the analytical fixed point theory is

extensively studied. According to Lassonde, we need some preparation as follows:

Recall that a convex space X is a nonempty convex set with any topology that

induces the Euclidean topology on the convex hulls of its finite subsets. A nonempty

subset L of a convex space X is called a c-compact set if for each finite set S ⊂ X

there is a compact convex set LS ⊂ X such that L ∪ S ⊂ LS . Let [x, L] denote the

closed convex hull of {x} ∪ L in X, where x ∈ X.

Let cc(E) denote the set of nonempty closed convex subsets of a t.v.s. E and

kc(E) the set of nonempty compact convex subsets of E. Bd, Int, and denote the

boundary, interior, and closure, resp., with respect to E.

Let X ⊂ E and x ∈ E. According to Halpern, the inward and outward sets of X

at x, IX(x) and OX(x), are defined as follows:

IX(x) = x +
⋃

r>0

r(X − x), OX(x) = x +
⋃

r<0

r(X − x).

For p ∈ {Re h : h ∈ E∗} and U, V ⊂ E, let

dp(U, V ) = inf{|p(u − v)| : u ∈ U, v ∈ V }.
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Let X be a nonempty convex subset of a vector space E. Following Ky Fan, the

algebraic boundary δE(X) of X in E is the set of all x ∈ X for which there exists

y ∈ E such that x + ry /∈ X for all r > 0.

The following is a most general fixed point theorem on convex-valued multimaps

originated from [22, 25, 32]:

Theorem 3.3. Let X be a convex space, L a c-compact subset of X, K a nonempty

compact subset of X, E a t.v.s. containing X as a subset, and F a map satisfying

either

(A) E∗ separates points of E and F : X → kc(E), or

(B) E is locally convex and F : X → cc(E).

(I) Suppose that for each p ∈ E∗,

(0) p|X is continuous on X;

(1) Xp = {x ∈ X : inf p(F (x)) ≤ p(x)} is closed in X;

(2) dp(F (x), IX(x)) = 0 for every x ∈ K ∩ δE(X); and

(3) dp(F (x), IL(x)) = 0 for every x ∈ X \ K.

Then there exists an x ∈ X such that x ∈ F (x).

(II) Suppose that for each p ∈ E∗,

(0) p|X is continuous on X;

(1)′ Xp = {x ∈ X : sup p(F (x)) ≥ p(x)} is closed in X;

(2)′ dp(F (x), OX(x)) = 0 for every x ∈ K ∩ δE(X); and

(3)′ dp(F (x), OL(x)) = 0 for every x ∈ X \ K.

Then there exists an x ∈ X such that x ∈ F (x). Further, if F is u.h.c., then

F (X) ⊃ X.

Recall that this theorem subsumes more than 50 previously known results.

Applications: The following are only a few examples of abstracts of articles con-

taining some important fixed point theorems on convex-valued multimaps:

Kakutani, Duke (1941) [11] — In order to give simple proofs of von Neumann’s

minimax theorem in 1928 and his intersection lemma in 1937, Kakutani extended

Brouwer fixed point theorem to multimaps.

Himmelberg, JMAA 38 (1972) [10] — The object of this note is to obtain two

generalizations of the well-known fixed point theorem of Fan. A slight modification of

Fan’s proof yields one; the second is then an easy corollary, which, though interesting,

seems never to be mentioned in the literature. We conclude with a generalization of

the minimax theorem.

Park, JKMS 29 (1992) [22] — We apply our existence theorem to obtain new

coincidence, fixed point, and surjectivity theorems, and existence theorems on critical
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points for a larger class of multifunctions than upper hemicontinuous ones defined on

convex sets.

Park, JKMS 30 (1993) [25] — The purpose in this paper is, first, to give com-

mon generalizations of some results of Park, Park and Bae, and Idzik. This will give

more adequate understanding on the nature of the results on convex-valued multi-

functions in the previous article. Our second purpose is to obtain new fixed point

or related results on compact composites of non-convex valued “admissible” upper

semicontinuous multifunctions defined on convex subsets of topological vector spaces

having sufficiently many linear functionals.

Park, VJM 27 (1999) [31] — This historical article is to survey the developments

of the fields of mathematics directly related to the nearly ninety-year-old Brouwer

fixed point theorem. We are mainly concerned with equivalent formulations and

generalizations of the theorem. Also we deal with the KKM theory and various

equilibrium problems closely related to the Brouwer theorem.

Park, AMV 27 (2002) [32] — We give new fixed point theorems on a gener-

alized upper hemicontinuous multimap whose domain and range may have different

topologies. These include known theorems appeared in almost 50 published works.

See Theorem 3.3 above.

Park, ICFPTA-2007 (2008) [41] — This is to review various generalizations of

the Himmelberg fixed point theorem within the category of topological vector spaces.

We consider the Lassonde type, the Idzik type, and the KKM type generalizations

for Kakutani maps, and other types of generalizations for acyclic maps. Finally,

generalizations for various “better” admissible maps on admissible almost convex

domains to Klee approximable ranges are discussed.

Park, NA 71 (2009) [42] — This is to establish fixed point theorems for mul-

timaps in abstract convex uniform spaces. Our new results generalize corresponding

ones in topological vector spaces (t.v.s.), convex spaces due to Lassonde, c-spaces due

to Horvath, and G-convex spaces due to Park. We show that fixed point theorems

on multimaps of the Fan-Browder type, multimaps having ranges of the Zima-Hadzic

type, and multimaps whose ranges are Φ-sets or Klee approximable sets can be es-

tablished in abstract convex spaces or KKM spaces.

Park, CANA 18 (2011) [47] — In this short note, we give some variants of

the fixed point theorems on generalized upper hemicontinuous (g.u.h.c.) multimaps

whose domains and ranges may have different topologies. Our new theorems refine

our previous results and simply generalize Balaj’s two map versions of Halpern’s fixed

point theorems.
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4. FAN-BROWDER MAPS

In 1968, Browder established the following useful fixed point theorem on a par-

ticular type of convex-valued multimaps and its applications:

Theorem 4.1. (Browder [8]) Let K be a nonempty compact convex subset of a

topological vector space. Let T be a map of K into 2K, where for each x ∈ K, T (x)

is a nonempty convex subset of K. Suppose further that for each y in K, T−1(y) =

{x ∈ K : y ∈ T (x)} is open in K. Then there exists x0 in K such that x0 ∈ T (x0).

The map T in Theorem 4.1 is usually called a Browder map or a Fan-Browder

map. The Browder fixed point theorem [8] has a very large number of generalizations

and variations; see [31, 54, 56, 57]. The following is a very useful generalizations

frequently appeared in the literature:

Theorem 4.2. (Park [22]) Let X be a convex subset of a t.v.s. (not necessarily

Hausdorff), G : X ⊸ X, and K a nonempty compact subset of X. Suppose that

(1) for each x ∈ X, Gx is convex;

(2) for each x ∈ K, Gx is nonempty;

(3) for each y ∈ X, G−y is open; and

(4) for each nonempty finite N ⊂ X, there exists a compact convex subset LN of

X containing N such that for each x ∈ LN \ K, Gx ∩ LN 6= ∅.

Then G has a fixed point x0 ∈ X.

For a multimap S : D ⊸ E, consider the following related four conditions:

(a)
⋃

y∈D S(z) = E implies
⋃

y∈D Int S(y) = E.

(b) Int
⋃

y∈D S(y) =
⋃

y∈D Int S(y) (S is unionly open-valued (Luc et al. [17])).

(c)
⋃

y∈D S(y) =
⋃

y∈D Int S(y) (S is transfer open-valued).

(d) S is open-valued.

Theorems 4.1 and 4.2 are extended to the following Fan-Browder alternatives in

abstract convex spaces:

Theorem 4.3. (Park [54]) Let (E, D; Γ) be a partial KKM space, and S : E ⊸ D,

T : E ⊸ E maps. Suppose that

(1) for each x ∈ E, coΓS(x) ⊂ T (x);

(2) there exists a nonempty compact subset K of E such that either

(a)
⋂

z∈M E \ S−(z) ⊂ K for some M ∈ 〈D〉; or
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(b) for each nonempty finite N ⊂ D, there exists a compact Γ-convex subset

LN of E relative to some D′ ⊂ D such that N ⊂ D′ and

LN ∩
⋂

z∈D′

E \ S−(z) ⊂ K.

(α) If S− is transfer open-valued, then either (i) T has a fixed point, or (ii) S has

a maximal element in K.

(β) If S− is unionly open-valued, then either (i) T has a fixed point, or (ii) S has

a maximal element in E.

This subsumes a large number of particular results previously known. See Park

[54].

Applications. We present only a few articles related to Fan-Browder maps:

Browder, Math. Ann. 177 (1968) [8] — Browder restated Fan’s geometric

lemmm in the convenient form of a fixed point theorem by means of the Brouwer

theorem and the partition of the unity argument. His theorem is applied to a system-

atic treatment of interconnections between fixed point theorems, minimax theorems,

variational inequalities, and monotone extension theorems.

Park, TopA 135 (2004) [34] — We show that the KKM principle implies two

new general fixed point theorems for the Kakutani maps or the Browder maps. Con-

sequently, we give unified transparent proofs of many of well-known results.

Park, JNAS 52(2) (2013) [54] — In this paper, from a general form of the KKM

type theorems or some properties of KKM type maps on abstract convex spaces, we

deduce several Fan-Browder type alternatives, coincidence or fixed point theorems,

and other results. These theorems unify and generalize various particular results of

the same kinds recently due to a number of authors for particular types of abstract

convex spaces.

Park, NACA 2013 (2016) [56] — Corresponding to each stage of development

of the KKM theory, the Fan-Browder fixed point theorem on Fan-Browder type mul-

timaps has been generalized to hundreds of different forms or reformulated to the

maximal element theorem with numerous generalizations. Recall that the theorem

can be stated as an alternative form; that is, its conclusion is “the Fan-Browder map

has either a fixed point or a maximal element.” Our aim in this paper is to trace the

evolution of the Fan-Browder type alternatives from the origin to the most recent

generalization of them.

Park, JNCA 17 (2016) [57] — We begin with a modification of a characterization

of (partial) KKM spaces using a general Fan-Browder type fixed point property and

show that this characterization implies an alternative theorem. This theorem unifies

and contains a number of historically well-known important fixed point or maximal

element theorems. We list some of them chronologically and give simple proofs.
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Finally, we introduce some recent works related to the generalized Fan-Browder type

alternatives.

5. ACYCLIC MAPS

Convexity is directly implies the following acyclicity:

Definition. A topological space is acyclic if all its reduced Čech homology groups

over rationals vanish. A multimap is called acyclic if it is u.s.c. with compact acyclic

values.

A polyhedron is a subset of a Euclidean space Rn which is homeomorphic to the

union of a finite number of compact convex subsets.

The following is due to Eilenberg and Montgomery in 1946 as a generalization of

the Kakutani fixed point theorem:

Theorem 5.1. Let Z be an acyclic polyhedron and T : Z ⊸ Z an acyclic map (that

is, u.s.c. with acyclic values). Then T has a fixed point x̂ ∈ Z.

The following is given in 1992. See also [64]:

Theorem 5.2. (Park [24]) Let X be a nonempty convex subset of a locally convex

Hausdorff topological vector space E and F : X ⊸ X be an acyclic map. If F is

compact, then it has a fixed point.

This is the beginning of usage of acyclic maps in the KKM theory. Theorem

5.2 reduces to Himmelberg’s theorem when F is convex-valued. We obtained a large

number of generalizations of Theorem 5.2; see [41, 44, 53] and the references therein.

Especially, in [41], we reviewed various generalizations of the Himmelberg fixed point

theorem within topological vector spaces. We considered there the Lassonde type, the

Idzik type, and the KKM type generalizations for Kakutani maps, and other type of

generalizations for acyclic maps. Moreover, generalizations for various ‘better’ admis-

sible maps on admissible almost convex domains or maps having Klee approximable

ranges were also discussed.

In 1992, we also obtained the following cyclic coincidence theorem for acyclic

maps, where Zk := {0, 1, . . . , k − 1} with (k − 1) + 1 interpreted as 0:

Theorem 5.3. (Park [23]) Let k ≥ 1 and, for each h ∈ Zk, let Yh be a nonempty

compact convex subset of a locally convex space Eh, and Vh ∈ V(Yh, Yh+1). Then there

exists (y0, y1, . . . , yk−1) ∈ Y0 × Y1 × · · · × Yk−1 such that yh+1 ∈ Vhyh for all h ∈ Zk.

In 1994, Theorem 5.2 is extended to more general Vc than V as follows:

Theorem 5.4. (Park et al. [64]) Let X be a nonempty convex subset of a locally

convex space E and T ∈ Vc(X, X). If T is compact, then T has a fixed point x0 ∈ X.
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From this we obtained the following best approximation result:

Theorem 5.5. (Park et al. [64]) Let C be a nonempty approximatively compact,

convex subset of a locally convex space E, and suppose that Vc(C, E) is a compact

map. Then for each continuous seminorm p on E there exists an (x0, y0) ∈ Gr(F )

such that

p(x0 − y0) ≤ p(x − y0) for all x ∈ IC(x0).

The following is a particular case of Park and Kim ([61], Theorem 4):

Theorem 5.6. Let X be a nonempty compact admissible subset of a hyperconvex

metric space (H, d) and F : X ⊸ X an acyclic map. Then F has a fixed point.

Applications. In our previous work [53], we listed 25 papers of other authors on

applications of our fixed point theorems on acyclic maps or related results. We give

here only a few of our articles related to acyclic maps:

Park, FPTA (K.-K. Tan, ed.) (1992)[24] — From a Lefschetz type fixed point

theorem for composites of acyclic maps, we obtain a general Fan-Browder type co-

incidence theorem, which can be shown to be equivalent to a matching theorem and

a KKM type theorem. From the main result, we deduce the Himmelberg type fixed

point theorem for acyclic compact multifunctions, acyclic versions of general geomet-

ric properties of convex sets, abstract variational inequality theorems, new minimax

theorems, and non-continuous versions of the Brouwer and Kakutani type fixed point

theorems with very generous boundary conditions.

Park et al., PAMS 121 (1994) [64]— We obtain fixed point theorems for a new

class of multifunctions containing compact composites of acyclic maps defined on a

convex subset of a locally convex Hausdorif topological vector space. Our new results

are applied to approximatively compact, convex sets or to Banach spaces with the

Oshman property.

Park, NA-TMA 24 (1995) [27] — In this paper, we obtain fixed point theorems

for acyclic maps in V(X, E) generalizing corresponding ones for Kakutani maps in

K(X, E) with certain boundary conditions, where X is a compact convex subset of

a Hausdorff locally convex topological vector space E. Consequently, we generalize

results in many articles. We mainly follow the method of Ha and Park.

Park, WCNA’92 (1996) [28] — Sufficient conditions for the existence of fixed

points of acyclic maps defined on a convex subset of a topological vector space E on

which E∗ separates points are obtained. Main consequences are acyclic versions of

fixed point theorems due to Fan, Halpern and Bergman, Himmelberg, Reich, Granas

and Liu, and many others.

Park, VJM 37 (2009) [43] — We review applications of our fixed point theorems

on compact compositions of acyclic maps. Our applications are mainly on acyclic
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polyhedra, locally convex topological vector spaces, admissible (in the sense of Klee)

convex sets, and almost convex or Klee approximable sets in topological vector spaces.

Those applications are concerned with general equilibrium problems like as (collec-

tive) fixed point theorems, the von Neumann type intersection theorems, the von

Neumann type minimax theorems, the Nash type equilibrium theorems, cyclic coin-

cidence theorems, best approximation theorems, (quasi-) variational inequalities, and

the Gale-Nikaido-Debreu theorem. Finally, we briefly introduce some related results

mainly appeared in other author’s works.

6. ADMISSIBLE MULTIMAP CLASS Aκ
c

The following 1961 KKM Lemma of Ky Fan is one of the most important mile-

stone on the history of the KKM theory:

Lemma 5.1. (Fan [9]) Let X be an arbitrary set in a Hausdorff topological vector

space Y . To each x ∈ X, let a closed set F (x) in Y be given such that the following

two conditions are satisfied:

(i) The convex hull of any finite subset {x1, x2, · · · , xn} of X is contained in⋃n

i=1
F (xi).

(ii) F (x) is compact for at least one x ∈ X.

Then
⋂

x∈X F (x) 6= ∅.

The Lemma was followed by a large number of applications, generalizations, and

modifications. In order to unify such generalizations, we introduced the following:

Let X and Y be topological spaces. In the following, a polytope is a homeomorphic

image of a simplex. The following due to the author is well-known:

Definition. An admissible class Aκ
c (X, Y ) of maps T : X ⊸ Y is the one such

that, for each compact subset K of X, there exists a map S ∈ Ac(K, Y ) satisfying

S(x) ⊂ T (x) for all x ∈ K; where Ac is consisting of finite compositions of maps in

A, and A is a class of maps satisfying the following properties:

(1) A contains the class C of (single-valued) continuous functions;

(2) each F ∈ Ac is u.s.c. and compact-valued; and

(3) for each polytope P , each T ∈ Ac(P, P ) has a fixed point, where the interme-

diate spaces of compositions are suitably chosen for each A.

Example. Examples of the function space A are the classes of continuous functions

C, the Kakutani maps K, the Aronszajn maps M (with Rδ values), the acyclic maps

V, the Powers maps Vc, the O’Neil maps N (continuous with values of one or m

acyclic components, where m is fixed), the approachable maps A (whose domains

and codomains are subsets of uniform spaces), admissible maps of Górniewicz, the
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Simons maps Kc, σ-selectionable maps of Haddad and Lasry, permissible maps of

Dzedzej, and others. Further, the Fan-Browder maps (codomains are convex sets),

locally selectionable maps having convex values, K+
c due to Lassonde, V+

c due to Park

et al., and approximable maps Aκ
c due to Ben-El-Mechaiekh and Idzik are examples

of the function space Aκ
c .

For the literature, see Park [26, 29, 30], Park and H. Kim [60, 62, 63] and the

references therein.

The following is one of the earliest generalizations and unifies so many general-

izations of Ky Fan’s 1961 KKM Lemma:

Theorem 5.2. (Park [26]) Let (X, D) be a convex space, Y a Hausdorff space, and

F ∈ Aκ
c (X, Y ). Let G : D → 2Y be a multifunction such that

(1) for each x ∈ D, G(x) is compactly closed in Y ;

(2) for any N ∈ 〈D〉, F (co N) ⊂ G(N); and

(3) there exist a nonempty compact subset K of Y and, for each N ∈ 〈D〉, a

compact D-convex subset LN of X containing N such that F (LN ) ∩
⋂
{G(x) | x ∈

LN ∩ D} ⊂ K.

Then F (X) ∩ K ∩
⋂
{G(x) | x ∈ D} 6= ∅.

After this one, there have appeared more elegant and general KKM type theorems

on abstract convex spaces. In fact, Theorem 5.2 was extended to G-convex spaces by

Park and Kim [61, 63], and to abstract convex spaces and the map class KC by Park

[39].

Applications. The admissible class due to Park was first applied to the KKM theory

and fixed point problems. Later many authors applied the class to various problems.

In fact, 19 papers on such applications were introduced in [53]. Here we give the

contents of some of typical works applying our admissible class.

Park and H.Kim, PCNS-SNU 18 (1993) [60] — The first author introduced

certain general classes of upper semicontinuous multimaps defined on convex spaces

which were shown to be adequate to establish theories on fixed points, coincidence

points, KKM maps, variational inequalities, best approximations, and many others.

Later we found that, in certain cases, the convex spaces can be replaced by new classes

of more general spaces. In this paper we collect examples of such classes of multimaps

and generalized convex spaces. Some fundamental properties of such examples are

also discussed.

Park and H. Kim, JMAA 197 (1996) [63] — We defined admissible classes of

maps which are general enough to include composites of maps appearing in nonlinear

analysis or algebraic topology, and generalized convex spaces which are generalizations

of many general convexity structures. In this paper we obtain a coincidence theorem
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for admissible maps defined on generalized convex spaces. Our new result is applied

to obtain an abstract variational inequality, a KKM type theorem, and fixed point

theorems.

Agarwal and O’Regan, TMNA 21 (2003) [1] — This paper presents a con-

tinuation theory for Aκ
c maps. The analysis is elementary and relies on properties of

retractions and fixed point theory for selfmaps. Also its authors present a separate

theory for a certain subclass of Aκ
c maps, namely the PK maps.

Agarwal and O’Regan, Comm. Math. XLIV(1) (2004) [2] — New fixed point

theory is presented for compact Aκ
c (X, X) maps where X is an admissible subset of a

t.v.s. The aim of this paper is to generalize results of [30, 4] and others. The authors

defined extension spaces (ES), ES admissible subsets, Borsuk ES admissible subsets,

Klee approximable extension spaces (KAES), Borsuk KAES admissible spaces, q-

Borsuk KAES admissible subsets, etc. They show that any compact Aκ
c (X, X) map

on these spaces has a fixed point. Finally, they present a continuation theorem for

particular types of admissible spaces considered in previous works of Park.

Agarwal and O’Regan, FPTA (2009) [3] — The authors present new Leray-

Schauder alternatives, Krasnoselskii and Lefschetz fixed point theory for multimaps

between Frèchet spaces. As an application they show that their results are directly

applicable to establish the existence of integral equations over infinite intervals.

Agarwal et al., Asia-European J. Math. 4 (2011) [5] — The authors present

new fixed point theorems for Aκ
c -admissible maps acting on locally convex t.v.s. They

considered multimaps need not be compact, and merely assume that multimaps are

weakly compact and map weakly compact sets into relatively compact sets. Their

fixed point results are obtained under Schauder, Leray-Schauder and Furi-Pera type

conditions.

O’Regan, AMC 219 (2012) [18] —- Several continuation principles in a variety

of settings are presented which guarantee the existence of coincidence points for a

general class of multimaps. Recall Aκ
c is closed under compositions. The class Aκ

c

contains almost all the well-known maps in the literature. It is also possible to

consider more general maps and in this paper the author considers a class A of maps.

7. BETTER ADMISSIBLE MULTIMAP CLASS B

The following is the concept of a slightly new multimap classes related to the

KKM theory:

Definition. Let X and Y be topological spaces. We define the better admissible

multimap class B of maps from X into Y as follows:

F ∈ B(X, Y ) ⇐⇒ F : X ⊸ Y is a map such that, for any natural n ∈ N, any

continuous function φ : ∆n → X, and any continuous function p : Fφ(∆n) → ∆n,
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the composition

∆n
φ

−→ φ(∆n) ⊂ X
F
⊸ Fφ(∆n)

p
−→ ∆n

has a fixed point.

Proposition 7.1. For any topological spaces X, Y , we have Aκ
c (X, Y ) ⊂ B(X, Y ).

When X is a subset of an abstract convex space, the preceding definition reduces

to the following previous one in [45]:

Definition. Let (E, D; Γ) be an abstract convex space, X a nonempty subset of E,

and Y a topological space. We define the better admissible class B of maps from X

into Y as follows:

F ∈ B(X, Y ) ⇐⇒ F : X ⊸ Y is a map such that, for any ΓN ⊂ X, where N ∈

〈D〉 with the cardinality |N | = n+1, and for any continuous function p : F (ΓN) → ∆n,

there exists a continuous function φN : ∆n → ΓN such that the composition

∆n
φN−→ ΓN

F |ΓN

⊸ F (ΓN)
p

−→ ∆n

has a fixed point. Note that ΓN can be replaced by the compact set φN(∆n) ⊂ X.

This concept extends the corresponding one for G-convex spaces appeared in [38],

where lots of examples were given.

The above definition also works for φA-spaces (X, D; Γ) with ΓA := φA(∆n) for

A ∈ 〈D〉 with the cardinality |A| = n + 1.

Let X be a convex space and Y a Hausdorff space. More early in 1997 [19], we

introduced a ‘better’ admissible class B of multimaps as follows:

F ∈ B(X, Y ) ⇐⇒ F : X ⊸ Y such that, for any polytope P in X and any

continuous map f : F (P ) → P , f(F |P ) has a fixed point.

The following KKM theorem is due to the author [29, Theorem 3]:

Theorem 7.2. Let X be a convex space, Y a Hausdorff space, F ∈ B(X, Y ) a

compact map, and S : X ⊸ Y a map. Suppose that

(1) for each x ∈ X, S(x) is closed; and

(2) for each N ∈ 〈X〉, F (coN) ⊂ S(N).

Then F (X) ∩
⋂
{S(x) | x ∈ X} 6= ∅.

Later this KKM theorem was applied to a minimax inequality related to ad-

missible multimaps, from which we deduced generalized versions of lopsided saddle

point theorems, fixed point theorems, existence of maximizable linear functionals, the

Warlas excess demand theorem, and the Gale-Nikaido-Debreu theorem.

Example. For a G-convex space (X, D; Γ) and any space Y , an admissible class

Aκ
c (X, Y ) is a subclass of B(X, Y ). There are maps in B not belonging to Aκ

c , for
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example, the connectivity map due to Nash and Girolo; see [30]. Some other examples;

see [48].

Recall that a nonempty subset X of a t.v.s. E is said to be admissible (in the

sense of Klee) provided that, for every nonempty compact subset K of X and every

0-neighborhood V ∈ V, there exists a continuous function h : K → X such that

x− h(x) ∈ V for all x ∈ K and h(K) is contained in a finite dimensional subspace L

of E.

In 1998, we obtained the following [30, Theorem 10.1]:

Theorem 7.3. Let E be a Hausdorff t.v.s. and X an admissible (in the sense of

Klee) convex subset of E. Then any compact closed map F ∈ B(X, X) has a fixed

point.

In [30], it was shown that Theorem 7.3 subsumes more than sixty known or

possible particular cases and generalizes them in terms of the involving spaces and

multimaps as well. Later, further examples of maps in the class B were known.

It is not known whether the admissibility of X can be eliminated in Theorem 7.3.

However, Theorem 7.3 can be generalized by switching the admissibility of domain

of the map to the Klee approximability of its ranges as follows:

Let X be a subset of a t.v.s. E. A compact subset K of X is said to be Klee

approximable into X if for any V ∈ V, there exists a continuous function h : K → X

such that x − h(x) ∈ V for all x ∈ K and h(K) is contained in a polytope in X.

Example. We give some examples of Klee approximable sets:

(1) If a subset X of E is admissible (in the sense of Klee), then every compact

subset K of X is Klee approximable into E.

(2) Any polytope in a subset X of a t.v.s. is Klee approximable into X.

(3) Any compact subset K of a convex subset X in a locally convex t.v.s. is Klee

approximable into X.

(4) Any compact subset K of a convex and locally convex subset X of a t.v.s. is

Klee approximable into X.

(5) Any compact subset K of an admissible convex subset X of a t.v.s. is Klee

approximable into X.

(6) Let X be an almost convex dense subset of an admissible subset Y of a

t.v.s. E. Then every compact subset K of Y is Klee approximable into X.

Note that (6)⇒(5)⇒(4)⇒(3).

In 2004 [35], Theorem 7.3 is generalized as follows:

Theorem 7.4. Let X be a subset of a Hausdorff t.v.s. E and F ∈ B(X, X) a compact

closed multimap. If F (X) is Klee approximable into X, then F has a fixed point.
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The following are obtained in 2007 [38], where it should be Bp= B:

Corollary 7.5. Let X be an almost convex admissible subset of a Hausdorff t.v.s. E

and F ∈ B(X, X) a compact closed map. Then F has a fixed point.

Corollary 7.6. Let X be an almost convex subset of a locally convex Hausdorff

t.v.s. E and F ∈ B(X, X) a compact closed map. Then F has a fixed point.

One of the most simple known example is that every compact continuous selfmap

on an almost convex subset in a Euclidean space has a fixed point. This generalizes

the Brouwer fixed point theorem.

Moreover, since the class B(X, X) contains a large number of special types of

function spaces, we can apply Theorem 7.4 to them. For example, since any Kakutani

map belongs to B, Theorem 7.4 and Corollaries 7.5 and 7.6 can be applied to them.

Applications. In [53], 26 papers on applications of the better admissible maps or

the KKM admissible maps were introduced. Here we give the contents of some of

typical works on applications of our better admissible multimap classes:

Park, NA 30 (1997) [29] — Recently, in a sequence of papers, the author in-

troduced the admissible classes Aκ
c of multimaps, which are large enough to include

most of multimaps appearing in nonlinear analysis and algebraic topology. In this

paper, we define a new ‘better’ admissible class B of multimaps.

In Section 2, we obtain a basic coincidence theorem for the class B. Section 3

deals with a matching theorem and KKM theorem, which are basis of the KKM theory

and have many applications. In Sections 4 and 5, we deduce fixed point theorems for

compact or condensing multimaps in B or in some related classes of multimaps.

Park, JMAA 329 (2007) [37] — We obtain new fixed point theorems on mul-

timaps in the class Bp defined on almost convex subsets of topological vector spaces.

Our main results are applied to deduce various fixed point theorems, coincidence

theorems, almost fixed point theorems, intersection theorems, and minimax theo-

rems. Consequently, our new results generalize well-known works of Kakutani, Fan,

Browder, Himmelberg, Lassonde, and others.

Park, PanAm. Math. J. 18 (2008) [40] — Using recent results in analytical fixed

point theory, some known basic fixed point and coincidence theorems for families of

multimaps are generalized and improved by removing some redundant restrictions.

Especially, the author is mainly concerned with the class of locally selectionable mul-

timaps having convex values instead of the Fan-Browder maps, which played main

role in a number of previous works.

Balaj and Lin, NA 73 (2010) [7] — Theorem 7.2 is equivalent to some existence

theorems of variational inclusion problems. These are applied to existence theorems
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of common fixed point, generalized maximal element theorems, a general coincidence

theorems and a section theorem.

O’Regan and Perán, JMAA 380 (2011) [20] — The authors set out a rigorous

presentation of Park’s class of admissible multimaps, within the general framework

of multimaps between topological spaces, using a broad definition of convexity. In

addition, they obtain a fixed point theorem for better admissible multimaps defined

on a proximity space via the Samuel-Smirnov compactification.

Lu and Zhang, CMA 64 (2012) [16] — The authors introduced the concept of

FWC-spaces (short form of finite weakly convex spaces) as a unified form of many

known modifications of G-convex spaces and the better admissible class of multimaps

on them. Note that these new concepts are inadequately defined and that no results

on them can be true.

Note that their FWC-spaces are simply φA-spaces due to Park.

O’Regan and Shahzad, AFPT 2 (2012) [21] — A new Krasnoselskii fixed

point result is presented for weakly sequentially upper semicontinuous maps. The

proof is immediate from results of O’Regan. The authors also extend the results for

a general class of maps, namely the Bκ maps of Park.

O’Regan, AA 92 (2013) [19] — The author presents a definition of d-essential

and d-L-essential maps in completely regular topological spaces and establishes a

homotopy property for both d-essential and d-L-essential maps. Also using the notion

of extendability, he presents new continuation theorems.

8. KKM ADMISSIBLE MULTIMAP CLASSES KC, KO

Recall that, early in 1994 [26], for a convex space (X, D) and a Hausdorff space

Y , it was indicated that an acyclic map F : X ⊸ Y and later, more generally, a

map F ∈ Aκ
c (X, Y ) belongs to the class KC. This was the origin of the study of

the so-called KKM admissible class of multimaps. Later, in 1997 [63], the fact was

extended to G-convex spaces (X, D; Γ) instead of convex spaces.

Since then, in the KKM theory on abstract convex spaces, there have appeared

multimap classes Aκ
c , KKM, S-KKM, s-KKM, B, K, KC, KO, and various modi-

fications of them. Park [45] reviewed certain mutual relations among such spaces.

In fact, the author showed that the multimap class S-KKM is included in the class

KC, and that most of known fixed point theorems on s-KKM maps follow from the

corresponding ones on B-maps. Consequently, the author could unify all the classes

KKM, S-KKM and s-KKM to KC-maps. Note that compact closed maps in the

classes KKM and s-KKM belong to the class B; see [35].

The following is known [40, Lemma 6]:

Proposition 8.1. Let (E, D; Γ) be a G-convex space and Z a topological space. Then
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(1) C(E, Z) ⊂ Aκ
c (E, Z) ⊂ B(E, Z);

(2) C(E, Z) ⊂ KC(E, Z) ∩ KO(E, Z); and

(3) Aκ
c (E, Z) ⊂ KC(E, Z) ∩ KO(E, Z) if Z is Hausdorff.

Consider the following condition for a G-convex space (E ⊃ D; Γ):

(∗) Γ{x} = {x} for each x ∈ D; and, for each N ∈ 〈D〉 with the cardinality |N | =

n+1, there exists a continuous function φN : ∆n → ΓN such that φN(∆n) = ΓN

and that J ∈ 〈N〉 implies φN(∆J) = ΓJ .

Note that every convex space satisfies the condition (∗). We had the following

[40, Theorem 16]:

Theorem 8.2. Let (E, D; Γ) be a G-convex space and Z a topological space.

(1) If Z is a Hausdorff space, then every compact map F ∈ B(E, Z) belongs to

KC(E, Z).

(2) If F : E ⊸ Z is a closed map such that FφN ∈ KC(∆n, Z) for any N ∈ 〈D〉

with the cardinality |N | = n + 1, then F ∈ B(E, Z).

(3) In the class of closed maps defined on a G-convex space (E ⊃ D; Γ) satisfying

condition (∗) into a space Z, a map F ∈ KC(E, Z) belongs to B(E, Z).

Remark. In (2), note that for any map F ∈ Aκ
c (E, Z), we have FφN ∈ Aκ

c (∆n, Z) ⊂

KC(∆n, Z) ∩ KO(∆n, Z) when Z is Hausdorff; see [13].

The following are [40, Corollaries 16.1 and 16.2], respectively.

Corollary 8.3. In the class of compact closed maps defined on a G-convex space

(E ⊃ D; Γ) satisfying condition (∗) into a Hausdorff space Z, two subclasses KC(E, Z)

and B(E, Z) are identical.

Corollary 8.4. In the class of compact closed maps defined on a convex space (X, D)

into a Hausdorff space Z, two subclasses KC(X, Z) and B(X, Z) are identical.

Remark. 1. This is noted in [29] by a different method. In view of Corollary 8.4, the

class B is favorable to use for convex spaces since it has already plenty of examples

and is much easier to find examples.

2. Proposition 8.1, Theorem 8.2, and Corollary 8.3 hold also for φA-spaces

(X, D; Γ) with ΓA := φA(∆n) for A ∈ 〈D〉 with |A| = n + 1.

Corollary 8.5. Let X be a subset of a Hausdorff t.v.s., I a nonempty set, s : I → X

a map such that co s(I) ⊂ X, and T ∈ s-KKM(I, X, X). If T is closed and compact,

then T ∈ B(X, X).

Proof. Note that (X, s(I)) is a convex space and the class s-KKM(I, X, X) is KC(X, X).

The conclusion follows from Corollary 8.4. �



302 S. PARK

In 2004, the author [35] showed that a compact closed s-KKM map from a convex

subset of a t.v.s. into itself belongs to B whenever s : I → X is a surjection.

Corollary 8.6. Let X be a subset of a Hausdorff t.v.s., I a nonempty set, s : I → X

a map such that co s(I) ⊂ X, and Y a Hausdorff space. Then, in the class of closed

compact maps, four classes KC(X, Y ), KKM(X, Y ), s-KKM(I, X, Y ), and B(X, Y )

coincide.

Proof. For the convex space (X, s(I)), we have KC(X, Y ) = KKM(X, Y ) = B(X, Y )

by Theorem 8.2(1) and (3). Note that KKM(X, Y ) = s−KKM(I, X, Y ) by following

the proof of [12, Proposition 2.3]. �

In view of Corollary 8.6, all fixed point theorems on s-KKM maps on a Hausdorff

t.v.s. are consequences of corresponding ones on B-maps.

Moreover, if F : X → Y is a continuous single-valued map or if F : X ⊸ Y has

a continuous selection, then it is easy to check that F ∈ KC(X, Y )∩KO(X, Y ). Note

that there are many known selection theorems due to Michael and others; see [50].

For convex subsets of a t.v.s., from the KKM principle, we had the following

almost fixed point theorems for the class KC and KO [33]:

Theorem 8.7. Let X be a convex subset of a t.v.s. E and F ∈ KC(X, X) such that

F (X) is totally bounded. Then for any convex neighborhood V of 0 in E, there exists

an x∗ ∈ X such that F (x∗) ∩ (x∗ + V ) 6= ∅.

Theorem 8.8. Let X be a totally bounded convex subset of a t.v.s. E and F ∈

KO(X, X). Then for each closed convex neighborhood V of 0 in E, there exists an

x∗ ∈ X such that F (x∗) ∩ (x∗ + V ) 6= ∅.

Note that E is not necessarily Hausdorff in Theorems 8.7 and 8.8. From Theo-

rem 8.7, we immediately have the following with a routine proof:

Corollary 8.9 Let X be a convex subset of a locally convex Hausdorff t.v.s. E. Then

any compact closed map F ∈ KC(X, X) has a fixed point.

Applications. Some of relatively recent works related the classes KC and KO are as

follows:

Shahzad, NA 56 (2004) [64] — This paper discusses new fixed point and ap-

proximation theorems for multimaps in the class S-KKM.

Park, NAF 11 (2006) [36] — We introduce basic results in the KKM theory on

abstract convex spaces and the map classes K, KC, KO, and B. We study the nature

of Kakutani type maps, B-maps, and KC-maps in G-convex spaces; and show that

generalizations of the key results in four papers are consequences of the G-convex

space theory and the new abstract convex space theory.
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Amini et al., NA 66 (2007) [6] — An abstract convex space (X, C) consists

of a nonempty set X and a family C of subsets of X such that X, ∅ ∈ C and Ci

is closed under arbitrary intersections. In this paper the authors introduce the class

S-KKM mappings for their abstract convex spaces (X, C). They obtain some fixed

point theorems for multimaps with the S-KKM property on Φ-spaces.

Yang et al., FPTA (2011) [67] — The authors first prove that the product

of a family of LΓ-spaces in the sense of Park is also an LΓ-space. Then, by using

a Himmelberg type fixed point theorem in LΓ-spaces due to Park, they establish

existence theorems of solutions for systems of generalized quasivariational inclusion

problems, systems of variational equations, and systems of generalized quasiequilib-

rium problems in LΓ-spaces. Applications of the existence theorem of solutions for

systems of generalized quasiequilibrium problems to optimization problems are given

in LΓ-spaces.

Yang and Huang, BKMS 49 (2012) [66] — A coincidence theorem for a com-

pact KC-map is proved in an abstract convex space in the sense of Park. Several

more general coincidence theorems for noncompact KC-maps are derived in abstract

convex spaces. Some examples are given to illustrate the coincidence theorems. As

applications, an alternative theorem concerning the existence of maximal elements,

an alternative theorem concerning equilibrium problems and a minimax inequality

for three functions are proved in abstract convex spaces.

Lu and Hu, JFSA (2013) [15] — The authors establish a new collectively fixed

point theorem in noncompact abstract convex spaces in the sense of Park. As ap-

plications of this theorem, they obtain some new existence theorems of equilibria for

generalized abstract economies in noncompact abstract convex spaces.

Park, NACA (2016) [58] — In the last three decades, we introduced several

fixed point theorems for multimap classes on various types of abstract convex spaces.

Such are the classes of acyclic maps, the Fan-Browder type maps, admissible maps

Aκ
c , better admissible maps B, and the KKM maps KC and KO. In our previous

reviews, several hundred papers related to applications of such fixed point theorems

were introduced. In the present review, we introduce some recent results in analytical

fixed point theory based on our previous works. Most of them are not appeared in

our previous reviews.

9. BASIC THEOREMS IN THE KKM THEORY

In our KKM theory on abstract convex spaces given in [40, 49], there exist some

basic theorems from which we can deduce several equivalent formulations and useful

applications. In this section, we introduce some of such basic theorems in [40].

We begin with the following prototype of KKM type theorems on the finite in-

tersection property:
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Theorem 9.1. Let (E, D; Γ) be an abstract convex space, Y a topological space, and

F ∈ KO(E, Y ) [resp., F ∈ KC(E, Y )]. Let G : D ⊸ Y be a map such that

(1) for any N ∈ 〈D〉, F (ΓN) ⊂ G(N); and

(2) G is open-valued [resp., closed-valued].

Then for each N ∈ 〈D〉, F (E) ∩
⋂
{G(y) : y ∈ N} 6= ∅.

Remark. 1. If E = Y and if the identity map 1E = F ∈ K(E, E), then Condition

(1) says that G is a KKM map.

2. If E = Y = ∆n is an n-simplex, D is the set of its vertices, and Γ =co is the

convex hull operation, then the celebrated KKM theorem says that 1E ∈ KC(E, E).

3. If D is a nonempty subset of a t.v.s. E = Y (not necessarily Hausdorff), Fan’s

KKM lemma says that 1E ∈ KC(E, E).

4. For another forms of the KKM theorem for convex spaces, H-spaces, or G-

convex spaces and their applications, there exists a large number of works.

From Theorem 9.1, we have another finite intersection property as follows:

Theorem 9.2. Let (E, D; Γ) be an abstract convex space, Y a topological space, and

F ∈ KO(E, Y ) [resp., F ∈ KC(E, Y )]. Let G : D ⊸ Y and H : E ⊸ Y be maps

satisfying

(1) G is open-valued [resp., closed-valued];

(2) for each x ∈ E, F (x) ⊂ H(x); and

(3) for each y ∈ F (E), M ∈ 〈D \ G−(z)〉 implies ΓM ⊂ E \ H−(z).

Then F (E) ∩
⋂
{G(z) : z ∈ N} 6= ∅ for all N ∈ 〈D〉.

The following coincidence theorem follows from Theorem 9.2:

Theorem 9.3. Let (E, D; Γ) be an abstract convex space, Y a topological space,

S : D ⊸ Y , T : E ⊸ Y maps, and F ∈ KO(E, Y ) [resp., F ∈ KC(E, Y )]. Suppose

that

(1) S is open-valued [resp., closed-valued];

(2) for each y ∈ F (E), coΓS−(y) ⊂ T−(y); and

(3) F (E) ⊂ S(N) for some N ∈ 〈D〉.

Then there exists an x̄ ∈ E such that F (x̄) ∩ T (x̄) 6= ∅.

From Theorem 9.3, we obtain the following Ky Fan type matching theorem:

Theorem 9.4. Let (E, D; Γ) be an abstract convex space, Y a topological space,

S : D ⊸ Y , and F ∈ KO(E, Y ) [resp., F ∈ KC(E, Y )] satisfying (1) and (3) of

Theorem 9.3. Then there exists an M ∈ 〈D〉 such that F (ΓM) ∩
⋂
{S(x) : x ∈ M} 6=

∅.
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Theorem 9.4 can be stated in its contrapositive form and in terms of the comple-

ment G(z) of S(z) in Y . Then we obtain Theorem 9.1. Therefore, Theorems 9.1–9.4

are mutually equivalent and can be applied to various results in the KKM theory on

our abstract convex spaces.

If we add certain compactness or coercivity condition to Theorem 9.1, then we

obtain certain KKM type whole intersection theorems as follows in Park [52, 55]:

Theorem 9.5. Let (X, D; Γ) be an abstract convex space, Z a topological space,

F ∈ KC(X, Z), and G : D ⊸ Z a map such that

(1) G is a KKM map w.r.t. F ; and

(2) there exists a nonempty compact subset K of Z such that either

(i) K ⊃
⋂
{G(y) : y ∈ M} for some M ∈ 〈D〉; or

(ii) for each N ∈ 〈D〉, there exists a Γ-convex subset LN of X relative to some

D′ ⊂ D such that N ⊂ D′, F (LN ) is compact, and

K ⊃ F (LN) ∩
⋂

{G(z) : z ∈ D′}.

Then we have

F (X) ∩ K ∩
⋂

y∈D

G(y) 6= ∅.

Furthermore,

(α) if G is transfer closed-valued, then F (X) ∩ K ∩
⋂
{G(z) : z ∈ D} 6= ∅; and

(β) if G is intersectionally closed-valued, then
⋂
{G(z) : z ∈ D} 6= ∅.

Here, intersectionally [resp., transfer] closed sets are complements of intersection-

ally [resp., transfer] open sets.

Note that Theorem 9.5 is the basis of hundreds of all statements in the KKM

theory.

Remark. Since we introduced the multimap classes Aκ
c , B, KC, and KO, many

authors or printers mistook A for U or U, B for B or B, and KO for KD or RO. The

author cordially asks his followers to keep the original notations.
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